TVG-Streaming: Learning User Behaviors for QoE-Optimized 360-Degree Video Streaming
360-degree video streaming shows great potential to revolutionize the streaming market, by providing much better immersive experience than standard video streams. However, its wide adoption is hindered by the surging demand of network bandwidth due to multi-screen video transmission. To reduce the b...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 31; no. 10; pp. 4107 - 4120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 360-degree video streaming shows great potential to revolutionize the streaming market, by providing much better immersive experience than standard video streams. However, its wide adoption is hindered by the surging demand of network bandwidth due to multi-screen video transmission. To reduce the bandwidth cost, one promising approach is to predict a user's field of view (FoV), and then prefetch video tiles that a user will view a few seconds ahead. The challenge lies in that user behaviors cannot be properly captured with very limited information, especially the viewing time spent on each tile and the FoV switching behavior are hard to predict. In this paper, we propose a novel 360-degree video streaming algorithm called TVG-Streaming to optimize user experiences by learning user view behaviors. Different from previous approaches, our idea is to exploit tile-view graphs (TVGs) generated by real user behaviors and accurately estimate the probability that each tile falls in the FoV. With the tile view probability, we can determine the bitrate of each tile for delivery and buffering with limited bandwidth budget so as to maximize users' quality of experience (QoE). For evaluation, we conduct extensive experiments using real traces and the results show that our proposed TVG-Streaming algorithm significantly outperforms other algorithms by at least 20% improvement in terms of users' QoE. |
---|---|
AbstractList | 360-degree video streaming shows great potential to revolutionize the streaming market, by providing much better immersive experience than standard video streams. However, its wide adoption is hindered by the surging demand of network bandwidth due to multi-screen video transmission. To reduce the bandwidth cost, one promising approach is to predict a user’s field of view (FoV), and then prefetch video tiles that a user will view a few seconds ahead. The challenge lies in that user behaviors cannot be properly captured with very limited information, especially the viewing time spent on each tile and the FoV switching behavior are hard to predict. In this paper, we propose a novel 360-degree video streaming algorithm called TVG-Streaming to optimize user experiences by learning user view behaviors. Different from previous approaches, our idea is to exploit tile-view graphs (TVGs) generated by real user behaviors and accurately estimate the probability that each tile falls in the FoV. With the tile view probability, we can determine the bitrate of each tile for delivery and buffering with limited bandwidth budget so as to maximize users’ quality of experience (QoE). For evaluation, we conduct extensive experiments using real traces and the results show that our proposed TVG-Streaming algorithm significantly outperforms other algorithms by at least 20% improvement in terms of users’ QoE. |
Author | Wang, Yi Hu, Miao Dai, Hong-Ning Zhou, Yipeng Wu, Di Chen, Jiawen |
Author_xml | – sequence: 1 givenname: Miao orcidid: 0000-0002-1518-002X surname: Hu fullname: Hu, Miao email: humiao@outlook.com organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Jiawen orcidid: 0000-0002-6608-6228 surname: Chen fullname: Chen, Jiawen email: chenjw275@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Di orcidid: 0000-0002-9433-7725 surname: Wu fullname: Wu, Di email: wudi27@mail.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 4 givenname: Yipeng orcidid: 0000-0003-1533-0865 surname: Zhou fullname: Zhou, Yipeng email: yipeng.zhou@mq.edu.au organization: Peng Cheng Laboratory, Shenzhen, China – sequence: 5 givenname: Yi orcidid: 0000-0002-9095-6879 surname: Wang fullname: Wang, Yi email: wy@ieee.org organization: SUSTech Institute of Future Networks, Southern University of Science and Technology, Shenzhen, China – sequence: 6 givenname: Hong-Ning orcidid: 0000-0001-6165-4196 surname: Dai fullname: Dai, Hong-Ning email: hndai@ieee.org organization: Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macao |
BookMark | eNp9kMtOAjEUhhuDiYC-gG6auB7saadzcaeIaEJCDAPbpjNzBktgiu1gok_vIISFC1fnX_yXk69HOrWtkZBrYAMAlt5lw9kiG3DG2UCwMOIhPyNdkDIJOGey02omIUg4yAvS837FGIRJGHfJLFuMg1njUG9MvbynE9SubhWde3T0Ed_1p7HO08o6-mZHwXTbmI35xpKKiAVPuHSIdGFKtPTUcknOK732eHW8fTJ_HmXDl2AyHb8OHyZBwVPZBGGoBXAGeQqQoMS00KwUWFYVSM2wfS9mueC80nEhpYjjouJlmFY5RGEuEy365PbQu3X2Y4e-USu7c3U7qbiMkxYCRLx18YOrcNZ7h5XaOrPR7ksBU3t46hee2sNTR3htKPkTKkyjG2Prxmmz_j96c4gaRDxtpYKBEIn4AV6gfUc |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TBC_2023_3234405 crossref_primary_10_1109_TVCG_2024_3360468 crossref_primary_10_1109_JIOT_2022_3197798 crossref_primary_10_1109_TMC_2023_3235103 crossref_primary_10_1145_3721292 crossref_primary_10_1109_ACCESS_2022_3174351 crossref_primary_10_1109_TCSVT_2023_3277893 crossref_primary_10_3389_fcomp_2024_1305670 crossref_primary_10_1109_TBC_2024_3374119 crossref_primary_10_3390_electronics13214200 crossref_primary_10_1002_ett_4759 crossref_primary_10_1109_TCSVT_2022_3150780 crossref_primary_10_1016_j_heliyon_2024_e30351 crossref_primary_10_1109_TCSVT_2021_3076585 |
Cites_doi | 10.1109/TCSVT.2018.2874179 10.1145/2980055.2980056 10.1145/3083165.3083180 10.1145/1390334.1390412 10.1145/3321408.3321603 10.1109/AIVR.2018.00033 10.1145/3123266.3123291 10.1109/INFOCOM.2018.8486282 10.1109/TCSVT.2017.2688491 10.1109/TCSVT.2018.2886805 10.1145/3123266.3123453 10.1109/INFOCOM.2019.8737361 10.1145/3240508.3240680 10.1109/VR.2017.7892319 10.1109/ICME.2018.8486537 10.1109/JSTSP.2016.2608329 10.1109/TMM.2020.3033127 10.1109/LCN.2018.8638092 10.1145/3083187.3083219 10.1145/3117811.3117815 10.1145/2483977.2483991 10.1145/3210240.3210323 10.1109/MIPR.2019.00060 10.1109/INFOCOM41043.2020.9155477 10.1145/3204949.3204966 10.1002/bltj.20538 10.1145/3083187.3083215 10.1145/3123266.3123434 10.1109/ICASSP.2019.8682776 10.1109/TCSVT.2019.2946755 10.1145/3097895.3097896 10.1109/TMM.2018.2876044 10.1109/LCOMM.2016.2601087 10.1145/3241539.3241565 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2020.3046242 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 4120 |
ExternalDocumentID | 10_1109_TCSVT_2020_3046242 9301338 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2019B121204009 – fundername: Guangdong Institute of Chinese Engineering Development Strategies grantid: 2019-GD-13; ARC DE180100950 – fundername: project “FANet: PCL Future Greater-Bay Area Network Facilities for Large-scale Experiments and Applications grantid: LZC0019 – fundername: National Natural Science Foundation of China grantid: 62072486; U1911201; U2001209; 61802452; 61872420 funderid: 10.13039/501100001809 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2019B1515120031 – fundername: Macao Science and Technology Development Fund grantid: 0026/2018/A1 funderid: 10.13039/501100006469 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-44a31201b9118e5e9ca0d3edff15a0e84770b322fa7c55377cf2d49fb164b58a3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 10:20:08 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 00:41:14 EDT 2025 Wed Aug 27 02:27:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-44a31201b9118e5e9ca0d3edff15a0e84770b322fa7c55377cf2d49fb164b58a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9433-7725 0000-0002-6608-6228 0000-0002-1518-002X 0000-0003-1533-0865 0000-0002-9095-6879 0000-0001-6165-4196 |
PQID | 2578242162 |
PQPubID | 85433 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2020_3046242 ieee_primary_9301338 crossref_citationtrail_10_1109_TCSVT_2020_3046242 proquest_journals_2578242162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref11 ref10 stewart (ref31) 1994 ref2 chen (ref24) 2020 ref1 ref39 ref17 ref38 ref16 ref19 ref18 wang (ref30) 1992 (ref41) 2017 montgomery (ref33) 2009 ref23 ref26 rice (ref32) 1995 ref20 ref42 ref22 ref21 xue (ref25) 2014 ref28 ref27 ref29 ban (ref8) 2020 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – start-page: 1 year: 2020 ident: ref8 article-title: MA360: Multi-agent deep reinforcement learning based live 360-degree video streaming on edge publication-title: Proc IEEE Int Conf Multimedia Expo (ICME) – year: 1995 ident: ref32 publication-title: Mathematical Statistics and Data Analysis – ident: ref16 doi: 10.1109/TCSVT.2018.2874179 – ident: ref38 doi: 10.1145/2980055.2980056 – ident: ref36 doi: 10.1145/3083165.3083180 – ident: ref29 doi: 10.1145/1390334.1390412 – ident: ref28 doi: 10.1145/3321408.3321603 – ident: ref9 doi: 10.1109/AIVR.2018.00033 – ident: ref4 doi: 10.1145/3123266.3123291 – ident: ref6 doi: 10.1109/INFOCOM.2018.8486282 – ident: ref21 doi: 10.1109/TCSVT.2017.2688491 – ident: ref3 doi: 10.1109/TCSVT.2018.2886805 – ident: ref11 doi: 10.1145/3123266.3123453 – ident: ref20 doi: 10.1109/INFOCOM.2019.8737361 – ident: ref12 doi: 10.1145/3240508.3240680 – year: 1992 ident: ref30 publication-title: Birth and Death Processes and Markov Chains – year: 2009 ident: ref33 publication-title: Engineering Statistics – ident: ref18 doi: 10.1109/VR.2017.7892319 – ident: ref34 doi: 10.1109/ICME.2018.8486537 – year: 1994 ident: ref31 publication-title: Introduction to the Numerical Solution of Markov Chains – ident: ref26 doi: 10.1109/JSTSP.2016.2608329 – ident: ref10 doi: 10.1109/TMM.2020.3033127 – ident: ref27 doi: 10.1109/LCN.2018.8638092 – ident: ref19 doi: 10.1145/3083187.3083219 – ident: ref42 doi: 10.1145/3117811.3117815 – ident: ref39 doi: 10.1145/2483977.2483991 – ident: ref15 doi: 10.1145/3210240.3210323 – start-page: 1 year: 2014 ident: ref25 article-title: Assessing quality of experience for adaptive HTTP video streaming publication-title: Proc IEEE Int Conf Multimedia Expo Workshops (ICMEW) – ident: ref14 doi: 10.1109/MIPR.2019.00060 – ident: ref37 doi: 10.1109/INFOCOM41043.2020.9155477 – ident: ref23 doi: 10.1145/3204949.3204966 – ident: ref17 doi: 10.1002/bltj.20538 – ident: ref35 doi: 10.1145/3083187.3083215 – ident: ref5 doi: 10.1145/3123266.3123434 – ident: ref13 doi: 10.1109/ICASSP.2019.8682776 – ident: ref22 doi: 10.1109/TCSVT.2019.2946755 – ident: ref1 doi: 10.1145/3097895.3097896 – ident: ref2 doi: 10.1109/TMM.2018.2876044 – ident: ref40 doi: 10.1109/LCOMM.2016.2601087 – ident: ref7 doi: 10.1145/3241539.3241565 – start-page: 1 year: 2020 ident: ref24 article-title: Sr360: Boosting 360-degree video streaming with super-resolution publication-title: Proc of the Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV) – year: 2017 ident: ref41 publication-title: Youtube live in 360 degrees encoder settings |
SSID | ssj0014847 |
Score | 2.4621143 |
Snippet | 360-degree video streaming shows great potential to revolutionize the streaming market, by providing much better immersive experience than standard video... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4107 |
SubjectTerms | 360-degree video Algorithms Bandwidth Bandwidths Bit rate Field of view Linear regression Machine learning Predictive models Quality of experience streaming Streaming media Switches tile-view graph User behavior User experience Video data Video transmission |
Title | TVG-Streaming: Learning User Behaviors for QoE-Optimized 360-Degree Video Streaming |
URI | https://ieeexplore.ieee.org/document/9301338 https://www.proquest.com/docview/2578242162 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3qAlm3FFlr5wI16cZw4j94qyoKQACGyK26R7YzRqmVTwe6FX9-xN4mgrSouUSLZkTUzHs_neQEcyCjWRirk1qHmidSaa0EP64zWKheFMP6-4-IyPZsk57fqdg2-9LkwiBiCz3DkX4Mvv27s0l-VHRUkjQSp1mGdgNsqV6v3GCR5aCZG5kLEczrHugQZURyVxzfTkqCgJITqczET-eIQCl1V_lLF4XwZb8NFt7JVWMmP0XJhRvbpj6KNr136W9hqDU32bSUZ72AN5zvw5ln5wQHclNNT7t3S-p6-v7K21uodm5BcsrZy4sMjI7uWXTcn_IrUy_3sCWsWp4J_R4LqyKazGhvW_-U9TMYn5fEZb5sscCsLteBJouOIrABDWi9HhYXVoo6xdi5SWiBRNROGdr3TmVUqzjLrZJ0UzhDOMirX8QfYmDdz3AUmU4xrqTPhalIFTubWpq4wGbrUc10OIeqoXtm2ArlvhPGzCkhEFFXgVOU5VbWcGsJhP-fXqv7Gf0cPPOn7kS3Vh7DfMbdqt-hj5XWV94en8uO_Z-3BpvQBLCFybx82Fg9L_EQWyMJ8DqL3G-sl1gg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbhMxcNSGA3Dg1SJCW_CBG3Xq9a730RtKW9KSFKFuot5WtneMIkiC2uTSr2fsbFa8hHqx1pK9smbG8_C8AN7JKNZGKuTWoeaJ1JprQYN1RmuVi0IY_94xukwH4-TiWl1vwWGbC4OIIfgMe_4z-PLrhV35p7KjgqiRTKpteEByX0XrbK3WZ5DkoZ0YKQwRz0mSbVJkRHFU9q8mJRmDkmxUn42ZyN_EUOir8hczDhLm7CmMNmdbB5Z8662Wpmfv_ijbeN_DP4MnjarJPqxp4zls4fwFPP6lAOEOXJWTj9w7pvWM5sesqbb6lY2JMllTO_HmlpFmy74sTvlnYjCz6R3WLE4FP0Ey1pFNpjUuWPuXXRifnZb9AW_aLHArC7XkSaLjiPQAQ3wvR4WF1aKOsXYuUlogQTUThu6905lVKs4y62SdFM6QpWVUruOX0Jkv5vgKmEwxrqXOhKuJGTiZW5u6wmToUo932YVoA_XKNjXIfSuM71WwRURRBUxVHlNVg6kuvG_3_FhX4Pjv6h0P-nZlA_Uu7G-QWzWX9Lby3Mp7xFP5-t-73sLDQTkaVsPzy0978Ej6cJYQx7cPneXNCg9IH1maN4EMfwJDdtlR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TVG-Streaming%3A+Learning+User+Behaviors+for+QoE-Optimized+360-Degree+Video+Streaming&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Hu%2C+Miao&rft.au=Chen%2C+Jiawen&rft.au=Wu%2C+Di&rft.au=Zhou%2C+Yipeng&rft.date=2021-10-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=31&rft.issue=10&rft.spage=4107&rft.epage=4120&rft_id=info:doi/10.1109%2FTCSVT.2020.3046242&rft.externalDocID=9301338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |