TVG-Streaming: Learning User Behaviors for QoE-Optimized 360-Degree Video Streaming

360-degree video streaming shows great potential to revolutionize the streaming market, by providing much better immersive experience than standard video streams. However, its wide adoption is hindered by the surging demand of network bandwidth due to multi-screen video transmission. To reduce the b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 10; pp. 4107 - 4120
Main Authors Hu, Miao, Chen, Jiawen, Wu, Di, Zhou, Yipeng, Wang, Yi, Dai, Hong-Ning
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 360-degree video streaming shows great potential to revolutionize the streaming market, by providing much better immersive experience than standard video streams. However, its wide adoption is hindered by the surging demand of network bandwidth due to multi-screen video transmission. To reduce the bandwidth cost, one promising approach is to predict a user's field of view (FoV), and then prefetch video tiles that a user will view a few seconds ahead. The challenge lies in that user behaviors cannot be properly captured with very limited information, especially the viewing time spent on each tile and the FoV switching behavior are hard to predict. In this paper, we propose a novel 360-degree video streaming algorithm called TVG-Streaming to optimize user experiences by learning user view behaviors. Different from previous approaches, our idea is to exploit tile-view graphs (TVGs) generated by real user behaviors and accurately estimate the probability that each tile falls in the FoV. With the tile view probability, we can determine the bitrate of each tile for delivery and buffering with limited bandwidth budget so as to maximize users' quality of experience (QoE). For evaluation, we conduct extensive experiments using real traces and the results show that our proposed TVG-Streaming algorithm significantly outperforms other algorithms by at least 20% improvement in terms of users' QoE.
AbstractList 360-degree video streaming shows great potential to revolutionize the streaming market, by providing much better immersive experience than standard video streams. However, its wide adoption is hindered by the surging demand of network bandwidth due to multi-screen video transmission. To reduce the bandwidth cost, one promising approach is to predict a user’s field of view (FoV), and then prefetch video tiles that a user will view a few seconds ahead. The challenge lies in that user behaviors cannot be properly captured with very limited information, especially the viewing time spent on each tile and the FoV switching behavior are hard to predict. In this paper, we propose a novel 360-degree video streaming algorithm called TVG-Streaming to optimize user experiences by learning user view behaviors. Different from previous approaches, our idea is to exploit tile-view graphs (TVGs) generated by real user behaviors and accurately estimate the probability that each tile falls in the FoV. With the tile view probability, we can determine the bitrate of each tile for delivery and buffering with limited bandwidth budget so as to maximize users’ quality of experience (QoE). For evaluation, we conduct extensive experiments using real traces and the results show that our proposed TVG-Streaming algorithm significantly outperforms other algorithms by at least 20% improvement in terms of users’ QoE.
Author Wang, Yi
Hu, Miao
Dai, Hong-Ning
Zhou, Yipeng
Wu, Di
Chen, Jiawen
Author_xml – sequence: 1
  givenname: Miao
  orcidid: 0000-0002-1518-002X
  surname: Hu
  fullname: Hu, Miao
  email: humiao@outlook.com
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Jiawen
  orcidid: 0000-0002-6608-6228
  surname: Chen
  fullname: Chen, Jiawen
  email: chenjw275@mail2.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Di
  orcidid: 0000-0002-9433-7725
  surname: Wu
  fullname: Wu, Di
  email: wudi27@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Yipeng
  orcidid: 0000-0003-1533-0865
  surname: Zhou
  fullname: Zhou, Yipeng
  email: yipeng.zhou@mq.edu.au
  organization: Peng Cheng Laboratory, Shenzhen, China
– sequence: 5
  givenname: Yi
  orcidid: 0000-0002-9095-6879
  surname: Wang
  fullname: Wang, Yi
  email: wy@ieee.org
  organization: SUSTech Institute of Future Networks, Southern University of Science and Technology, Shenzhen, China
– sequence: 6
  givenname: Hong-Ning
  orcidid: 0000-0001-6165-4196
  surname: Dai
  fullname: Dai, Hong-Ning
  email: hndai@ieee.org
  organization: Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macao
BookMark eNp9kMtOAjEUhhuDiYC-gG6auB7saadzcaeIaEJCDAPbpjNzBktgiu1gok_vIISFC1fnX_yXk69HOrWtkZBrYAMAlt5lw9kiG3DG2UCwMOIhPyNdkDIJOGey02omIUg4yAvS837FGIRJGHfJLFuMg1njUG9MvbynE9SubhWde3T0Ed_1p7HO08o6-mZHwXTbmI35xpKKiAVPuHSIdGFKtPTUcknOK732eHW8fTJ_HmXDl2AyHb8OHyZBwVPZBGGoBXAGeQqQoMS00KwUWFYVSM2wfS9mueC80nEhpYjjouJlmFY5RGEuEy365PbQu3X2Y4e-USu7c3U7qbiMkxYCRLx18YOrcNZ7h5XaOrPR7ksBU3t46hee2sNTR3htKPkTKkyjG2Prxmmz_j96c4gaRDxtpYKBEIn4AV6gfUc
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TBC_2023_3234405
crossref_primary_10_1109_TVCG_2024_3360468
crossref_primary_10_1109_JIOT_2022_3197798
crossref_primary_10_1109_TMC_2023_3235103
crossref_primary_10_1145_3721292
crossref_primary_10_1109_ACCESS_2022_3174351
crossref_primary_10_1109_TCSVT_2023_3277893
crossref_primary_10_3389_fcomp_2024_1305670
crossref_primary_10_1109_TBC_2024_3374119
crossref_primary_10_3390_electronics13214200
crossref_primary_10_1002_ett_4759
crossref_primary_10_1109_TCSVT_2022_3150780
crossref_primary_10_1016_j_heliyon_2024_e30351
crossref_primary_10_1109_TCSVT_2021_3076585
Cites_doi 10.1109/TCSVT.2018.2874179
10.1145/2980055.2980056
10.1145/3083165.3083180
10.1145/1390334.1390412
10.1145/3321408.3321603
10.1109/AIVR.2018.00033
10.1145/3123266.3123291
10.1109/INFOCOM.2018.8486282
10.1109/TCSVT.2017.2688491
10.1109/TCSVT.2018.2886805
10.1145/3123266.3123453
10.1109/INFOCOM.2019.8737361
10.1145/3240508.3240680
10.1109/VR.2017.7892319
10.1109/ICME.2018.8486537
10.1109/JSTSP.2016.2608329
10.1109/TMM.2020.3033127
10.1109/LCN.2018.8638092
10.1145/3083187.3083219
10.1145/3117811.3117815
10.1145/2483977.2483991
10.1145/3210240.3210323
10.1109/MIPR.2019.00060
10.1109/INFOCOM41043.2020.9155477
10.1145/3204949.3204966
10.1002/bltj.20538
10.1145/3083187.3083215
10.1145/3123266.3123434
10.1109/ICASSP.2019.8682776
10.1109/TCSVT.2019.2946755
10.1145/3097895.3097896
10.1109/TMM.2018.2876044
10.1109/LCOMM.2016.2601087
10.1145/3241539.3241565
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3046242
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 4120
ExternalDocumentID 10_1109_TCSVT_2020_3046242
9301338
Genre orig-research
GrantInformation_xml – fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2019B121204009
– fundername: Guangdong Institute of Chinese Engineering Development Strategies
  grantid: 2019-GD-13; ARC DE180100950
– fundername: project “FANet: PCL Future Greater-Bay Area Network Facilities for Large-scale Experiments and Applications
  grantid: LZC0019
– fundername: National Natural Science Foundation of China
  grantid: 62072486; U1911201; U2001209; 61802452; 61872420
  funderid: 10.13039/501100001809
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2019B1515120031
– fundername: Macao Science and Technology Development Fund
  grantid: 0026/2018/A1
  funderid: 10.13039/501100006469
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-44a31201b9118e5e9ca0d3edff15a0e84770b322fa7c55377cf2d49fb164b58a3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 10:20:08 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 00:41:14 EDT 2025
Wed Aug 27 02:27:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-44a31201b9118e5e9ca0d3edff15a0e84770b322fa7c55377cf2d49fb164b58a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9433-7725
0000-0002-6608-6228
0000-0002-1518-002X
0000-0003-1533-0865
0000-0002-9095-6879
0000-0001-6165-4196
PQID 2578242162
PQPubID 85433
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCSVT_2020_3046242
ieee_primary_9301338
crossref_citationtrail_10_1109_TCSVT_2020_3046242
proquest_journals_2578242162
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref11
ref10
stewart (ref31) 1994
ref2
chen (ref24) 2020
ref1
ref39
ref17
ref38
ref16
ref19
ref18
wang (ref30) 1992
(ref41) 2017
montgomery (ref33) 2009
ref23
ref26
rice (ref32) 1995
ref20
ref42
ref22
ref21
xue (ref25) 2014
ref28
ref27
ref29
ban (ref8) 2020
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – start-page: 1
  year: 2020
  ident: ref8
  article-title: MA360: Multi-agent deep reinforcement learning based live 360-degree video streaming on edge
  publication-title: Proc IEEE Int Conf Multimedia Expo (ICME)
– year: 1995
  ident: ref32
  publication-title: Mathematical Statistics and Data Analysis
– ident: ref16
  doi: 10.1109/TCSVT.2018.2874179
– ident: ref38
  doi: 10.1145/2980055.2980056
– ident: ref36
  doi: 10.1145/3083165.3083180
– ident: ref29
  doi: 10.1145/1390334.1390412
– ident: ref28
  doi: 10.1145/3321408.3321603
– ident: ref9
  doi: 10.1109/AIVR.2018.00033
– ident: ref4
  doi: 10.1145/3123266.3123291
– ident: ref6
  doi: 10.1109/INFOCOM.2018.8486282
– ident: ref21
  doi: 10.1109/TCSVT.2017.2688491
– ident: ref3
  doi: 10.1109/TCSVT.2018.2886805
– ident: ref11
  doi: 10.1145/3123266.3123453
– ident: ref20
  doi: 10.1109/INFOCOM.2019.8737361
– ident: ref12
  doi: 10.1145/3240508.3240680
– year: 1992
  ident: ref30
  publication-title: Birth and Death Processes and Markov Chains
– year: 2009
  ident: ref33
  publication-title: Engineering Statistics
– ident: ref18
  doi: 10.1109/VR.2017.7892319
– ident: ref34
  doi: 10.1109/ICME.2018.8486537
– year: 1994
  ident: ref31
  publication-title: Introduction to the Numerical Solution of Markov Chains
– ident: ref26
  doi: 10.1109/JSTSP.2016.2608329
– ident: ref10
  doi: 10.1109/TMM.2020.3033127
– ident: ref27
  doi: 10.1109/LCN.2018.8638092
– ident: ref19
  doi: 10.1145/3083187.3083219
– ident: ref42
  doi: 10.1145/3117811.3117815
– ident: ref39
  doi: 10.1145/2483977.2483991
– ident: ref15
  doi: 10.1145/3210240.3210323
– start-page: 1
  year: 2014
  ident: ref25
  article-title: Assessing quality of experience for adaptive HTTP video streaming
  publication-title: Proc IEEE Int Conf Multimedia Expo Workshops (ICMEW)
– ident: ref14
  doi: 10.1109/MIPR.2019.00060
– ident: ref37
  doi: 10.1109/INFOCOM41043.2020.9155477
– ident: ref23
  doi: 10.1145/3204949.3204966
– ident: ref17
  doi: 10.1002/bltj.20538
– ident: ref35
  doi: 10.1145/3083187.3083215
– ident: ref5
  doi: 10.1145/3123266.3123434
– ident: ref13
  doi: 10.1109/ICASSP.2019.8682776
– ident: ref22
  doi: 10.1109/TCSVT.2019.2946755
– ident: ref1
  doi: 10.1145/3097895.3097896
– ident: ref2
  doi: 10.1109/TMM.2018.2876044
– ident: ref40
  doi: 10.1109/LCOMM.2016.2601087
– ident: ref7
  doi: 10.1145/3241539.3241565
– start-page: 1
  year: 2020
  ident: ref24
  article-title: Sr360: Boosting 360-degree video streaming with super-resolution
  publication-title: Proc of the Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV)
– year: 2017
  ident: ref41
  publication-title: Youtube live in 360 degrees encoder settings
SSID ssj0014847
Score 2.4621143
Snippet 360-degree video streaming shows great potential to revolutionize the streaming market, by providing much better immersive experience than standard video...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4107
SubjectTerms 360-degree video
Algorithms
Bandwidth
Bandwidths
Bit rate
Field of view
Linear regression
Machine learning
Predictive models
Quality of experience
streaming
Streaming media
Switches
tile-view graph
User behavior
User experience
Video data
Video transmission
Title TVG-Streaming: Learning User Behaviors for QoE-Optimized 360-Degree Video Streaming
URI https://ieeexplore.ieee.org/document/9301338
https://www.proquest.com/docview/2578242162
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3qAlm3FFlr5wI16cZw4j94qyoKQACGyK26R7YzRqmVTwe6FX9-xN4mgrSouUSLZkTUzHs_neQEcyCjWRirk1qHmidSaa0EP64zWKheFMP6-4-IyPZsk57fqdg2-9LkwiBiCz3DkX4Mvv27s0l-VHRUkjQSp1mGdgNsqV6v3GCR5aCZG5kLEczrHugQZURyVxzfTkqCgJITqczET-eIQCl1V_lLF4XwZb8NFt7JVWMmP0XJhRvbpj6KNr136W9hqDU32bSUZ72AN5zvw5ln5wQHclNNT7t3S-p6-v7K21uodm5BcsrZy4sMjI7uWXTcn_IrUy_3sCWsWp4J_R4LqyKazGhvW_-U9TMYn5fEZb5sscCsLteBJouOIrABDWi9HhYXVoo6xdi5SWiBRNROGdr3TmVUqzjLrZJ0UzhDOMirX8QfYmDdz3AUmU4xrqTPhalIFTubWpq4wGbrUc10OIeqoXtm2ArlvhPGzCkhEFFXgVOU5VbWcGsJhP-fXqv7Gf0cPPOn7kS3Vh7DfMbdqt-hj5XWV94en8uO_Z-3BpvQBLCFybx82Fg9L_EQWyMJ8DqL3G-sl1gg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbhMxcNSGA3Dg1SJCW_CBG3Xq9a730RtKW9KSFKFuot5WtneMIkiC2uTSr2fsbFa8hHqx1pK9smbG8_C8AN7JKNZGKuTWoeaJ1JprQYN1RmuVi0IY_94xukwH4-TiWl1vwWGbC4OIIfgMe_4z-PLrhV35p7KjgqiRTKpteEByX0XrbK3WZ5DkoZ0YKQwRz0mSbVJkRHFU9q8mJRmDkmxUn42ZyN_EUOir8hczDhLm7CmMNmdbB5Z8662Wpmfv_ijbeN_DP4MnjarJPqxp4zls4fwFPP6lAOEOXJWTj9w7pvWM5sesqbb6lY2JMllTO_HmlpFmy74sTvlnYjCz6R3WLE4FP0Ey1pFNpjUuWPuXXRifnZb9AW_aLHArC7XkSaLjiPQAQ3wvR4WF1aKOsXYuUlogQTUThu6905lVKs4y62SdFM6QpWVUruOX0Jkv5vgKmEwxrqXOhKuJGTiZW5u6wmToUo932YVoA_XKNjXIfSuM71WwRURRBUxVHlNVg6kuvG_3_FhX4Pjv6h0P-nZlA_Uu7G-QWzWX9Lby3Mp7xFP5-t-73sLDQTkaVsPzy0978Ej6cJYQx7cPneXNCg9IH1maN4EMfwJDdtlR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TVG-Streaming%3A+Learning+User+Behaviors+for+QoE-Optimized+360-Degree+Video+Streaming&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Hu%2C+Miao&rft.au=Chen%2C+Jiawen&rft.au=Wu%2C+Di&rft.au=Zhou%2C+Yipeng&rft.date=2021-10-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=31&rft.issue=10&rft.spage=4107&rft.epage=4120&rft_id=info:doi/10.1109%2FTCSVT.2020.3046242&rft.externalDocID=9301338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon