Skeleton-Based Action Recognition With Gated Convolutional Neural Networks

For skeleton-based action recognition, most of the existing works used recurrent neural networks. Using convolutional neural networks (CNNs) is another attractive solution considering their advantages in parallelization, effectiveness in feature learning, and model base sufficiency. Besides these, s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 29; no. 11; pp. 3247 - 3257
Main Authors Cao, Congqi, Lan, Cuiling, Zhang, Yifan, Zeng, Wenjun, Lu, Hanqing, Zhang, Yanning
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For skeleton-based action recognition, most of the existing works used recurrent neural networks. Using convolutional neural networks (CNNs) is another attractive solution considering their advantages in parallelization, effectiveness in feature learning, and model base sufficiency. Besides these, skeleton data are low-dimensional features. It is natural to arrange a sequence of skeleton features chronologically into an image, which retains the original information. Therefore, we solve the sequence learning problem as an image classification task using CNNs. For better learning ability, we build a classification network with stacked residual blocks and having a special design called linear skip gated connection which can benefit information propagation across multiple residual blocks. When arranging the coordinates of body joints in one frame into a skeleton feature, we systematically investigate the performance of part-based, chain-based, and traversal-based orders. Furthermore, a fully convolutional permutation network is designed to learn an optimized order for data rearrangement. Without any bells and whistles, our proposed model achieves state-of-the-art performance on two challenging benchmark datasets, outperforming existing methods significantly.
AbstractList For skeleton-based action recognition, most of the existing works used recurrent neural networks. Using convolutional neural networks (CNNs) is another attractive solution considering their advantages in parallelization, effectiveness in feature learning, and model base sufficiency. Besides these, skeleton data are low-dimensional features. It is natural to arrange a sequence of skeleton features chronologically into an image, which retains the original information. Therefore, we solve the sequence learning problem as an image classification task using CNNs. For better learning ability, we build a classification network with stacked residual blocks and having a special design called linear skip gated connection which can benefit information propagation across multiple residual blocks. When arranging the coordinates of body joints in one frame into a skeleton feature, we systematically investigate the performance of part-based, chain-based, and traversal-based orders. Furthermore, a fully convolutional permutation network is designed to learn an optimized order for data rearrangement. Without any bells and whistles, our proposed model achieves state-of-the-art performance on two challenging benchmark datasets, outperforming existing methods significantly.
Author Cao, Congqi
Lu, Hanqing
Zeng, Wenjun
Zhang, Yifan
Zhang, Yanning
Lan, Cuiling
Author_xml – sequence: 1
  givenname: Congqi
  orcidid: 0000-0002-0217-9791
  surname: Cao
  fullname: Cao, Congqi
  email: congqi.cao@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Cuiling
  orcidid: 0000-0001-9145-9957
  surname: Lan
  fullname: Lan, Cuiling
  email: culan@microsoft.com
  organization: Microsoft Research Asia, Beijing, China
– sequence: 3
  givenname: Yifan
  orcidid: 0000-0002-9190-3509
  surname: Zhang
  fullname: Zhang, Yifan
  email: yfzhang@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Wenjun
  orcidid: 0000-0003-2531-3137
  surname: Zeng
  fullname: Zeng, Wenjun
  email: wezeng@microsoft.com
  organization: Microsoft Research Asia, Beijing, China
– sequence: 5
  givenname: Hanqing
  surname: Lu
  fullname: Lu, Hanqing
  email: luhq@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
  email: ynzhang@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kE1PAjEQhhuDiYD-Ab1s4nmx027p9ohEUUM0EdTjpnQHXVi32HY1_nt3gXjw4GkmM-87H0-PdCpbISGnQAcAVF3Mx7Pn-YBRSAcslUoBPyBdECKNGaOi0-RUQJwyEEek5_2KUkjSRHbJ3WyNJQZbxZfaYx6NTChsFT2isa9Vsc1fivAWTXRoumNbfdqybsu6jO6xdtsQvqxb-2NyuNSlx5N97JOn66v5-CaePkxux6NpbJgSIeaojJBLoaTmDMUCUEPChWrOFglKbhZC5cMFUwB5zqkyMmcKGbKcyaEwlPfJ-W7uxtmPGn3IVrZ2zUE-YxwaHBIENCq2UxlnvXe4zDaueNfuOwOatcyyLbOsZZbtmTWm9I_JFEG37wani_J_69nOWiDi765UMMUk8B8kV3uB
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_patcog_2021_108170
crossref_primary_10_1016_j_patcog_2024_111106
crossref_primary_10_1109_TCSVT_2024_3399126
crossref_primary_10_1109_LRA_2021_3056361
crossref_primary_10_1007_s10994_022_06141_8
crossref_primary_10_1109_TPAMI_2021_3050918
crossref_primary_10_1109_TCSVT_2021_3050807
crossref_primary_10_1016_j_compeleceng_2024_109633
crossref_primary_10_1080_00140139_2024_2433027
crossref_primary_10_1016_j_neucom_2022_07_046
crossref_primary_10_1016_j_jvcir_2022_103531
crossref_primary_10_1109_TCSVT_2021_3098839
crossref_primary_10_1109_TCSVT_2022_3193574
crossref_primary_10_20965_jaciii_2023_p0165
crossref_primary_10_1007_s11042_022_13441_7
crossref_primary_10_2139_ssrn_4116054
crossref_primary_10_2139_ssrn_4170495
crossref_primary_10_3390_app12031402
crossref_primary_10_3390_electronics9010187
crossref_primary_10_1109_TCSVT_2024_3360452
crossref_primary_10_22399_ijcesen_621
crossref_primary_10_3390_rs13183755
crossref_primary_10_1016_j_ijleo_2021_166726
crossref_primary_10_1016_j_knosys_2022_109887
crossref_primary_10_1109_TCSVT_2022_3219864
crossref_primary_10_1109_TCSVT_2023_3295432
crossref_primary_10_1016_j_neucom_2020_03_126
crossref_primary_10_1109_TMM_2021_3086758
crossref_primary_10_1016_j_eswa_2022_118004
crossref_primary_10_3390_app13031647
crossref_primary_10_1016_j_knosys_2021_107783
crossref_primary_10_1016_j_neunet_2022_04_025
crossref_primary_10_1016_j_asoc_2025_112797
crossref_primary_10_1016_j_eswa_2021_116424
crossref_primary_10_1109_TMM_2021_3070127
crossref_primary_10_1038_s41598_024_58190_9
crossref_primary_10_1109_LSENS_2024_3475515
crossref_primary_10_1109_TCSVT_2021_3077512
crossref_primary_10_1049_ipr2_12469
crossref_primary_10_1109_TCSVT_2022_3175923
crossref_primary_10_1016_j_sigpro_2022_108714
crossref_primary_10_1007_s00371_021_02355_4
crossref_primary_10_1145_3656046
crossref_primary_10_3390_a13120331
crossref_primary_10_1007_s10489_024_05719_0
crossref_primary_10_1109_TCSVT_2023_3318557
crossref_primary_10_1007_s10044_023_01156_w
crossref_primary_10_1109_JSSC_2024_3391665
crossref_primary_10_12688_digitaltwin_17408_1
crossref_primary_10_1109_TAI_2024_3430260
crossref_primary_10_1007_s00371_020_01955_w
crossref_primary_10_1109_ACCESS_2021_3049808
crossref_primary_10_1002_cav_2207
crossref_primary_10_1007_s10489_022_03968_5
crossref_primary_10_1016_j_neucom_2022_07_080
crossref_primary_10_11834_jig_220028
crossref_primary_10_1109_TCSVT_2021_3085959
crossref_primary_10_3390_s25061769
crossref_primary_10_1002_cav_2193
crossref_primary_10_1016_j_patcog_2024_110733
crossref_primary_10_1109_TCSVT_2024_3375512
crossref_primary_10_1109_THMS_2024_3467334
crossref_primary_10_1016_j_asoc_2023_111166
crossref_primary_10_1109_TCSVT_2021_3124562
crossref_primary_10_1016_j_patcog_2019_05_020
crossref_primary_10_1016_j_neucom_2025_129433
crossref_primary_10_1109_TCDS_2021_3126637
crossref_primary_10_1016_j_neucom_2024_127496
crossref_primary_10_1016_j_patcog_2023_109989
crossref_primary_10_1109_TCSVT_2020_3038145
crossref_primary_10_3390_electronics12132852
crossref_primary_10_5351_KJAS_2024_37_5_643
crossref_primary_10_1109_TCSVT_2020_3017203
crossref_primary_10_1109_TIP_2022_3230249
crossref_primary_10_3390_electronics11182973
crossref_primary_10_1109_TCSVT_2023_3240472
crossref_primary_10_1007_s00371_024_03420_4
crossref_primary_10_1016_j_patcog_2022_109234
crossref_primary_10_1109_TCSVT_2021_3100128
crossref_primary_10_1038_s41598_022_09293_8
crossref_primary_10_1088_1742_6596_2010_1_012131
crossref_primary_10_1109_TMM_2022_3168137
crossref_primary_10_1109_TCSVT_2020_3019293
crossref_primary_10_1109_TCSVT_2020_2973301
crossref_primary_10_1016_j_knosys_2025_113045
crossref_primary_10_1007_s13735_023_00301_9
crossref_primary_10_1109_TMM_2022_3175374
crossref_primary_10_1360_SSI_2023_0047
crossref_primary_10_2478_amns_2023_2_00253
crossref_primary_10_20535_2523_4455_2019_24_6_197449
crossref_primary_10_1007_s10489_021_02370_x
crossref_primary_10_1007_s11760_024_03259_1
crossref_primary_10_1109_TIP_2020_3028207
crossref_primary_10_1016_j_asoc_2023_110536
crossref_primary_10_1016_j_patrec_2023_11_010
crossref_primary_10_1049_cit2_12012
crossref_primary_10_1007_s00521_022_07826_w
crossref_primary_10_1016_j_cviu_2024_104258
crossref_primary_10_1109_TNNLS_2022_3226301
crossref_primary_10_3390_s24165379
crossref_primary_10_1007_s00371_022_02603_1
crossref_primary_10_1109_TCDS_2022_3171550
crossref_primary_10_3390_s23249738
crossref_primary_10_3390_e22101135
crossref_primary_10_1007_s10489_022_04442_y
crossref_primary_10_1049_cvi2_12080
crossref_primary_10_1049_cvi2_12086
crossref_primary_10_1109_TCSVT_2022_3201186
Cites_doi 10.1109/ACPR.2015.7486569
10.1109/CVPR.2017.486
10.1109/78.650093
10.1007/978-3-319-46487-9_50
10.1109/CVPR.2016.115
10.1109/ICCV.2017.115
10.1016/j.patcog.2017.02.030
10.1109/DICTA.2014.7008101
10.1109/CVPR.2016.90
10.1109/TCSVT.2018.2799968
10.1109/5.726791
10.1109/CVPR.2015.7298594
10.1109/CVPR.2015.7299172
10.1109/TSP.2006.881199
10.1109/TCYB.2016.2519448
10.1109/CVPR.2014.82
10.1109/TCSVT.2016.2628339
10.1109/TCSVT.2018.2818151
10.1109/TIP.2017.2785279
10.1109/CVPR.2017.387
10.1109/72.279181
10.1016/j.neunet.2017.12.012
10.1016/j.knosys.2018.05.029
10.1109/ICCV.2017.233
10.3115/v1/D14-1179
10.1109/CVPRW.2017.207
10.1109/ICCV.2017.161
10.1109/TIP.2018.2812099
10.1109/MMUL.2012.24
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2018.2879913
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 3257
ExternalDocumentID 10_1109_TCSVT_2018_2879913
8529271
Genre orig-research
GrantInformation_xml – fundername: Northwestern Polytechnical University
  grantid: 31020180QD138
  funderid: 10.13039/501100002663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-3e9c57f597a32e5b1ea1435987954e73cb59d6b2911dd309c7d29e2e2d2765c03
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 06:27:16 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Jul 01 00:41:12 EDT 2025
Wed Aug 27 02:40:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3e9c57f597a32e5b1ea1435987954e73cb59d6b2911dd309c7d29e2e2d2765c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9190-3509
0000-0003-2531-3137
0000-0002-0217-9791
0000-0001-9145-9957
PQID 2311107151
PQPubID 85433
PageCount 11
ParticipantIDs crossref_primary_10_1109_TCSVT_2018_2879913
proquest_journals_2311107151
ieee_primary_8529271
crossref_citationtrail_10_1109_TCSVT_2018_2879913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References krizhevsky (ref12) 2012
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
chen (ref38) 2015
dauphin (ref18) 2017
ref2
ref39
ref16
pascanu (ref17) 2013
li (ref35) 2017
ref24
ref23
ref26
ref25
ref20
ref42
du (ref4) 2015
ref41
ref21
ref43
yin (ref19) 2017; abs 1702 1923
ref28
hussein (ref27) 2013
li (ref22) 2017
simonyan (ref13) 2014; abs 1409 1556
ref29
ref8
ref7
ding (ref34) 2017
ref9
ref3
pineda (ref1) 1987
song (ref6) 2017
ref5
ref40
References_xml – ident: ref24
  doi: 10.1109/ACPR.2015.7486569
– ident: ref20
  doi: 10.1109/CVPR.2017.486
– ident: ref32
  doi: 10.1109/78.650093
– volume: abs 1702 1923
  year: 2017
  ident: ref19
  article-title: Comparative study of CNN and RNN for natural language processing
  publication-title: CoRR
– ident: ref5
  doi: 10.1007/978-3-319-46487-9_50
– ident: ref36
  doi: 10.1109/CVPR.2016.115
– ident: ref8
  doi: 10.1109/ICCV.2017.115
– ident: ref33
  doi: 10.1016/j.patcog.2017.02.030
– ident: ref26
  doi: 10.1109/DICTA.2014.7008101
– start-page: 1110
  year: 2015
  ident: ref4
  article-title: Hierarchical recurrent neural network for skeleton based action recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– volume: abs 1409 1556
  year: 2014
  ident: ref13
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– ident: ref15
  doi: 10.1109/CVPR.2016.90
– ident: ref10
  doi: 10.1109/TCSVT.2018.2799968
– start-page: 601
  year: 2017
  ident: ref22
  article-title: Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep CNN
  publication-title: Proc IEEE Int Conf Multimedia Expo Workshops
– start-page: 4263
  year: 2017
  ident: ref6
  article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref11
  doi: 10.1109/5.726791
– ident: ref14
  doi: 10.1109/CVPR.2015.7298594
– start-page: 933
  year: 2017
  ident: ref18
  article-title: Language modeling with gated convolutional networks
  publication-title: Proc Int Conf Mach Learn (ICML)
– start-page: 1310
  year: 2013
  ident: ref17
  article-title: On the difficulty of training recurrent neural networks
  publication-title: Proc 30th Int Conf Mach Learn (ICML)
– ident: ref40
  doi: 10.1109/CVPR.2015.7299172
– start-page: 168
  year: 2015
  ident: ref38
  article-title: UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor
  publication-title: Proc IEEE Int Conf Image Process
– ident: ref31
  doi: 10.1109/TSP.2006.881199
– ident: ref29
  doi: 10.1109/TCYB.2016.2519448
– ident: ref28
  doi: 10.1109/CVPR.2014.82
– ident: ref43
  doi: 10.1109/TCSVT.2016.2628339
– ident: ref30
  doi: 10.1109/TCSVT.2018.2818151
– ident: ref9
  doi: 10.1109/TIP.2017.2785279
– ident: ref25
  doi: 10.1109/CVPR.2017.387
– ident: ref16
  doi: 10.1109/72.279181
– ident: ref39
  doi: 10.1016/j.neunet.2017.12.012
– start-page: 617
  year: 2017
  ident: ref34
  article-title: Investigation of different skeleton features for CNN-based 3D action recognition
  publication-title: Proc IEEE Int Conf Multimedia Expo Workshops
– start-page: 597
  year: 2017
  ident: ref35
  article-title: Skeleton-based action recognition with convolutional neural networks
  publication-title: Proc IEEE Int Conf Multimedia Expo Workshops
– start-page: 602
  year: 1987
  ident: ref1
  article-title: Generalization of back propagation to recurrent and higher order neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1016/j.knosys.2018.05.029
– ident: ref7
  doi: 10.1109/ICCV.2017.233
– start-page: 2466
  year: 2013
  ident: ref27
  article-title: Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– ident: ref3
  doi: 10.3115/v1/D14-1179
– ident: ref21
  doi: 10.1109/CVPRW.2017.207
– start-page: 1106
  year: 2012
  ident: ref12
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref41
  doi: 10.1109/ICCV.2017.161
– ident: ref23
  doi: 10.1109/TIP.2018.2812099
– ident: ref37
  doi: 10.1109/MMUL.2012.24
– ident: ref2
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0014847
Score 2.6075437
Snippet For skeleton-based action recognition, most of the existing works used recurrent neural networks. Using convolutional neural networks (CNNs) is another...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3247
SubjectTerms action recognition
Artificial neural networks
Bells
Convolutional neural networks
gated connection
Image classification
Learning
Logic gates
Matrix converters
Neural networks
Permutations
Recognition
Recurrent neural networks
Skeleton
Task analysis
Three-dimensional displays
Title Skeleton-Based Action Recognition With Gated Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/8529271
https://www.proquest.com/docview/2311107151
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShoAxskDR1EiceS0VVVYKBttAtih8RqChFNGXg13PnPMRLiCkeYsvynX3f2Xf3EXKeKqSJg_1NAY7YvhDcFixhdk9qJlSoVJqaANlbNpr543kwb5DLOhdGa22Cz7SDTfOWr5ZyjVdl3SignGLC-AY4bkWuVv1i4EeGTAzgQs-OwI5VCTIu704Hk_spRnFFDvgHAIi8L0bIsKr8OIqNfRnukJtqZkVYycJZ58KR79-KNv536rtkuwSaVr_QjD3S0Nk-2fpUfrBFxpMFGB3kEL4CW6asvslxsO6qmCJoPzzljxbesClrsMzeSj2FcbGoh_mYKPLVAZkNr6eDkV1yK9iS8iC3Pc1lEKbgTiQe1YHo6QSRE0fucV-HnhQBV0xQOAuV8lwuQ0W5ppoqGrJAut4haWbLTB8Ri4HPwVyhME0V4UCkkgD8Ri4SFqGGtEmvWuxYloXHkf_iOTYOiMtjI6AYBRSXAmqTi7rPS1F248-_W7ji9Z_lYrdJp5JpXO7MVQx4Fl1eADrHv_c6IZswNi_yDTukmb-u9SkAj1ycGY37AMP502M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hGICBV0GUZwY2SEmc2olHqEClFAZaHlsUPyoQqEWQMvDruXOSipcQUzzYSeQ7-76z77sD2BsYKhOH65shHPGbSklfiUz4obZCmdiYwcAFyF6K9nWzc8fvpuBgwoWx1rrgM9ugprvLNyM9pqOyw4QzyYgwPoN2n4cFW2tyZ9BMXDkxBAyhn6AlqygygTzst3o3fYrjShroISAkir6YIVdX5cdm7CzM6SJcVP9WBJY8Nsa5auj3b2kb__vzS7BQQk3vqNCNZZiywxWY_5SAsAad3iOaHaoifIzWzHhHjuXgXVVRRdi-fcjvPTpjM15rNHwrNRXfS2k93MPFkb-uwvXpSb_V9svqCr5mkud-ZKXm8QAdiixilqvQZoSdJFUfb9o40opLIxTD3dCYKJA6NkxaZplhseA6iNZgejga2nXwBHodIlCGiKoECBKTcfQcpcpEQjpSh7Ca7FSXqcepAsZT6lyQQKZOQCkJKC0FVIf9yZjnIvHGn71rNOOTnuVk12Grkmlars3XFBEtOb0IdTZ-H7ULs-3-RTftnl2eb8IcfkcW7MMtmM5fxnYbYUiudpz2fQD3qtas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeleton-Based+Action+Recognition+With+Gated+Convolutional+Neural+Networks&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Cao%2C+Congqi&rft.au=Lan%2C+Cuiling&rft.au=Zhang%2C+Yifan&rft.au=Zeng%2C+Wenjun&rft.date=2019-11-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=29&rft.issue=11&rft.spage=3247&rft.epage=3257&rft_id=info:doi/10.1109%2FTCSVT.2018.2879913&rft.externalDocID=8529271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon