Action Recognition With Spatio-Temporal Visual Attention on Skeleton Image Sequences
Action recognition with 3D skeleton sequences became popular due to its speed and robustness. The recently proposed convolutional neural networks (CNNs)-based methods show a good performance in learning spatio-temporal representations for skeleton sequences. Despite the good recognition accuracy ach...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 29; no. 8; pp. 2405 - 2415 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Action recognition with 3D skeleton sequences became popular due to its speed and robustness. The recently proposed convolutional neural networks (CNNs)-based methods show a good performance in learning spatio-temporal representations for skeleton sequences. Despite the good recognition accuracy achieved by previous CNN-based methods, there existed two problems that potentially limit the performance. First, previous skeleton representations were generated by chaining joints with a fixed order. The corresponding semantic meaning was unclear and the structural information among the joints was lost. Second, previous models did not have an ability to focus on informative joints. The attention mechanism was important for skeleton-based action recognition because different joints contributed unequally toward the correct recognition. To solve these two problems, we proposed a novel CNN-based method for skeleton-based action recognition. We first redesigned the skeleton representations with a depth-first tree traversal order, which enhanced the semantic meaning of skeleton images and better preserved the associated structural information. We then proposed the general two-branch attention architecture that automatically focused on spatio-temporal key stages and filtered out unreliable joint predictions. Based on the proposed general architecture, we designed a global long-sequence attention network with refined branch structures. Furthermore, in order to adjust the kernel's spatio-temporal aspect ratios and better capture long-term dependencies, we proposed a sub-sequence attention network (SSAN) that took sub-image sequences as inputs. We showed that the two-branch attention architecture could be combined with the SSAN to further improve the performance. Our experiment results on the NTU RGB+D data set and the SBU kinetic interaction data set outperformed the state of the art. The model was further validated on noisy estimated poses from the subsets of the UCF101 data set and the kinetics data set. |
---|---|
AbstractList | Action recognition with 3D skeleton sequences became popular due to its speed and robustness. The recently proposed convolutional neural networks (CNNs)-based methods show a good performance in learning spatio–temporal representations for skeleton sequences. Despite the good recognition accuracy achieved by previous CNN-based methods, there existed two problems that potentially limit the performance. First, previous skeleton representations were generated by chaining joints with a fixed order. The corresponding semantic meaning was unclear and the structural information among the joints was lost. Second, previous models did not have an ability to focus on informative joints. The attention mechanism was important for skeleton-based action recognition because different joints contributed unequally toward the correct recognition. To solve these two problems, we proposed a novel CNN-based method for skeleton-based action recognition. We first redesigned the skeleton representations with a depth-first tree traversal order, which enhanced the semantic meaning of skeleton images and better preserved the associated structural information. We then proposed the general two-branch attention architecture that automatically focused on spatio–temporal key stages and filtered out unreliable joint predictions. Based on the proposed general architecture, we designed a global long-sequence attention network with refined branch structures. Furthermore, in order to adjust the kernel’s spatio–temporal aspect ratios and better capture long-term dependencies, we proposed a sub-sequence attention network (SSAN) that took sub-image sequences as inputs. We showed that the two-branch attention architecture could be combined with the SSAN to further improve the performance. Our experiment results on the NTU RGB+D data set and the SBU kinetic interaction data set outperformed the state of the art. The model was further validated on noisy estimated poses from the subsets of the UCF101 data set and the kinetics data set. |
Author | Yang, Zhengyuan Luo, Jiebo Li, Yuncheng Yang, Jianchao |
Author_xml | – sequence: 1 givenname: Zhengyuan orcidid: 0000-0002-5808-0889 surname: Yang fullname: Yang, Zhengyuan email: zyang39@cs.rochester.edu organization: Department of Computer Science, University of Rochester, Rochester, NY, USA – sequence: 2 givenname: Yuncheng surname: Li fullname: Li, Yuncheng email: yuncheng.li@snapchat.com organization: Snap Inc., Venice, CA, USA – sequence: 3 givenname: Jianchao surname: Yang fullname: Yang, Jianchao email: jcyangenator@gmail.com organization: Toutiao AI Lab, Menlo Park, CA, USA – sequence: 4 givenname: Jiebo surname: Luo fullname: Luo, Jiebo email: jluo@cs.rochester.edu organization: Department of Computer Science, University of Rochester, Rochester, NY, USA |
BookMark | eNp9kEtLAzEUhYMo2Fb_gG4GXE9NMpPHLEvxUSgIzliXYSa9U1OnmZqkC_-96QMXLoQL94R7vlzuGaJz21tA6IbgMSG4uK-m5aIaU0zkmEqek1yeoQFhTKaUYnYeNWYklZSwSzT0fo1xtORigKqJDqa3ySvofmXNQb-b8JGU2zo-0go2297VXbIwfhfbJASwB1es8hM6CFHMNvUKkhK-dmA1-Ct00dadh-tTH6G3x4dq-pzOX55m08k81bRgIc10oYE0LTDBcQFScEIE1FxmDJZZo4kkgugla3ELOE6kbrgA3rTLFud5I7MRujv-u3V9XO2DWvc7Z-NKRSkvBM4EK6JLHl3a9d47aJU2YX-cDa42nSJY7TNUhwzVPkN1yjCi9A-6dWZTu-__odsjZADgF5B5nBOe_QD1yoBE |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3059650 crossref_primary_10_3390_s21206761 crossref_primary_10_1109_TCSVT_2022_3215564 crossref_primary_10_1016_j_neucom_2021_04_071 crossref_primary_10_1109_TCSVT_2023_3272375 crossref_primary_10_3390_app10186188 crossref_primary_10_1109_TCE_2024_3420936 crossref_primary_10_3389_fnins_2024_1353257 crossref_primary_10_1109_TCSVT_2023_3281413 crossref_primary_10_1016_j_jvcir_2022_103531 crossref_primary_10_1109_TCSVT_2021_3098839 crossref_primary_10_1109_TCSVT_2022_3193574 crossref_primary_10_1007_s11760_024_03805_x crossref_primary_10_1109_ACCESS_2020_2992740 crossref_primary_10_3390_s21051838 crossref_primary_10_3390_app112311481 crossref_primary_10_1007_s11265_023_01892_6 crossref_primary_10_1109_TCSVT_2021_3100842 crossref_primary_10_1109_TCSVT_2023_3248271 crossref_primary_10_1109_TBCAS_2021_3064841 crossref_primary_10_1002_int_22713 crossref_primary_10_1109_TMM_2020_2990082 crossref_primary_10_1016_j_asoc_2020_106713 crossref_primary_10_1109_ACCESS_2023_3325401 crossref_primary_10_1016_j_neucom_2020_03_126 crossref_primary_10_1109_TCSVT_2022_3164663 crossref_primary_10_3390_s24144646 crossref_primary_10_1109_ACCESS_2019_2947090 crossref_primary_10_1109_ACCESS_2023_3235368 crossref_primary_10_3390_s22228738 crossref_primary_10_1016_j_eswa_2021_116424 crossref_primary_10_1109_TMM_2021_3070127 crossref_primary_10_3390_s24092795 crossref_primary_10_1117_1_JEI_31_5_053015 crossref_primary_10_1109_ACCESS_2021_3109255 crossref_primary_10_3233_JIFS_234791 crossref_primary_10_1109_TCSVT_2021_3073673 crossref_primary_10_1007_s00371_021_02355_4 crossref_primary_10_1007_s00521_024_09630_0 crossref_primary_10_1109_TCSVT_2023_3318557 crossref_primary_10_11834_jig_230046 crossref_primary_10_1007_s10846_023_01938_8 crossref_primary_10_1007_s12652_021_03614_x crossref_primary_10_1109_ACCESS_2020_3048741 crossref_primary_10_1155_2021_2290304 crossref_primary_10_3390_s21062051 crossref_primary_10_3390_jmse11020291 crossref_primary_10_1145_3473912 crossref_primary_10_1016_j_cag_2021_04_017 crossref_primary_10_1109_TCSVT_2022_3143549 crossref_primary_10_1109_TCSVT_2021_3059706 crossref_primary_10_1007_s40747_025_01807_x crossref_primary_10_1109_TCSVT_2021_3085959 crossref_primary_10_1016_j_neucom_2020_10_016 crossref_primary_10_1109_TCSVT_2024_3375512 crossref_primary_10_1126_sciadv_ade0123 crossref_primary_10_1109_TCSVT_2022_3232021 crossref_primary_10_1109_TIE_2020_3001838 crossref_primary_10_3390_app12083846 crossref_primary_10_1109_TCSVT_2022_3207174 crossref_primary_10_1109_TCSVT_2020_3038145 crossref_primary_10_1109_TCSVT_2022_3148392 crossref_primary_10_3390_electronics12040879 crossref_primary_10_1117_1_JEI_33_4_043025 crossref_primary_10_1109_TCSVT_2022_3156058 crossref_primary_10_1007_s00521_022_07763_8 crossref_primary_10_3390_a13120319 crossref_primary_10_1038_s41598_022_09293_8 crossref_primary_10_1007_s00521_023_08671_1 crossref_primary_10_1109_ACCESS_2020_2968054 crossref_primary_10_1109_TCSVT_2020_3019293 crossref_primary_10_1109_TCSVT_2020_2973301 crossref_primary_10_1109_TCSVT_2022_3178430 crossref_primary_10_1109_TCSVT_2020_3028008 crossref_primary_10_1109_TCSVT_2024_3358836 crossref_primary_10_1109_ACCESS_2020_2987177 crossref_primary_10_1109_TCSVT_2020_2987141 crossref_primary_10_3390_jpm13050874 crossref_primary_10_1109_TBDATA_2019_2950411 crossref_primary_10_1007_s11042_020_09181_1 crossref_primary_10_3390_mti5090055 crossref_primary_10_1007_s00521_022_07514_9 crossref_primary_10_1007_s11431_023_2491_4 crossref_primary_10_1049_cit2_12014 crossref_primary_10_3390_s23052680 crossref_primary_10_1007_s11042_022_13298_w crossref_primary_10_1007_s00521_022_07826_w crossref_primary_10_3233_ICA_210652 crossref_primary_10_1016_j_bspc_2024_107053 crossref_primary_10_1109_TCSVT_2019_2918591 crossref_primary_10_1109_TCDS_2022_3171550 crossref_primary_10_1109_ACCESS_2024_3525185 crossref_primary_10_1109_TNNLS_2022_3175775 crossref_primary_10_1016_j_neucom_2024_129105 crossref_primary_10_1007_s11042_023_15778_z crossref_primary_10_1109_TCSVT_2022_3201186 crossref_primary_10_3389_fpubh_2020_584387 |
Cites_doi | 10.1109/ICCV.2017.590 10.1109/CVPRW.2017.207 10.1109/CVPR.2009.5206744 10.1109/ICCV.2013.396 10.1007/978-3-319-10602-1_38 10.1109/CVPR.2018.00762 10.1109/CVPR.2016.511 10.1109/ICIP.2017.8296256 10.1109/CVPR.2016.115 10.1109/TIP.2018.2815744 10.1109/ICCV.2017.557 10.1109/CVPRW.2012.6239234 10.1109/CVPR.2016.503 10.1109/CVPR.2017.137 10.1109/ICCV.2015.510 10.1109/CVPR.2014.82 10.1109/ICCV.2017.402 10.1145/2398356.2398381 10.1109/CVPR.2017.143 10.1007/978-3-319-46487-9_50 10.1109/CVPR.2016.90 10.1109/CVPR.2016.213 10.1109/CVPR.2015.7298878 10.1016/j.cviu.2016.03.013 10.1109/CVPR.2005.177 10.1145/3072959.3073596 10.1109/ICPR.2018.8546012 10.1109/CVPRW.2012.6239232 10.1109/ICCV.2013.280 10.1016/S0031-3203(00)00146-1 10.1109/CVPR.2017.391 10.1109/CVPR.2017.502 10.1145/2647868.2654918 10.1109/ICCV.2017.256 10.1109/CVPR.2017.387 10.1109/CVPR.2017.683 10.1109/CVPR.2017.486 10.1109/ICCV.2017.115 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2018.2864148 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1558-2205 |
EndPage | 2415 |
ExternalDocumentID | 10_1109_TCSVT_2018_2864148 8428616 |
Genre | orig-research |
GrantInformation_xml | – fundername: New York State through Snap – fundername: Cheetah Mobile – fundername: Division of Institution and Award Support grantid: 1704309 funderid: 10.13039/100005446 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-3c9ce1bfe57609e876117ea6835ed3bc18171cd5f0fe017e8cb67e6bfdf044b83 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 04:07:29 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 00:41:12 EDT 2025 Wed Aug 27 02:54:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-3c9ce1bfe57609e876117ea6835ed3bc18171cd5f0fe017e8cb67e6bfdf044b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5808-0889 |
PQID | 2269703759 |
PQPubID | 85433 |
PageCount | 11 |
ParticipantIDs | ieee_primary_8428616 proquest_journals_2269703759 crossref_citationtrail_10_1109_TCSVT_2018_2864148 crossref_primary_10_1109_TCSVT_2018_2864148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 you (ref46) 2017 ref15 ref14 ref53 soomro (ref50) 2012 ref52 ref55 ref11 ref54 ref10 ref17 ref16 liu (ref41) 2017 weng (ref37) 2017 zaremba (ref49) 2014 ref45 ref47 ref42 ref44 ref43 newell (ref48) 2016 ref8 ref7 ref9 ref3 ref6 kay (ref51) 2017 ref5 ng (ref29) 2015 xu (ref18) 2015 srivastava (ref28) 2015 ref40 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 yan (ref39) 2018 ref38 song (ref35) 2017 dalal (ref23) 2006 krizhevsky (ref26) 2012 du (ref12) 2015 ref24 ref25 ref20 simonyan (ref27) 2014 ref22 ref21 sharma (ref19) 2015 jiang (ref58) 2014 simonyan (ref4) 2014 kumar (ref56) 2010 |
References_xml | – start-page: 4694 year: 2015 ident: ref29 article-title: Beyond short snippets: Deep networks for video classification publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 1110 year: 2015 ident: ref12 article-title: Hierarchical recurrent neural network for skeleton based action recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref3 doi: 10.1109/ICCV.2017.590 – start-page: 568 year: 2014 ident: ref4 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Proc Adv Neural Inf Process Syst – ident: ref17 doi: 10.1109/CVPRW.2017.207 – start-page: 428 year: 2006 ident: ref23 article-title: Human detection using oriented histograms of flow and appearance publication-title: Proc Eur Conf Comput Vis – start-page: 4263 year: 2017 ident: ref35 article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data publication-title: Proc AAAI – ident: ref21 doi: 10.1109/CVPR.2009.5206744 – ident: ref53 doi: 10.1109/ICCV.2013.396 – start-page: 843 year: 2015 ident: ref28 article-title: Unsupervised learning of video representations using LSTMs publication-title: Proc Int Conf Mach Learn – ident: ref24 doi: 10.1007/978-3-319-10602-1_38 – start-page: 1189 year: 2010 ident: ref56 article-title: Self-paced learning for latent variable models publication-title: Proc Adv Neural Inf Process Syst – ident: ref32 doi: 10.1109/CVPR.2018.00762 – ident: ref30 doi: 10.1109/CVPR.2016.511 – ident: ref9 doi: 10.1109/ICIP.2017.8296256 – start-page: 2048 year: 2015 ident: ref18 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: Proc Int Conf Mach Learn – ident: ref13 doi: 10.1109/CVPR.2016.115 – start-page: 7444 year: 2018 ident: ref39 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition publication-title: Proc AAAI – ident: ref38 doi: 10.1109/TIP.2018.2815744 – ident: ref44 doi: 10.1109/ICCV.2017.557 – ident: ref40 doi: 10.1109/CVPRW.2012.6239234 – ident: ref42 doi: 10.1109/CVPR.2016.503 – ident: ref36 doi: 10.1109/CVPR.2017.137 – ident: ref2 doi: 10.1109/ICCV.2015.510 – year: 2014 ident: ref49 publication-title: Recurrent Neural Network Regularization – ident: ref11 doi: 10.1109/CVPR.2014.82 – ident: ref43 doi: 10.1109/ICCV.2017.402 – ident: ref7 doi: 10.1145/2398356.2398381 – ident: ref31 doi: 10.1109/CVPR.2017.143 – start-page: 2078 year: 2014 ident: ref58 article-title: Self-paced learning with diversity publication-title: Proc Adv Neural Inf Process Syst – ident: ref14 doi: 10.1007/978-3-319-46487-9_50 – ident: ref47 doi: 10.1109/CVPR.2016.90 – ident: ref5 doi: 10.1109/CVPR.2016.213 – ident: ref1 doi: 10.1109/CVPR.2015.7298878 – ident: ref25 doi: 10.1016/j.cviu.2016.03.013 – year: 2014 ident: ref27 publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition – start-page: 483 year: 2016 ident: ref48 article-title: Stacked hourglass networks for human pose estimation publication-title: Proc Eur Conf Comput Vis – year: 2015 ident: ref19 publication-title: Action recognition using visual attention – ident: ref22 doi: 10.1109/CVPR.2005.177 – start-page: 445 year: 2017 ident: ref37 publication-title: Spatio-temporal naive-bayes nearest-neighbor (st-nbnn) for skeleton-based action recognition – ident: ref8 doi: 10.1145/3072959.3073596 – ident: ref20 doi: 10.1109/ICPR.2018.8546012 – ident: ref10 doi: 10.1109/CVPRW.2012.6239232 – ident: ref54 doi: 10.1109/ICCV.2013.280 – year: 2012 ident: ref50 publication-title: Ucf101 A Dataset of 101 Human Actions Classes from Videos in the Wild – ident: ref55 doi: 10.1016/S0031-3203(00)00146-1 – ident: ref34 doi: 10.1109/CVPR.2017.391 – ident: ref6 doi: 10.1109/CVPR.2017.502 – year: 2017 ident: ref51 publication-title: The kinetics human action video dataset – ident: ref57 doi: 10.1145/2647868.2654918 – year: 2017 ident: ref41 publication-title: Skepxels Spatio-temporal image representation of human skeleton joints for action recognition – ident: ref52 doi: 10.1109/ICCV.2017.256 – start-page: 1097 year: 2012 ident: ref26 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref15 doi: 10.1109/CVPR.2017.387 – ident: ref45 doi: 10.1109/CVPR.2017.683 – ident: ref16 doi: 10.1109/CVPR.2017.486 – start-page: 231 year: 2017 ident: ref46 article-title: Visual sentiment analysis by attending on local image regions publication-title: Proc AAAI – ident: ref33 doi: 10.1109/ICCV.2017.115 |
SSID | ssj0014847 |
Score | 2.6024668 |
Snippet | Action recognition with 3D skeleton sequences became popular due to its speed and robustness. The recently proposed convolutional neural networks (CNNs)-based... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2405 |
SubjectTerms | Action and activity recognition Architecture Artificial neural networks Aspect ratio Datasets human analysis Image enhancement Image recognition Image sequences Joints (anatomy) Object recognition Optical imaging Performance enhancement Representations Semantics Skeleton Three-dimensional displays Two dimensional displays video understanding visual attention Visualization |
Title | Action Recognition With Spatio-Temporal Visual Attention on Skeleton Image Sequences |
URI | https://ieeexplore.ieee.org/document/8428616 https://www.proquest.com/docview/2269703759 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64nfTgb3E6pQdv2q1d0yw5juGYgh5cp97Kkrzi2Jyi3cW_3pe0HaIiQgs9JCHkJXlfmu99D-BMGi1tDgufMcN9K4HuCx7ZS14-0dy-Tq7p5pYPx-z6MX5cg4tVLAwiOvIZtuynu8s3L3ppf5W1BWFlHvIa1OjgVsRqrW4MmHDJxAguhL4gP1YFyASynfRH94llcYkW1WehzfXzxQm5rCo_tmLnXwZbcFP1rKCVzFrLXLX0xzfRxv92fRs2S6Dp9YqZsQNruNiFjS_yg3uQ9FxQg3dXkYjo-2GaP3kjR7P2k0K2au7dT9-Xtq08L8iRHj2jGTksAo7e1TNtSd6oomTvw3hwmfSHfpllwdcdGed-pKXGUGVIJ49AIu2OYdjFCSdohiZSmiBAN9QmzoIMafmi0Ip3kavMZAFjSkQHUF-8LPAQvDjmGRORNoZHjAVGTCKFmHVUR060FrIBYTXsqS4lyG0mjHnqjiKBTJ2pUmuqtDRVA85XdV4LAY4_S-_ZsV-VLIe9Ac3Kumm5Rt9TAp6ya1MAy6Pfax3DOrUtC7pfE-r52xJPCILk6tTNvU-IJtew |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB1Remg5QFuKupS2PrSnKks-HK994LBainb5OrCBckvX9kRFwILYrBD9LfwV_htjJ1khWvWGhJRIOdhOYr94nuM3MwBflTXK5bAIOLcicCHQAykSt8krRka404dr2tsX_UO-fZwez8HtzBcGEb34DNvu0u_l2wszdb_K1iVxZRGJWkK5gzfXtECbbAw2aTS_xfHWj6zXD-ocAoGJVVoGiVEGI10g8epQIX37UdTBkSDigTbRhgxcJzI2LcICCZwojRYdFLqwRci5lgm1-wJeEs9I48o7bLZHwaVPX0YEJQokWc7GJSdU61lveJQ53Zhs0xPzyGUXemD2fB6XvyZ_b9G2luCu6YtKyHLanpa6bf48ChP5XDvrDSzWVJp1K-y_hTkcv4OFBwEWlyHrercNdtDIpOj650n5mw29kDzIqsBcZ-zoZDJ1bZVlJf9kdAxPySQTNWaDc5p02bARnb-Hwyd5rRWYH1-M8QOwNBUFl4mxViSch1aOEo1YxDpWI2OkakHUDHNu6iDrLtfHWe4XW6HKPTRyB428hkYLvs_qXFYhRv5betmN9axkPcwtWGvQlNez0CQnaq06LsmxWv13rS_wqp_t7ea7g_2dj_Ca7qMqceMazJdXU_xEhKvUnz3uGfx6auzcAzHeNtY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Action+Recognition+With+Spatio%E2%80%93Temporal+Visual+Attention+on+Skeleton+Image+Sequences&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Yang%2C+Zhengyuan&rft.au=Li%2C+Yuncheng&rft.au=Yang%2C+Jianchao&rft.au=Luo%2C+Jiebo&rft.date=2019-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=29&rft.issue=8&rft.spage=2405&rft_id=info:doi/10.1109%2FTCSVT.2018.2864148&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |