ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection

Under ideal environmental conditions, RGB-based deep convolutional neural networks can achieve high performance for salient object detection (SOD). In scenes with cluttered backgrounds and many objects, depth maps have been combined with RGB images to better distinguish spatial positions and structu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 3; pp. 1224 - 1235
Main Authors Zhou, Wujie, Guo, Qinling, Lei, Jingsheng, Yu, Lu, Hwang, Jenq-Neng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under ideal environmental conditions, RGB-based deep convolutional neural networks can achieve high performance for salient object detection (SOD). In scenes with cluttered backgrounds and many objects, depth maps have been combined with RGB images to better distinguish spatial positions and structures during SOD, achieving high accuracy. However, under low-light and uneven lighting conditions, RGB and depth information may be insufficient for detection. Thermal images are insensitive to lighting and weather conditions, being able to capture important objects even during nighttime. By combining thermal images and RGB images, we propose an effective and consistent feature fusion network (ECFFNet) for RGB-T SOD. In ECFFNet, an effective cross-modality fusion module fully fuses features of corresponding sizes from the RGB and thermal modalities. Then, a bilateral reversal fusion module performs bilateral fusion of foreground and background information, enabling the full extraction of salient object boundaries. Finally, a multilevel consistent fusion module combines features across different levels to obtain complementary information. Comprehensive experiments on three RGB-T SOD datasets show that the proposed ECFFNet outperforms 12 state-of-the-art methods under different evaluation indicators.
AbstractList Under ideal environmental conditions, RGB-based deep convolutional neural networks can achieve high performance for salient object detection (SOD). In scenes with cluttered backgrounds and many objects, depth maps have been combined with RGB images to better distinguish spatial positions and structures during SOD, achieving high accuracy. However, under low-light and uneven lighting conditions, RGB and depth information may be insufficient for detection. Thermal images are insensitive to lighting and weather conditions, being able to capture important objects even during nighttime. By combining thermal images and RGB images, we propose an effective and consistent feature fusion network (ECFFNet) for RGB-T SOD. In ECFFNet, an effective cross-modality fusion module fully fuses features of corresponding sizes from the RGB and thermal modalities. Then, a bilateral reversal fusion module performs bilateral fusion of foreground and background information, enabling the full extraction of salient object boundaries. Finally, a multilevel consistent fusion module combines features across different levels to obtain complementary information. Comprehensive experiments on three RGB-T SOD datasets show that the proposed ECFFNet outperforms 12 state-of-the-art methods under different evaluation indicators.
Author Zhou, Wujie
Hwang, Jenq-Neng
Lei, Jingsheng
Yu, Lu
Guo, Qinling
Author_xml – sequence: 1
  givenname: Wujie
  orcidid: 0000-0002-3055-2493
  surname: Zhou
  fullname: Zhou, Wujie
  email: wujiezhou@163.com
  organization: School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
– sequence: 2
  givenname: Qinling
  surname: Guo
  fullname: Guo, Qinling
  organization: School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
– sequence: 3
  givenname: Jingsheng
  surname: Lei
  fullname: Lei, Jingsheng
  organization: School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
– sequence: 4
  givenname: Lu
  surname: Yu
  fullname: Yu, Lu
  organization: Institute of Information and Communication Engineering, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Jenq-Neng
  orcidid: 0000-0002-8877-2421
  surname: Hwang
  fullname: Hwang, Jenq-Neng
  organization: Department of Electrical Engineering, University of Washington, Seattle, WA, USA
BookMark eNp9kL1O7DAQRi0EErDwAtBYunWWGf8kDt0lbAAJgQQLDUXkTSZSlr0x2F4Qb0_ColtQUM0U3_lmdPbZdu96YuwIYYoI-cm8uH-cTwUInErIMtBmi-2h1iYRAvT2sIPGxAjUu2w_hCUAKqOyPfY0K8ryhuIpn7Ut1bF7I277hheuD12I1Edeko1rT7xch871fAi_O__MW-f53cVZMuf3dtWNwdvFcmjg5xTHItcfsJ3WrgIdfs8Jeyhn8-Iyub69uCr-Xie1yHVMJIFqMzJ5mreUg2zIKFUbtA02WtYIioRVhLLVFvTCoGkymyMuDEBNqZET9mfT--Ld65pCrJZu7fvhZCVSmSkljMQhZTap2rsQPLVV3UU7_hm97VYVQjWqrL5UVqPK6lvlgIof6Ivv_ln_8Tt0vIE6IvoP5EpAmgr5CUzEgE4
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106885
crossref_primary_10_1016_j_measurement_2025_116920
crossref_primary_10_1109_TIM_2022_3185323
crossref_primary_10_1109_TCSVT_2021_3099120
crossref_primary_10_1109_TMM_2023_3291823
crossref_primary_10_1109_LSP_2021_3084855
crossref_primary_10_1109_TCSVT_2022_3142771
crossref_primary_10_1109_TIM_2024_3419115
crossref_primary_10_1109_TIM_2023_3236346
crossref_primary_10_1016_j_jksuci_2023_101702
crossref_primary_10_1109_LSP_2021_3102524
crossref_primary_10_1109_TCSVT_2024_3489440
crossref_primary_10_1016_j_neucom_2024_128149
crossref_primary_10_1016_j_engappai_2022_105162
crossref_primary_10_1109_TCSVT_2023_3241196
crossref_primary_10_1016_j_ijleo_2022_170204
crossref_primary_10_1016_j_inffus_2023_02_020
crossref_primary_10_1016_j_neucom_2022_07_041
crossref_primary_10_1016_j_neucom_2022_09_052
crossref_primary_10_1109_TIP_2023_3234702
crossref_primary_10_1109_JSEN_2023_3333322
crossref_primary_10_1109_LSP_2021_3075610
crossref_primary_10_1109_TMM_2022_3216476
crossref_primary_10_1016_j_dsp_2024_104439
crossref_primary_10_1109_TIM_2022_3193971
crossref_primary_10_1364_OE_480252
crossref_primary_10_1016_j_infrared_2025_105804
crossref_primary_10_3390_electronics12091976
crossref_primary_10_1049_cvi2_12307
crossref_primary_10_1109_TMECH_2022_3215909
crossref_primary_10_1016_j_engappai_2022_105707
crossref_primary_10_1109_TCSVT_2023_3281419
crossref_primary_10_1016_j_engappai_2024_109902
crossref_primary_10_1109_TCSVT_2024_3367808
crossref_primary_10_1007_s11042_023_15794_z
crossref_primary_10_1117_1_JEI_33_3_033010
crossref_primary_10_1109_TIP_2022_3176540
crossref_primary_10_1109_TCSVT_2021_3093890
crossref_primary_10_1109_TCSVT_2023_3289142
crossref_primary_10_1109_TMM_2021_3077767
crossref_primary_10_1109_TNNLS_2024_3358858
crossref_primary_10_1109_TIV_2022_3164899
crossref_primary_10_1109_TMM_2024_3369922
crossref_primary_10_1109_TITS_2024_3387949
crossref_primary_10_1007_s00371_025_03855_3
crossref_primary_10_1109_TITS_2022_3203385
crossref_primary_10_1016_j_compind_2025_104252
crossref_primary_10_1117_1_JEI_32_6_063032
crossref_primary_10_1016_j_engappai_2025_110245
crossref_primary_10_1109_TCSVT_2023_3275314
crossref_primary_10_3390_s24092795
crossref_primary_10_1016_j_neunet_2025_107244
crossref_primary_10_1016_j_knosys_2022_110047
crossref_primary_10_1016_j_neucom_2025_129691
crossref_primary_10_1016_j_eswa_2024_123222
crossref_primary_10_1007_s11263_024_02020_y
crossref_primary_10_1016_j_dsp_2024_104579
crossref_primary_10_3390_s23104849
crossref_primary_10_1007_s00371_023_02773_6
crossref_primary_10_1117_1_JEI_34_1_013005
crossref_primary_10_1016_j_engappai_2022_105640
crossref_primary_10_1016_j_engappai_2023_107201
crossref_primary_10_1109_JSTSP_2022_3174338
crossref_primary_10_1109_LSP_2022_3229594
crossref_primary_10_1016_j_neucom_2025_129718
crossref_primary_10_1109_ACCESS_2021_3092191
crossref_primary_10_1109_TGRS_2024_3400032
crossref_primary_10_1109_TGRS_2021_3109626
crossref_primary_10_1155_2021_6610997
crossref_primary_10_1016_j_neucom_2023_126535
crossref_primary_10_3390_s22249948
crossref_primary_10_1109_TITS_2023_3242651
crossref_primary_10_1109_TPAMI_2024_3511621
crossref_primary_10_3390_fi15060205
crossref_primary_10_1109_TCSVT_2024_3412093
crossref_primary_10_3390_s24248159
crossref_primary_10_1016_j_engappai_2022_105510
crossref_primary_10_1016_j_eswa_2024_125278
crossref_primary_10_1109_LSP_2022_3211199
crossref_primary_10_1109_TCE_2024_3390841
crossref_primary_10_1109_TMM_2021_3086618
crossref_primary_10_1109_JIOT_2024_3420449
crossref_primary_10_1016_j_engappai_2023_106729
crossref_primary_10_1145_3656476
crossref_primary_10_1109_TCSVT_2023_3234340
crossref_primary_10_1007_s10489_023_04784_1
crossref_primary_10_1016_j_neucom_2025_129558
crossref_primary_10_1016_j_eswa_2024_126083
crossref_primary_10_1109_TCSVT_2024_3418965
crossref_primary_10_1109_TMM_2024_3410542
crossref_primary_10_1016_j_engappai_2023_105919
crossref_primary_10_1016_j_measurement_2023_113180
crossref_primary_10_1109_TETCI_2021_3118043
crossref_primary_10_1016_j_dsp_2024_104807
crossref_primary_10_1109_TCSVT_2022_3202563
crossref_primary_10_1109_TIM_2024_3373104
crossref_primary_10_1109_LSP_2021_3092967
crossref_primary_10_1109_TASE_2024_3410182
crossref_primary_10_1109_TCSVT_2024_3375505
crossref_primary_10_1109_TMM_2022_3161852
crossref_primary_10_1016_j_dsp_2023_104011
crossref_primary_10_1016_j_patcog_2023_110043
crossref_primary_10_1109_LSP_2023_3270759
crossref_primary_10_1109_TCSVT_2021_3124952
crossref_primary_10_1016_j_jvcir_2022_103727
crossref_primary_10_1109_LSP_2021_3139567
crossref_primary_10_1109_TIM_2024_3418111
crossref_primary_10_1016_j_patcog_2024_110868
crossref_primary_10_1016_j_jvcir_2022_103725
crossref_primary_10_1109_JSTARS_2023_3243247
crossref_primary_10_1109_TCSVT_2021_3102268
crossref_primary_10_1109_TCSVT_2021_3127149
crossref_primary_10_1109_TCSVT_2023_3253773
crossref_primary_10_1016_j_dsp_2022_103827
crossref_primary_10_1109_TCSVT_2022_3208833
crossref_primary_10_1016_j_cviu_2023_103917
crossref_primary_10_1109_TITS_2022_3146087
crossref_primary_10_1109_TCSVT_2023_3303574
crossref_primary_10_1109_TETCI_2022_3160720
crossref_primary_10_1109_TCSVT_2022_3229359
crossref_primary_10_1145_3624984
crossref_primary_10_1016_j_inffus_2025_103025
crossref_primary_10_1016_j_dsp_2023_104221
crossref_primary_10_1109_TITS_2023_3306368
crossref_primary_10_1016_j_aej_2025_02_094
crossref_primary_10_1007_s00521_022_07818_w
crossref_primary_10_1016_j_foodchem_2023_136309
crossref_primary_10_1007_s10489_021_02804_6
crossref_primary_10_1109_TCSVT_2022_3233131
crossref_primary_10_1109_LSP_2024_3461648
crossref_primary_10_1109_TCSVT_2022_3216313
crossref_primary_10_1007_s11042_023_17219_3
crossref_primary_10_1007_s00371_023_02870_6
crossref_primary_10_1016_j_patcog_2022_108712
crossref_primary_10_1007_s10489_021_02639_1
crossref_primary_10_1016_j_knosys_2023_110322
crossref_primary_10_1109_TIP_2023_3275538
crossref_primary_10_1109_TIP_2023_3270801
crossref_primary_10_1109_TCSVT_2022_3166914
crossref_primary_10_1007_s00138_022_01312_y
crossref_primary_10_1109_TCSVT_2022_3184840
crossref_primary_10_3390_s24227146
crossref_primary_10_1016_j_inffus_2024_102266
crossref_primary_10_1007_s10489_022_03950_1
crossref_primary_10_1109_TPAMI_2024_3388153
crossref_primary_10_3390_rs14215510
crossref_primary_10_1016_j_knosys_2022_110007
crossref_primary_10_1109_LSP_2024_3508538
crossref_primary_10_1109_TIP_2023_3242775
crossref_primary_10_1016_j_optlastec_2024_111666
crossref_primary_10_1109_TIM_2024_3374294
crossref_primary_10_1016_j_optlaseng_2023_107842
crossref_primary_10_1109_LSP_2022_3219350
crossref_primary_10_1109_TCSVT_2022_3215979
crossref_primary_10_1109_TIP_2023_3256762
crossref_primary_10_1007_s00371_025_03859_z
crossref_primary_10_1109_TMM_2023_3275308
crossref_primary_10_1109_LRA_2023_3272269
crossref_primary_10_3390_e26020130
crossref_primary_10_1016_j_eswa_2025_127004
crossref_primary_10_1016_j_inffus_2023_101828
Cites_doi 10.1007/978-981-13-1702-6_36
10.12720/joig.2.2.151-157
10.1109/LSP.2020.3023349
10.1109/ICME.2019.00042
10.1016/j.patcog.2018.08.007
10.1109/TIP.2020.2968250
10.1109/TMM.2019.2924578
10.1109/TCSVT.2020.3014663
10.1609/aaai.v34i07.6633
10.1109/CVPR.2019.00326
10.1109/CVPR.2018.00326
10.1007/978-3-030-58520-4_39
10.1109/IROS.2017.8206396
10.24963/ijcai.2018/95
10.1016/j.sigpro.2020.107766
10.1007/978-3-030-58542-6_39
10.1109/CVPR42600.2020.01304
10.24963/ijcai.2018/97
10.1109/CVPR.2011.5995344
10.1109/CVPR42600.2020.00353
10.1109/MIS.2020.2999462
10.1109/CVPR42600.2020.00943
10.1109/TMM.2020.3025166
10.5555/2999134.2999257
10.1109/TCDS.2021.3051010
10.1109/TMM.2021.3077767
10.1109/ICCV.2017.487
10.1609/aaai.v34i07.6892
10.1109/CVPR42600.2020.00312
10.1109/TIP.2020.3014734
10.1109/TCI.2020.2993640
10.1109/CVPR42600.2020.00908
10.1109/TPAMI.2012.98
10.1109/ISCID.2017.92
10.1007/978-3-030-58595-2_15
10.1109/TCSVT.2020.2995220
10.1007/978-3-030-58610-2_17
10.1109/CVPR.2019.00403
10.1109/TIP.2019.2959253
10.1007/978-3-030-01240-3_15
10.1109/TSMC.2019.2957386
10.1109/ACCESS.2019.2913107
10.1007/978-3-030-58604-1_23
10.1109/TNNLS.2020.2996406
10.1109/TIP.2019.2891104
10.1109/TIP.2020.2976689
10.1109/TCSVT.2019.2951621
10.1109/CVPR.2019.00766
10.1109/TIP.2009.2030969
10.1109/CVPR42600.2020.01377
10.1109/CVPR.2016.90
10.1007/978-3-030-58536-5_3
10.1109/CVPR42600.2020.00861
10.1109/CVPR.2009.5206596
10.1007/978-3-319-24574-4_28
10.1109/TIP.2020.3017352
10.1007/978-3-030-58598-3_31
10.1109/MIPR.2019.00032
10.1109/TPAMI.2016.2562626
10.1109/TCSVT.2018.2821177
10.1016/j.patcog.2020.107303
10.1109/TIP.2017.2669878
10.1007/978-3-030-58598-3_14
10.1109/TBME.2018.2877577
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3077058
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1235
ExternalDocumentID 10_1109_TCSVT_2021_3077058
9420662
Genre orig-research
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY18F020012
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 61502429; 61972357
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-3e04f7e8969fe903de844c81ad1d53c104e2a4e13f5a05b818d7a911b800ce683
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 06:54:57 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Wed Aug 27 02:49:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3e04f7e8969fe903de844c81ad1d53c104e2a4e13f5a05b818d7a911b800ce683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3055-2493
0000-0002-8877-2421
PQID 2637442831
PQPubID 85433
PageCount 12
ParticipantIDs proquest_journals_2637442831
ieee_primary_9420662
crossref_citationtrail_10_1109_TCSVT_2021_3077058
crossref_primary_10_1109_TCSVT_2021_3077058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
ref51
ref50
Wang (ref66) 2015
ref46
ref45
ref48
Chen (ref58) 2017
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Tu (ref54) 2020
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Zhang (ref20) 2020
ref70
ref24
ref68
ref23
ref67
ref26
Chen (ref47) 2020
ref25
ref69
ref64
ref63
ref22
ref21
ref65
ref28
ref27
Tu (ref56) 2020
ref29
ref60
ref62
ref61
References_xml – ident: ref50
  doi: 10.1007/978-981-13-1702-6_36
– ident: ref1
  doi: 10.12720/joig.2.2.151-157
– ident: ref29
  doi: 10.1109/LSP.2020.3023349
– ident: ref22
  doi: 10.1109/ICME.2019.00042
– ident: ref25
  doi: 10.1016/j.patcog.2018.08.007
– ident: ref40
  doi: 10.1109/TIP.2020.2968250
– year: 2020
  ident: ref47
  article-title: DPANet: Depth potentiality-aware gated attention network for RGB-D salient object detection
  publication-title: arXiv:2003.08608
– ident: ref52
  doi: 10.1109/TMM.2019.2924578
– ident: ref57
  doi: 10.1109/TCSVT.2020.3014663
– ident: ref12
  doi: 10.1609/aaai.v34i07.6633
– ident: ref4
  doi: 10.1109/CVPR.2019.00326
– ident: ref7
  doi: 10.1109/CVPR.2018.00326
– ident: ref38
  doi: 10.1007/978-3-030-58520-4_39
– ident: ref49
  doi: 10.1109/IROS.2017.8206396
– ident: ref9
  doi: 10.24963/ijcai.2018/95
– ident: ref36
  doi: 10.1016/j.sigpro.2020.107766
– year: 2017
  ident: ref58
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv:1706.05587
– ident: ref41
  doi: 10.1007/978-3-030-58542-6_39
– ident: ref14
  doi: 10.1109/CVPR42600.2020.01304
– year: 2020
  ident: ref56
  article-title: RGBT salient object detection: A large-scale dataset and benchmark
  publication-title: arXiv:2007.03262
– year: 2015
  ident: ref66
  article-title: Training deeper convolutional networks with deep supervision
  publication-title: arXiv:1505.02496
– ident: ref69
  doi: 10.24963/ijcai.2018/97
– ident: ref59
  doi: 10.1109/CVPR.2011.5995344
– ident: ref33
  doi: 10.1109/CVPR42600.2020.00353
– ident: ref21
  doi: 10.1109/MIS.2020.2999462
– ident: ref13
  doi: 10.1109/CVPR42600.2020.00943
– ident: ref28
  doi: 10.1109/TMM.2020.3025166
– ident: ref70
  doi: 10.5555/2999134.2999257
– ident: ref16
  doi: 10.1109/TCDS.2021.3051010
– ident: ref46
  doi: 10.1109/TMM.2021.3077767
– ident: ref67
  doi: 10.1109/ICCV.2017.487
– ident: ref11
  doi: 10.1609/aaai.v34i07.6892
– year: 2020
  ident: ref54
  article-title: Multi-interactive siamese decoder for RGBT salient object detection
  publication-title: arXiv:2005.02315
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00312
– ident: ref43
  doi: 10.1109/TIP.2020.3014734
– ident: ref3
  doi: 10.1109/TCI.2020.2993640
– ident: ref31
  doi: 10.1109/CVPR42600.2020.00908
– year: 2020
  ident: ref20
  article-title: CoADNet: Collaborative aggregation-and-distribution networks for co-salient object detection
  publication-title: arXiv:2011.04887
– ident: ref2
  doi: 10.1109/TPAMI.2012.98
– ident: ref48
  doi: 10.1109/ISCID.2017.92
– ident: ref42
  doi: 10.1007/978-3-030-58595-2_15
– ident: ref15
  doi: 10.1109/TCSVT.2020.2995220
– ident: ref34
  doi: 10.1007/978-3-030-58610-2_17
– ident: ref8
  doi: 10.1109/CVPR.2019.00403
– ident: ref55
  doi: 10.1109/TIP.2019.2959253
– ident: ref63
  doi: 10.1007/978-3-030-01240-3_15
– ident: ref27
  doi: 10.1109/TSMC.2019.2957386
– ident: ref23
  doi: 10.1109/ACCESS.2019.2913107
– ident: ref44
  doi: 10.1007/978-3-030-58604-1_23
– ident: ref45
  doi: 10.1109/TNNLS.2020.2996406
– ident: ref24
  doi: 10.1109/TIP.2019.2891104
– ident: ref26
  doi: 10.1109/TIP.2020.2976689
– ident: ref53
  doi: 10.1109/TCSVT.2019.2951621
– ident: ref10
  doi: 10.1109/CVPR.2019.00766
– ident: ref5
  doi: 10.1109/TIP.2009.2030969
– ident: ref35
  doi: 10.1109/CVPR42600.2020.01377
– ident: ref62
  doi: 10.1109/CVPR.2016.90
– ident: ref17
  doi: 10.1007/978-3-030-58536-5_3
– ident: ref32
  doi: 10.1109/CVPR42600.2020.00861
– ident: ref68
  doi: 10.1109/CVPR.2009.5206596
– ident: ref6
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref18
  doi: 10.1109/TIP.2020.3017352
– ident: ref37
  doi: 10.1007/978-3-030-58598-3_31
– ident: ref51
  doi: 10.1109/MIPR.2019.00032
– ident: ref61
  doi: 10.1109/TPAMI.2016.2562626
– ident: ref65
  doi: 10.1109/TCSVT.2018.2821177
– ident: ref19
  doi: 10.1016/j.patcog.2020.107303
– ident: ref60
  doi: 10.1109/TIP.2017.2669878
– ident: ref39
  doi: 10.1007/978-3-030-58598-3_14
– ident: ref64
  doi: 10.1109/TBME.2018.2877577
SSID ssj0014847
Score 2.6906435
Snippet Under ideal environmental conditions, RGB-based deep convolutional neural networks can achieve high performance for salient object detection (SOD). In scenes...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1224
SubjectTerms Artificial neural networks
bilateral reversal fusion module
Color imagery
cross-modality fusion
Decoding
Feature extraction
Imaging
Lighting
Meteorology
Modules
multilevel consistent fusion module
Object recognition
RGB-T data
Salience
salient object detection
Sorting
Streaming media
Weather
Title ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection
URI https://ieeexplore.ieee.org/document/9420662
https://www.proquest.com/docview/2637442831
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLY6TnDYgDKto5t84DZc8sNJbG7QkVVI7STaTkg7RLH9cmEKE0su--t5z0mrapvQblFkR5Y_573P9nvfY-zMZETybSbKyqZCVmUstC0zYSLjoiqwqYso33m-SGdreXuf3A_Y-TYXBgB88BlM6NHf5btH29JR2YWWJD6OBvcVbty6XK3tjYFUvpgY0oVQKPRjmwSZQF-spstvK9wKRuEEV3QWUHn3HSfkq6r8ZYq9f8nfsPlmZF1YycOkbczE_v5DtPF_h37IXvdEk191K-OIDaA-Zgc78oND9v1mmucLaC55p2GMho-XteO-iCeiXzecGGL7BDxv6VSNL7qgcY5Ml999uRYrvkQeTw2_GjrQ4Z-h8bFd9Qlb5zer6Uz0xRaEjXTSiBgCWWWgdKor0EHsQElpVVi60CWxRUAhKiWEcZWUQWLQz7usREtpkHFaSFX8lu3VjzW8Y1xZY-MUtKoCJSElhXt8pfHjzhFDHLFwM_uF7ZXIqSDGj8LvSAJdeMQKQqzoERuxT9s-PzsdjhdbDwmCbct-9kdsvAG56H_VX0WUxpkk2bnw_b97nbL9iHIefODZmO01Ty18QCbSmI9-CT4DzYbYsw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAc-CqoWwr4wA28zYeT2NxgaVigu0g0RZU4RLE9uYBS1CYXfj0zTnZVAULcosiOLD9n5tmeeQPw3BZM8l0hm9blUrVNKo1rCmkT65M2crlPON95tc6XZ-rDeXa-Ay-3uTCIGILPcM6P4S7fX7iBj8qOjGLxcTK4N8jvZ_GYrbW9M1A6lBMjwhBLTZ5skyITmaNqcfqlos1gEs9pTRcRF3i_5oZCXZU_jHHwMOVdWG3GNgaWfJsPvZ27n7_JNv7v4O_BnYlqitfj2rgPO9g9gNvXBAj34OvxoizX2L8So4oxmT7RdF6EMp6Ef9cL5ojDJYpy4HM1sR7DxgVxXfH53RtZiVNi8tzwk-UjHfEW-xDd1T2Es_K4WizlVG5BusRkvUwxUm2B2uSmRROlHrVSTseNj32WOoIUk0ZhnLZZE2WWPL0vGrKVljinw1ynj2C3u-hwH4R21qU5Gt1GWmHOGvf0ytDHvWeOOIN4M_u1m7TIuSTG9zrsSSJTB8RqRqyeEJvBi22fH6MSxz9b7zEE25bT7M_gcANyPf2sV3WSp4Vi4bn44O-9nsHNZbU6qU_erz8-hlsJZ0CEMLRD2O0vB3xCvKS3T8Ny_AVIG9v8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECFFNet%3A+Effective+and+Consistent+Feature+Fusion+Network+for+RGB-T+Salient+Object+Detection&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhou%2C+Wujie&rft.au=Guo%2C+Qinling&rft.au=Jingsheng+Lei&rft.au=Lu%2C+Yu&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=3&rft.spage=1224&rft_id=info:doi/10.1109%2FTCSVT.2021.3077058&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon