Deep Virtual Reality Image Quality Assessment With Human Perception Guider for Omnidirectional Image

In this paper, we propose a novel deep learning-based virtual reality image quality assessment method that automatically predicts the visual quality of an omnidirectional image. In order to assess the visual quality in viewing the omnidirectional image, we propose deep networks consisting of virtual...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 30; no. 4; pp. 917 - 928
Main Authors Kim, Hak Gu, Lim, Heoun-Taek, Ro, Yong Man
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel deep learning-based virtual reality image quality assessment method that automatically predicts the visual quality of an omnidirectional image. In order to assess the visual quality in viewing the omnidirectional image, we propose deep networks consisting of virtual reality (VR) quality score predictor and human perception guider. The proposed VR quality score predictor learns the positional and visual characteristics of the omnidirectional image by encoding the positional feature and visual feature of a patch on the omnidirectional image. With the encoded positional feature and visual feature, patch weight and patch quality score are estimated. Then, by aggregating all weights and scores of the patches, the image quality score is predicted. The proposed human perception guider evaluates the predicted quality score by referring to the human subjective score (i.e., ground-truth obtained by subjects) using an adversarial learning. With adversarial learning, the VR quality score predictor is trained to accurately predict the quality score in order to deceive the guider, while the proposed human perception guider is trained to precisely distinguish between the predictor score and the ground-truth subjective score. To verify the performance of the proposed method, we conducted comprehensive subjective experiments and evaluated the performance of the proposed method. The experimental results show that the proposed method outperforms the existing two-dimentional image quality models and the state-of-the-art image quality models for omnidirectional images.
AbstractList In this paper, we propose a novel deep learning-based virtual reality image quality assessment method that automatically predicts the visual quality of an omnidirectional image. In order to assess the visual quality in viewing the omnidirectional image, we propose deep networks consisting of virtual reality (VR) quality score predictor and human perception guider. The proposed VR quality score predictor learns the positional and visual characteristics of the omnidirectional image by encoding the positional feature and visual feature of a patch on the omnidirectional image. With the encoded positional feature and visual feature, patch weight and patch quality score are estimated. Then, by aggregating all weights and scores of the patches, the image quality score is predicted. The proposed human perception guider evaluates the predicted quality score by referring to the human subjective score (i.e., ground-truth obtained by subjects) using an adversarial learning. With adversarial learning, the VR quality score predictor is trained to accurately predict the quality score in order to deceive the guider, while the proposed human perception guider is trained to precisely distinguish between the predictor score and the ground-truth subjective score. To verify the performance of the proposed method, we conducted comprehensive subjective experiments and evaluated the performance of the proposed method. The experimental results show that the proposed method outperforms the existing two-dimentional image quality models and the state-of-the-art image quality models for omnidirectional images.
Author Ro, Yong Man
Lim, Heoun-Taek
Kim, Hak Gu
Author_xml – sequence: 1
  givenname: Hak Gu
  orcidid: 0000-0003-2137-934X
  surname: Kim
  fullname: Kim, Hak Gu
  email: hgkim0331@kaist.ac.kr
  organization: Image and Video Systems Lab, School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 2
  givenname: Heoun-Taek
  orcidid: 0000-0002-0267-395X
  surname: Lim
  fullname: Lim, Heoun-Taek
  email: ingheoun@kaist.ac.kr
  organization: Image and Video Systems Lab, School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 3
  givenname: Yong Man
  orcidid: 0000-0001-5306-6853
  surname: Ro
  fullname: Ro, Yong Man
  email: ymro@ee.kaist.ac.kr
  organization: Image and Video Systems Lab, School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
BookMark eNp9kE1PwzAMhiM0JLbBH4BLJM4d-WjS9DgN2CZNGh9jHKss9SDT2o4kPezf066IAwdOtmU_r-13gHplVQJC15SMKCXp3Wryul6NGKHpiKlUJZydoT4VQkWMEdFrciJopBgVF2jg_Y4QGqs46aP8HuCA19aFWu_xC-i9DUc8L_QH4Oe6q8beg_cFlAG_2_CJZ3WhS_wEzsAh2KrE09rm4PC2cnhZlDa3DkzbaBRPSpfofKv3Hq5-4hC9PT6sJrNosZzOJ-NFZFgqQsSBAhUy0WlMOQVu8lzyVFJBTLIhzVPGgJFCJDnbxNRoLVKmQSoppNQNxIfottM9uOqrBh-yXVW75gyfMa4SkhCS0GaKdVPGVd472GYHZwvtjhklWetmdnIza93MftxsIPUHMjbo9sngtN3_j950qAWA311K8qYv-DdhB4UY
CODEN ITCTEM
CitedBy_id crossref_primary_10_1002_dac_4802
crossref_primary_10_1007_s00521_022_07649_9
crossref_primary_10_1016_j_jvcir_2021_103419
crossref_primary_10_1109_TCSVT_2021_3103544
crossref_primary_10_1109_TCSVT_2020_3015186
crossref_primary_10_1109_TMM_2023_3310276
crossref_primary_10_1109_TCSVT_2021_3073410
crossref_primary_10_1007_s10055_021_00594_3
crossref_primary_10_1109_TCSVT_2024_3497994
crossref_primary_10_1109_ACCESS_2020_3019458
crossref_primary_10_1016_j_imavis_2024_105151
crossref_primary_10_1109_JSTSP_2019_2955024
crossref_primary_10_1109_TIM_2022_3205928
crossref_primary_10_1049_ipr2_12722
crossref_primary_10_1109_TNNLS_2023_3328340
crossref_primary_10_1016_j_jvcir_2024_104241
crossref_primary_10_1016_j_engappai_2023_106015
crossref_primary_10_1016_j_jvcir_2023_103770
crossref_primary_10_1109_TBC_2022_3231101
crossref_primary_10_1109_TCSVT_2021_3081162
crossref_primary_10_1109_TCSVT_2022_3181235
crossref_primary_10_1109_TIM_2023_3345908
crossref_primary_10_1016_j_ins_2019_07_096
crossref_primary_10_1109_TIM_2021_3093940
crossref_primary_10_1109_ACCESS_2019_2933014
crossref_primary_10_1155_2021_4513577
crossref_primary_10_1049_ipr2_12856
crossref_primary_10_1016_j_neucom_2024_129243
crossref_primary_10_1109_TETCI_2022_3165935
crossref_primary_10_1016_j_micpro_2020_103796
crossref_primary_10_1109_OJCAS_2021_3073891
crossref_primary_10_1109_TCSVT_2021_3112120
crossref_primary_10_1587_transcom_2022EBP3109
crossref_primary_10_3390_info14060340
crossref_primary_10_59782_sidr_v5i1_92
crossref_primary_10_1016_j_vrih_2022_03_004
crossref_primary_10_1109_TCSVT_2022_3172135
crossref_primary_10_3390_s23218676
crossref_primary_10_1109_ACCESS_2020_2972158
crossref_primary_10_1109_TCSVT_2021_3129478
crossref_primary_10_1109_TCSVT_2023_3250970
crossref_primary_10_3390_s23094242
crossref_primary_10_1016_j_neunet_2024_106752
crossref_primary_10_1109_TMI_2023_3282387
crossref_primary_10_3788_AOS230509
crossref_primary_10_1371_journal_pone_0266021
crossref_primary_10_1109_JSTSP_2019_2956408
crossref_primary_10_1145_3722559
crossref_primary_10_1109_TCSVT_2021_3112197
crossref_primary_10_1145_3549544
crossref_primary_10_1016_j_neucom_2021_12_032
crossref_primary_10_1109_TIM_2023_3322995
crossref_primary_10_1364_AOP_468066
crossref_primary_10_1109_JSTSP_2020_2968182
crossref_primary_10_1109_TCSVT_2022_3225172
crossref_primary_10_1109_TCSVT_2021_3128014
crossref_primary_10_1109_TCSVT_2021_3081182
crossref_primary_10_1109_TCSVT_2024_3378352
crossref_primary_10_2478_amns_2024_3540
crossref_primary_10_3390_ijerph191811278
crossref_primary_10_1109_TCSVT_2020_3030895
crossref_primary_10_3390_sym15071406
crossref_primary_10_3390_mti8100085
crossref_primary_10_1016_j_micpro_2021_103855
crossref_primary_10_1146_annurev_vision_100419_120301
crossref_primary_10_1109_JSTSP_2020_2966864
crossref_primary_10_1007_s11042_023_15739_6
crossref_primary_10_1587_transcom_2021EBP3163
crossref_primary_10_1177_15347354241280272
crossref_primary_10_1016_j_patcog_2025_111429
crossref_primary_10_1109_TIM_2024_3400304
crossref_primary_10_1109_TCSVT_2024_3359663
crossref_primary_10_1016_j_optlaseng_2025_108888
crossref_primary_10_1016_j_techsoc_2024_102666
crossref_primary_10_3389_fnins_2022_1022041
crossref_primary_10_1109_TCSVT_2022_3179744
crossref_primary_10_1109_TIP_2021_3052073
crossref_primary_10_1109_TIP_2021_3087322
crossref_primary_10_1007_s00371_023_02791_4
crossref_primary_10_1109_JSTSP_2023_3250956
crossref_primary_10_1109_ACCESS_2024_3478793
crossref_primary_10_3390_app112211019
crossref_primary_10_1109_TCSVT_2020_3043349
crossref_primary_10_1007_s00530_024_01285_0
crossref_primary_10_1007_s00530_024_01434_5
crossref_primary_10_1016_j_sigpro_2022_108534
crossref_primary_10_1109_ACCESS_2024_3359167
crossref_primary_10_1186_s13640_020_00538_y
crossref_primary_10_1080_10494820_2024_2347309
crossref_primary_10_1007_s11042_021_10862_8
crossref_primary_10_1109_ACCESS_2022_3204766
crossref_primary_10_1109_TIP_2025_3539468
crossref_primary_10_1109_TIM_2024_3485447
crossref_primary_10_1007_s11042_024_19457_5
crossref_primary_10_1109_TIP_2021_3092828
crossref_primary_10_1016_j_comcom_2021_06_029
crossref_primary_10_1109_ACCESS_2024_3357134
crossref_primary_10_1109_TMM_2022_3171684
crossref_primary_10_1016_j_measen_2023_100853
crossref_primary_10_1007_s10489_024_05421_1
crossref_primary_10_3390_app11010164
crossref_primary_10_1145_3640344
crossref_primary_10_1145_3723165
crossref_primary_10_1109_ACCESS_2019_2953983
crossref_primary_10_1016_j_ijleo_2020_165887
crossref_primary_10_1109_TIM_2021_3102691
crossref_primary_10_1007_s41233_020_00032_3
crossref_primary_10_1109_TMM_2022_3190697
crossref_primary_10_1145_3565020
Cites_doi 10.1109/ICUFN.2017.7993736
10.1109/TIP.2017.2760518
10.1109/TCSVT.2012.2221191
10.1109/LSP.2017.2720693
10.1109/ICIP.2017.8296923
10.1109/ICASSP.2004.1326643
10.1109/QoMEX.2017.7965659
10.1145/3083187.3083218
10.1109/QoMEX.2018.8463418
10.1109/TIP.2003.819861
10.1109/79.952804
10.1109/ISMAR.2015.12
10.1109/TVCG.2016.2518079
10.1109/QoMEX.2017.7965660
10.1109/TCSVT.2004.839989
10.1145/3083187.3083215
10.1109/ICIP.2017.8296374
10.1109/ICIP.2002.1038942
10.1109/VCIP.2017.8305084
10.1109/30.125072
10.1109/CVPR.2016.90
10.1109/QoMEX.2017.7965634
10.1109/ICIP.2017.8296667
10.1109/ICME.2017.8019351
10.1145/3139131.3139137
10.3389/fpsyg.2015.00026
10.1109/TCSVT.2018.2817250
10.1109/TIP.2018.2865089
10.1016/j.sigpro.2018.01.004
10.1002/bltj.20538
10.1109/TIP.2017.2725584
10.1109/TCSVT.2018.2886277
10.1109/CVPR.2017.213
10.1109/ACSSC.2003.1292216
10.1145/3240508.3240581
10.1109/TBC.2018.2811627
10.1109/ICASSP.2018.8461317
10.1109/TIP.2017.2774045
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2019.2898732
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 928
ExternalDocumentID 10_1109_TCSVT_2019_2898732
8638985
Genre orig-research
GrantInformation_xml – fundername: Korean Government (MSIT) (Development of VR sickness reduction technique for enhanced sensitivity broadcasting)
  grantid: 2017-0-00780
– fundername: Institute of Information and communications Technology Planning and Evaluation (IITP)
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-3e1e1567a94131e3cdd6396150c7b0873ccec6557d2b41caa592ae686566aa943
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 07:14:11 EDT 2025
Tue Jul 01 00:41:12 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Wed Aug 27 02:35:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3e1e1567a94131e3cdd6396150c7b0873ccec6557d2b41caa592ae686566aa943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2137-934X
0000-0002-0267-395X
0000-0001-5306-6853
PQID 2387070071
PQPubID 85433
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCSVT_2019_2898732
ieee_primary_8638985
crossref_citationtrail_10_1109_TCSVT_2019_2898732
proquest_journals_2387070071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
lim (ref47) 2018
(ref46) 2015
goodfellow (ref40) 2014
ng (ref7) 2005; 15
(ref51) 2012
ref44
ref43
(ref45) 2012
ref8
ref9
ref4
ref3
ref6
simonyan (ref53) 2013
zakharchenko (ref18) 2016; 9970
hanhart (ref49) 2017
ref35
ref34
springenberg (ref52) 2014
ref37
ref36
ref31
ref30
ref33
ref32
abadi (ref48) 2016; 16
ref2
ref1
ref38
boyce (ref5) 2017; 16
ref24
ref23
ref26
ref25
nair (ref39) 2010
ref20
zakharchenko (ref50) 2016
bellard (ref41) 2005
ref22
ref21
ref28
ref27
ref29
xiao (ref42) 2012
References_xml – ident: ref20
  doi: 10.1109/ICUFN.2017.7993736
– year: 2012
  ident: ref51
– year: 2005
  ident: ref41
  publication-title: FFMPEG Multimedia System
– ident: ref27
  doi: 10.1109/TIP.2017.2760518
– ident: ref12
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref16
  doi: 10.1109/LSP.2017.2720693
– ident: ref6
  doi: 10.1109/ICIP.2017.8296923
– volume: 16
  start-page: 1
  year: 2017
  ident: ref5
  article-title: JVET common test conditions and evaluation procedures for 360 video
– ident: ref15
  doi: 10.1109/ICASSP.2004.1326643
– ident: ref34
  doi: 10.1109/QoMEX.2017.7965659
– year: 2014
  ident: ref52
  publication-title: Striving for simplicity The all convolutional net
– ident: ref36
  doi: 10.1145/3083187.3083218
– ident: ref38
  doi: 10.1109/QoMEX.2018.8463418
– ident: ref13
  doi: 10.1109/TIP.2003.819861
– volume: 16
  start-page: 265
  year: 2016
  ident: ref48
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc OSDI
– ident: ref11
  doi: 10.1109/79.952804
– ident: ref17
  doi: 10.1109/ISMAR.2015.12
– year: 2016
  ident: ref50
  publication-title: 360tools
– ident: ref44
  doi: 10.1109/TVCG.2016.2518079
– ident: ref2
  doi: 10.1109/QoMEX.2017.7965660
– volume: 15
  start-page: 82
  year: 2005
  ident: ref7
  article-title: Data compression and transmission aspects of panoramic videos
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2004.839989
– year: 2017
  ident: ref49
  article-title: VQMT: Video quality measurement tool|multimedia. Signal processing group (MMSPG)
– ident: ref35
  doi: 10.1145/3083187.3083215
– ident: ref29
  doi: 10.1109/ICIP.2017.8296374
– ident: ref3
  doi: 10.1109/ICIP.2002.1038942
– ident: ref21
  doi: 10.1109/VCIP.2017.8305084
– ident: ref10
  doi: 10.1109/30.125072
– ident: ref33
  doi: 10.1109/CVPR.2016.90
– ident: ref37
  doi: 10.1109/QoMEX.2017.7965634
– ident: ref8
  doi: 10.1109/ICIP.2017.8296667
– ident: ref19
  doi: 10.1109/ICME.2017.8019351
– ident: ref31
  doi: 10.1145/3139131.3139137
– ident: ref1
  doi: 10.3389/fpsyg.2015.00026
– start-page: 807
  year: 2010
  ident: ref39
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– year: 2012
  ident: ref45
  publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures
– ident: ref30
  doi: 10.1109/TCSVT.2018.2817250
– ident: ref43
  doi: 10.1109/TIP.2018.2865089
– year: 2018
  ident: ref47
  publication-title: KAIST IVY Omnidirectional Image Database for Visual Quality Assessment
– ident: ref9
  doi: 10.1016/j.sigpro.2018.01.004
– year: 2013
  ident: ref53
  publication-title: Deep Inside Convolutional Networks Visualising Image Classification Models and Saliency Maps
– ident: ref4
  doi: 10.1002/bltj.20538
– ident: ref28
  doi: 10.1109/TIP.2017.2725584
– ident: ref23
  doi: 10.1109/TCSVT.2018.2886277
– volume: 9970
  year: 2016
  ident: ref18
  article-title: Quality metric for spherical panoramic video
  publication-title: Proc SPIE
– ident: ref25
  doi: 10.1109/CVPR.2017.213
– start-page: 2695
  year: 2012
  ident: ref42
  article-title: Recognizing scene viewpoint using panoramic place representation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref14
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref24
  doi: 10.1145/3240508.3240581
– ident: ref22
  doi: 10.1109/TBC.2018.2811627
– start-page: 2672
  year: 2014
  ident: ref40
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref32
  doi: 10.1109/ICASSP.2018.8461317
– ident: ref26
  doi: 10.1109/TIP.2017.2774045
– year: 2015
  ident: ref46
  publication-title: Subjective Methods for the Assessment of Stereoscopic 3dtv Systems
SSID ssj0014847
Score 2.614558
Snippet In this paper, we propose a novel deep learning-based virtual reality image quality assessment method that automatically predicts the visual quality of an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 917
SubjectTerms Adversarial learning
Deep learning
Distortion
Image coding
Image quality
Machine learning
Measurement
omnidirectional image
Perception
Performance evaluation
Quality
Quality assessment
Virtual networks
Virtual reality
Visualization
Title Deep Virtual Reality Image Quality Assessment With Human Perception Guider for Omnidirectional Image
URI https://ieeexplore.ieee.org/document/8638985
https://www.proquest.com/docview/2387070071
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21nODAjigU5AM3SKmTOImPqFAWiUVQlluU2BNRQUtV0gN8PWMnjdiEuEVKHFl5zrw39iwAO77SRJspOphlqeOjlzlpEKDDeZYlbpLIUJvk5POL4OTWP3sQDzXYq3JhENEGn2HLXNqzfP2iJmarbD8y9BqJOtTJcStytaoTAz-yzcRILnAnIh6bJsi05X6vc3PXM1FcskXuRRR67hcSsl1Vfphiyy_dBTifzqwIK3lqTfK0pd6_FW3879QXYb4UmuygWBlLUMPhMsx9Kj-4AvoQccTu-mOTQ8Ku0UpydjogE8OK2hpv7KCq3Mnu-_kjs5v-7KoKh2HHE5PIx0j7ssvBsF9QpN1fLN60Crfdo17nxCm7LjjKlSJ3PORITl2YSOI3jp7SmlSMqRuvwrRNX08pVIEQoXZTn6skEdJNMIiMMCRsfW8NZoYvQ1wHprkUaG75IvQ1F5EMFRk0jNpSSeGKBvApDLEqS5KbzhjPsXVN2jK20MUGuriErgG71ZhRUZDjz6dXDBbVkyUMDWhO0Y7Lf_Y1JvESkgEkzbXx-6hNmHWNt23jdpowk48nuEWSJE-37Vr8ADWo3ZU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnCDlDqJk_iI2MpSQFCWW5TYE1FBC4L0AF_P2EkjNiFukRJHVp4z7409C8CGrzTRZooOZlnq-OhlThoE6HCeZYmbJDLUJjm5dRY0r_3jO3E3BFtVLgwi2uAzrJtLe5avn1TfbJVtR4ZeIzEMo8T7ghfZWtWZgR_ZdmIkGLgTEZMNUmQacru9e3XTNnFcsk4ORhR67hcasn1VfhhjyzAHU9AazK0ILHmo9_O0rt6_lW387-SnYbKUmmynWBszMIS9WZj4VIBwDvQe4jO76byYLBJ2iVaUs6MuGRlWVNd4YztV7U5228nvmd32ZxdVQAw77JtUPkbql513e52CJO0OY_Gmebg-2G_vNp2y74KjXClyx0OO5NaFiSSG4-gprUnHmMrxKkwb9PWUQhUIEWo39blKEiHdBIPISENC1_cWYKT31MNFYJpLgeaWL0JfcxHJUJFJw6ghlRSuqAEfwBCrsii56Y3xGFvnpCFjC11soItL6GqwWY15Lkpy_Pn0nMGierKEoQYrA7Tj8q99jUm-hGQCSXUt_T5qHcaa7dZpfHp0drIM467xvW0UzwqM5C99XCWBkqdrdl1-AO-H4N4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Virtual+Reality+Image+Quality+Assessment+With+Human+Perception+Guider+for+Omnidirectional+Image&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Kim%2C+Hak+Gu&rft.au=Lim%2C+Heoun-Taek&rft.au=Ro%2C+Yong+Man&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=30&rft.issue=4&rft.spage=917&rft.epage=928&rft_id=info:doi/10.1109%2FTCSVT.2019.2898732&rft.externalDocID=8638985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon