Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces

Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 69; no. 4; pp. 2673 - 2691
Main Authors Najafi, Marzieh, Jamali, Vahid, Schober, Robert, Poor, H. Vincent
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate for the large end-to-end path-loss, which is caused by the multiplication of the individual path-losses of the transmitter-to-IRS and IRS-to-receiver channels. However, optimizing a large number of sub-wavelength IRS elements imposes a significant challenge for online transmission. To address this issue, in this article, we develop a physics-based model and a scalable optimization framework for large IRSs. The basic idea is to partition the IRS unit cells into several subsets, referred to as tiles, model the impact of each tile on the wireless channel, and then optimize each tile in two stages, namely an offline design stage and an online optimization stage. For physics-based modeling, we borrow concepts from the radar literature, model each tile as an anomalous reflector, and derive its impact on the wireless channel for a given phase shift by solving the corresponding integral equations for the electric and magnetic vector fields. In the offline design stage, the IRS unit cells of each tile are jointly designed for the support of different transmission modes, where each transmission mode effectively corresponds to a given configuration of the phase shifts that the unit cells of the tile apply to an impinging electromagnetic wave. In the online optimization stage, the best transmission mode of each tile is selected such that a desired quality-of-service (QoS) criterion is maximized. We consider an exemplary downlink system and study the minimization of the base station (BS) transmit power subject to QoS constraints for the users. Since the resulting mixed-integer programming problem for joint optimization of the BS beamforming vectors and the tile transmission modes is non-convex, we derive two efficient suboptimal solutions, which are based on alternating optimization and a greedy approach, respectively. We show that the proposed modeling and optimization framework can be used to efficiently optimize large IRSs comprising thousands of unit cells.
AbstractList Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate for the large end-to-end path-loss, which is caused by the multiplication of the individual path-losses of the transmitter-to-IRS and IRS-to-receiver channels. However, optimizing a large number of sub-wavelength IRS elements imposes a significant challenge for online transmission. To address this issue, in this article, we develop a physics-based model and a scalable optimization framework for large IRSs. The basic idea is to partition the IRS unit cells into several subsets, referred to as tiles, model the impact of each tile on the wireless channel, and then optimize each tile in two stages, namely an offline design stage and an online optimization stage. For physics-based modeling, we borrow concepts from the radar literature, model each tile as an anomalous reflector, and derive its impact on the wireless channel for a given phase shift by solving the corresponding integral equations for the electric and magnetic vector fields. In the offline design stage, the IRS unit cells of each tile are jointly designed for the support of different transmission modes, where each transmission mode effectively corresponds to a given configuration of the phase shifts that the unit cells of the tile apply to an impinging electromagnetic wave. In the online optimization stage, the best transmission mode of each tile is selected such that a desired quality-of-service (QoS) criterion is maximized. We consider an exemplary downlink system and study the minimization of the base station (BS) transmit power subject to QoS constraints for the users. Since the resulting mixed-integer programming problem for joint optimization of the BS beamforming vectors and the tile transmission modes is non-convex, we derive two efficient suboptimal solutions, which are based on alternating optimization and a greedy approach, respectively. We show that the proposed modeling and optimization framework can be used to efficiently optimize large IRSs comprising thousands of unit cells.
Author Jamali, Vahid
Schober, Robert
Poor, H. Vincent
Najafi, Marzieh
Author_xml – sequence: 1
  givenname: Marzieh
  orcidid: 0000-0003-2962-4311
  surname: Najafi
  fullname: Najafi, Marzieh
  email: marzieh.najafi@fau.de
  organization: Institute for Digital Communications, University of Erlangen-Nuremberg, Erlangen, Germany
– sequence: 2
  givenname: Vahid
  orcidid: 0000-0003-3920-7415
  surname: Jamali
  fullname: Jamali, Vahid
  email: vahid.jamali@fau.de
  organization: Institute for Digital Communications, University of Erlangen-Nuremberg, Erlangen, Germany
– sequence: 3
  givenname: Robert
  surname: Schober
  fullname: Schober, Robert
  email: robert.schober@fau.de
  organization: Institute for Digital Communications, University of Erlangen-Nuremberg, Erlangen, Germany
– sequence: 4
  givenname: H. Vincent
  orcidid: 0000-0002-2062-131X
  surname: Poor
  fullname: Poor, H. Vincent
  email: poor@princeton.edu
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
BookMark eNp9kE1PAjEQhhuDiYD-Ab1s4nlxut2P7lGJHyQQjODB06a0UyxZutiWA_56l4948OBp5jDPO3mfHunYxiIh1xQGlEJ5Nx9OJ5NBAgkMGKQFlPyMdGmW8Rh4VnRIF6CEOC8KfkF63q8AIAXGuuTj9XPnjfTxg_CookmjsDZ2GQmropkUtVjUGE03wazNtwimsVGjo7FwS4xGNmBdmyXaEL2hrlGGPTnbOi0k-ktyrkXt8eo0--T96XE-fInH0-fR8H4cy6TMQsxkWmKhRC4Vzds1VUVWpHmZsyKFhOYLlSVU8raFAq0p5lIuFggUtUbKtGB9cnvM3bjma4s-VKtm62z7skoy2mYxDtBe8eOVdI33DnUlTTgUCk6YuqJQ7UVWB5HVXmR1EtmiyR9048xauN3_0M0RMoj4C5QMct5W-wFDg4F0
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TCOMM_2022_3231893
crossref_primary_10_1109_ACCESS_2023_3328613
crossref_primary_10_1109_TWC_2023_3309006
crossref_primary_10_1109_MWC_001_2100170
crossref_primary_10_1109_TITS_2024_3408315
crossref_primary_10_1109_TVT_2023_3266116
crossref_primary_10_1109_TWC_2022_3142437
crossref_primary_10_1109_LCOMM_2021_3110714
crossref_primary_10_1109_TCOMM_2022_3163767
crossref_primary_10_1109_LSP_2022_3175417
crossref_primary_10_1109_OJCOMS_2024_3353173
crossref_primary_10_1109_JLT_2022_3176762
crossref_primary_10_1109_JIOT_2024_3456603
crossref_primary_10_1109_LCOMM_2021_3083485
crossref_primary_10_1109_JSAC_2022_3143220
crossref_primary_10_1109_TWC_2022_3174154
crossref_primary_10_1109_LWC_2023_3277136
crossref_primary_10_1109_OJCOMS_2023_3279889
crossref_primary_10_1109_TCOMM_2023_3244246
crossref_primary_10_1109_ACCESS_2023_3305727
crossref_primary_10_1109_ACCESS_2023_3283610
crossref_primary_10_1109_JIOT_2023_3241168
crossref_primary_10_1109_TWC_2023_3271365
crossref_primary_10_1109_TCOMM_2023_3250454
crossref_primary_10_1051_sands_2023015
crossref_primary_10_1109_TCOMM_2023_3321731
crossref_primary_10_1109_TCOMM_2023_3328259
crossref_primary_10_1109_IOTM_001_2100117
crossref_primary_10_1109_LCOMM_2023_3321897
crossref_primary_10_1109_TCOMM_2022_3161688
crossref_primary_10_1109_LWC_2022_3227028
crossref_primary_10_1109_TCOMM_2023_3249227
crossref_primary_10_1016_j_icte_2024_10_003
crossref_primary_10_1109_TWC_2023_3315580
crossref_primary_10_1109_MWC_001_2100145
crossref_primary_10_1109_OJCOMS_2022_3156163
crossref_primary_10_1109_ACCESS_2023_3273602
crossref_primary_10_1002_admt_202400850
crossref_primary_10_1109_JPROC_2022_3186087
crossref_primary_10_1109_TCCN_2024_3431889
crossref_primary_10_1109_TWC_2021_3128415
crossref_primary_10_1109_ACCESS_2023_3338208
crossref_primary_10_1109_TCOMM_2022_3193400
crossref_primary_10_1109_OJCOMS_2024_3496866
crossref_primary_10_1109_ACCESS_2023_3313561
crossref_primary_10_3390_math10173075
crossref_primary_10_1109_JIOT_2024_3443173
crossref_primary_10_3390_electronics11172798
crossref_primary_10_1109_JSAC_2024_3389117
crossref_primary_10_1109_TVT_2022_3166656
crossref_primary_10_1109_TSP_2022_3157975
crossref_primary_10_1109_ACCESS_2022_3205117
crossref_primary_10_1109_JSTSP_2021_3127725
crossref_primary_10_1109_LCOMM_2021_3120688
crossref_primary_10_1109_TVT_2023_3266831
crossref_primary_10_1109_TWC_2022_3218531
crossref_primary_10_1109_TNANO_2022_3195116
crossref_primary_10_1109_LWC_2024_3400974
crossref_primary_10_1109_TCOMM_2021_3084637
crossref_primary_10_1109_TVT_2024_3436663
crossref_primary_10_1109_TWC_2023_3262272
crossref_primary_10_1109_TAP_2024_3382869
crossref_primary_10_1109_TWC_2023_3328255
crossref_primary_10_26599_TST_2023_9010001
crossref_primary_10_1016_j_phycom_2024_102459
crossref_primary_10_1109_TVT_2022_3227319
crossref_primary_10_3390_electronics13142882
crossref_primary_10_1109_TCOMM_2022_3197625
crossref_primary_10_3390_electronics14061081
crossref_primary_10_1016_j_adhoc_2023_103312
crossref_primary_10_1109_TWC_2023_3236811
crossref_primary_10_1109_JSTSP_2022_3195671
crossref_primary_10_1007_s12518_024_00572_9
crossref_primary_10_1109_TSP_2022_3221345
crossref_primary_10_1109_LCOMM_2022_3225585
crossref_primary_10_1109_JSAC_2021_3088679
crossref_primary_10_32604_cmes_2023_027663
crossref_primary_10_1016_j_isci_2024_110595
crossref_primary_10_1109_TWC_2022_3196834
crossref_primary_10_1109_TWC_2023_3297396
crossref_primary_10_1186_s13638_024_02346_8
crossref_primary_10_1109_JSAC_2022_3143230
crossref_primary_10_1109_TCOMM_2023_3239932
crossref_primary_10_1109_JIOT_2024_3478210
crossref_primary_10_1109_LWC_2023_3324693
crossref_primary_10_1109_TCOMM_2023_3293858
crossref_primary_10_1016_j_phycom_2024_102301
crossref_primary_10_1109_TCOMM_2022_3181056
crossref_primary_10_1109_ACCESS_2021_3107316
crossref_primary_10_1109_LWC_2023_3297231
crossref_primary_10_1109_TCOMM_2021_3124953
crossref_primary_10_1109_TWC_2024_3505296
crossref_primary_10_1109_TCOMM_2023_3341899
crossref_primary_10_1109_JSAC_2023_3288264
crossref_primary_10_1109_OJCOMS_2022_3163574
crossref_primary_10_1109_TCOMM_2022_3206884
crossref_primary_10_1109_JSTSP_2022_3177925
crossref_primary_10_1109_LWC_2022_3152563
crossref_primary_10_1109_LWC_2024_3445713
crossref_primary_10_3389_frcmn_2021_733698
crossref_primary_10_1109_JSAC_2022_3196095
crossref_primary_10_1109_TVT_2024_3427001
crossref_primary_10_1109_TWC_2023_3262063
crossref_primary_10_1109_TVT_2023_3326488
crossref_primary_10_1109_TCOMM_2022_3176316
crossref_primary_10_1002_mop_33924
crossref_primary_10_1109_ACCESS_2024_3482564
crossref_primary_10_1109_TCOMM_2022_3159658
crossref_primary_10_1109_TCOMM_2023_3327464
crossref_primary_10_1109_JSTSP_2022_3229567
crossref_primary_10_1109_TWC_2022_3212466
crossref_primary_10_1109_JSYST_2022_3182465
crossref_primary_10_1109_TVT_2022_3224024
crossref_primary_10_1109_TWC_2023_3237955
crossref_primary_10_1109_TVT_2023_3332107
crossref_primary_10_1109_LWC_2023_3336821
crossref_primary_10_1109_TCOMM_2023_3321909
crossref_primary_10_1109_TCOMM_2024_3358954
crossref_primary_10_1109_TCOMM_2024_3422247
crossref_primary_10_1109_JIOT_2023_3279357
crossref_primary_10_1109_TWC_2023_3307450
crossref_primary_10_1109_TCOMM_2022_3212749
crossref_primary_10_1109_TWC_2024_3504839
crossref_primary_10_1080_24751839_2023_2272488
crossref_primary_10_1109_TCOMM_2024_3381707
crossref_primary_10_3390_info14020075
crossref_primary_10_1109_TCOMM_2023_3258486
crossref_primary_10_23919_ICN_2022_0029
crossref_primary_10_1109_TCOMM_2021_3081452
crossref_primary_10_1109_JIOT_2023_3332670
crossref_primary_10_1109_LWC_2023_3344225
crossref_primary_10_1093_nsr_nwad299
crossref_primary_10_1109_MNET_107_2200623
crossref_primary_10_1109_TCOMM_2022_3140467
crossref_primary_10_1109_TIT_2023_3243836
crossref_primary_10_1109_TNSE_2024_3396136
crossref_primary_10_1109_JSTSP_2022_3175036
crossref_primary_10_1109_TVT_2022_3165855
crossref_primary_10_1109_TCSII_2023_3251373
crossref_primary_10_1109_TIFS_2023_3348242
crossref_primary_10_1109_LWC_2023_3256001
crossref_primary_10_1109_TCOMM_2021_3129926
crossref_primary_10_1016_j_phycom_2024_102474
crossref_primary_10_1002_ett_70066
crossref_primary_10_1109_TGCN_2023_3332571
crossref_primary_10_1049_cmu2_12364
crossref_primary_10_1109_JPROC_2022_3174140
crossref_primary_10_1109_JSAC_2024_3398730
crossref_primary_10_1109_TWC_2023_3277514
crossref_primary_10_1016_j_dsp_2025_105047
crossref_primary_10_1109_TAP_2024_3520416
crossref_primary_10_1109_ACCESS_2022_3217204
crossref_primary_10_1109_TSP_2022_3150145
crossref_primary_10_3390_electronics13142868
crossref_primary_10_1109_TWC_2021_3108020
crossref_primary_10_1109_TMC_2023_3299792
crossref_primary_10_1109_TWC_2023_3239371
crossref_primary_10_1109_TWC_2023_3254526
crossref_primary_10_1109_TWC_2022_3194910
crossref_primary_10_1109_MAP_2022_3169396
crossref_primary_10_1109_ACCESS_2023_3343250
crossref_primary_10_1109_JLT_2022_3199608
crossref_primary_10_1109_LCOMM_2023_3304292
crossref_primary_10_1109_JSAC_2022_3196102
crossref_primary_10_1109_LWC_2021_3077991
crossref_primary_10_1109_TCOMM_2022_3168284
crossref_primary_10_1109_TCOMM_2024_3356452
crossref_primary_10_1109_TWC_2023_3287040
crossref_primary_10_1109_LCOMM_2022_3143850
crossref_primary_10_1109_TWC_2023_3330977
crossref_primary_10_1109_LWC_2023_3328661
crossref_primary_10_1109_TCOMM_2023_3326202
crossref_primary_10_1109_JLT_2023_3299520
crossref_primary_10_1109_LWC_2023_3281821
crossref_primary_10_1109_OJCOMS_2021_3092217
crossref_primary_10_1109_JPHOT_2023_3292133
crossref_primary_10_1109_TAP_2022_3149660
crossref_primary_10_1109_TWC_2022_3224035
crossref_primary_10_1109_MWC_010_2200312
crossref_primary_10_1109_TMTT_2023_3237029
crossref_primary_10_1109_TWC_2024_3367131
crossref_primary_10_1109_TCOMM_2023_3342234
crossref_primary_10_1109_TWC_2023_3312796
crossref_primary_10_1109_TWC_2024_3463211
crossref_primary_10_1109_LCOMM_2022_3152320
crossref_primary_10_1109_TWC_2023_3347749
crossref_primary_10_1109_JSAC_2023_3240710
crossref_primary_10_1109_TWC_2023_3236405
crossref_primary_10_1109_ACCESS_2022_3183139
crossref_primary_10_1109_JIOT_2024_3397007
crossref_primary_10_1109_TAP_2025_3533902
crossref_primary_10_1109_JIOT_2023_3304715
crossref_primary_10_1109_ACCESS_2023_3233947
crossref_primary_10_1109_TGRS_2024_3373020
crossref_primary_10_1109_LWC_2022_3145885
crossref_primary_10_1109_ACCESS_2024_3485227
crossref_primary_10_1109_OJCOMS_2022_3188579
crossref_primary_10_1109_TCOMM_2023_3239647
crossref_primary_10_1109_TWC_2021_3139611
crossref_primary_10_1109_TCOMM_2023_3296619
crossref_primary_10_1109_TWC_2024_3512668
crossref_primary_10_1109_LCOMM_2022_3159525
crossref_primary_10_1109_LCOMM_2022_3141206
Cites_doi 10.1364/OE.22.014530
10.1109/GLOBECOM38437.2019.9013840
10.1109/OJCOMS.2020.2992791
10.1109/JSAC.2020.3000835
10.1109/TCOMM.2019.2940183
10.1109/ICC.2019.8761603
10.1109/TVT.2020.3031657
10.1109/PIMRC.2019.8904332
10.1109/JSAC.2020.3007211
10.1103/PhysRevB.94.075142
10.1109/ACCESS.2020.2977772
10.1109/JSTSP.2018.2813973
10.1023/A:1017501703105
10.1109/ICCW.2019.8756746
10.1109/JSAC.2020.3007043
10.1038/srep35692
10.1186/s13638-019-1438-9
10.1109/TWC.2019.2922609
10.1038/srep03059
10.1109/JSAC.2020.3007035
10.1038/srep06693
10.1109/TCOMM.2020.3001125
10.1109/TWC.2020.3024887
10.1109/JSTSP.2014.2334278
10.1109/MWC.001.1900534
10.1109/TWC.2014.2314654
10.1109/OJCOMS.2020.3020925
10.1109/TWC.2020.2990766
10.1109/LWC.2019.2960779
10.1109/SPAWC48557.2020.9154326
10.1109/GLOBECOM38437.2019.9013288
10.1016/j.adhoc.2018.11.001
10.1109/LWC.2019.2961357
10.1109/ICC40277.2020.9149146
10.1109/TWC.2017.2686399
10.1109/TWC.2019.2936025
10.1109/LWC.2019.2950624
10.1109/LCOMM.2016.2559458
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2020.3047098
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0857
EndPage 2691
ExternalDocumentID 10_1109_TCOMM_2020_3047098
9306896
Genre orig-research
GrantInformation_xml – fundername: U.S. National Science Foundation
  grantid: CCF-1908308
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-3c49e7da6cd1649e4d75746963740216bd521c8857d0ff1e6ccbbe01effe13fa3
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Mon Jun 30 10:16:27 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
Tue Jul 01 02:51:33 EDT 2025
Wed Aug 27 02:30:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3c49e7da6cd1649e4d75746963740216bd521c8857d0ff1e6ccbbe01effe13fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3920-7415
0000-0002-2062-131X
0000-0003-2962-4311
PQID 2515743800
PQPubID 85472
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_TCOMM_2020_3047098
proquest_journals_2515743800
ieee_primary_9306896
crossref_primary_10_1109_TCOMM_2020_3047098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
balanis (ref25) 2012
ref10
ref17
ref16
ref18
jamali (ref46) 2020
ref51
ref50
wei (ref23) 2020
lau (ref37) 2012
ref45
ref48
ref47
ref42
ref41
ref44
ref43
lee (ref28) 2011; 154
ref49
ref8
liu (ref31) 2019; 11
ref7
ref9
ref4
ref3
ref6
ref5
najafi (ref35) 2020
ref40
björnson (ref19) 2020; 9
ref34
zhang (ref38) 2020
ref30
ref32
balanis (ref36) 2005
ref2
ref39
estakhri (ref33) 2016; 6
ref26
ref20
ref22
ref21
cao (ref24) 2019
ref27
ref29
najafi (ref1) 2020
jamali (ref14) 2019
References_xml – start-page: 1
  year: 2020
  ident: ref1
  article-title: Physics-based modeling of large intelligent reflecting surfaces for scalable optimization
  publication-title: Proc Asilomar Conf Signal Syst Comput
– ident: ref26
  doi: 10.1364/OE.22.014530
– year: 2019
  ident: ref14
  article-title: Intelligent reflecting and transmitting surface aided millimeter wave massive MIMO
  publication-title: arXiv 1902 07670
– ident: ref27
  doi: 10.1109/GLOBECOM38437.2019.9013840
– volume: 11
  year: 2019
  ident: ref31
  article-title: Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions
  publication-title: Phys Rev A Gen Phys
– ident: ref45
  doi: 10.1109/OJCOMS.2020.2992791
– ident: ref43
  doi: 10.1109/JSAC.2020.3000835
– ident: ref42
  doi: 10.1109/TCOMM.2019.2940183
– ident: ref9
  doi: 10.1109/ICC.2019.8761603
– ident: ref18
  doi: 10.1109/TVT.2020.3031657
– ident: ref40
  doi: 10.1109/PIMRC.2019.8904332
– ident: ref4
  doi: 10.1109/JSAC.2020.3007211
– year: 2005
  ident: ref36
  publication-title: Antenna Theory Analysis and Design
– start-page: 1
  year: 2020
  ident: ref35
  article-title: Physics-based modeling and scalable optimization of large intelligent reflecting surfaces (extended version)
  publication-title: arXiv 2004 12957
– ident: ref34
  doi: 10.1103/PhysRevB.94.075142
– ident: ref12
  doi: 10.1109/ACCESS.2020.2977772
– ident: ref47
  doi: 10.1109/JSTSP.2018.2813973
– ident: ref41
  doi: 10.1023/A:1017501703105
– year: 2020
  ident: ref46
  article-title: Power efficiency, overhead, and complexity tradeoff in IRS-assisted communications-quadratic phase-shift design
  publication-title: arXiv 2009 05956
– ident: ref30
  doi: 10.1109/ICCW.2019.8756746
– ident: ref13
  doi: 10.1109/JSAC.2020.3007043
– ident: ref11
  doi: 10.1038/srep35692
– ident: ref2
  doi: 10.1186/s13638-019-1438-9
– ident: ref15
  doi: 10.1109/TWC.2019.2922609
– ident: ref7
  doi: 10.1038/srep03059
– ident: ref22
  doi: 10.1109/JSAC.2020.3007035
– ident: ref6
  doi: 10.1038/srep06693
– ident: ref32
  doi: 10.1109/TCOMM.2020.3001125
– ident: ref10
  doi: 10.1109/TWC.2020.3024887
– ident: ref39
  doi: 10.1109/JSTSP.2014.2334278
– ident: ref5
  doi: 10.1109/MWC.001.1900534
– ident: ref29
  doi: 10.1109/TWC.2014.2314654
– ident: ref20
  doi: 10.1109/OJCOMS.2020.3020925
– ident: ref16
  doi: 10.1109/TWC.2020.2990766
– year: 2020
  ident: ref23
  article-title: Channel estimation for RIS-empowered multi-user MISO wireless communications
  publication-title: arXiv 2008 01459
– volume: 9
  start-page: 581
  year: 2020
  ident: ref19
  article-title: Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling
  publication-title: IEEE Wireless Commun Lett
  doi: 10.1109/LWC.2019.2960779
– ident: ref21
  doi: 10.1109/SPAWC48557.2020.9154326
– ident: ref17
  doi: 10.1109/GLOBECOM38437.2019.9013288
– ident: ref3
  doi: 10.1016/j.adhoc.2018.11.001
– ident: ref44
  doi: 10.1109/LWC.2019.2961357
– volume: 6
  year: 2016
  ident: ref33
  article-title: Wave-front transformation with gradient metasurfaces
  publication-title: Phys Rev X
– ident: ref50
  doi: 10.1109/ICC40277.2020.9149146
– ident: ref49
  doi: 10.1109/TWC.2017.2686399
– year: 2012
  ident: ref37
  article-title: Reconfigurable transmitarray antennas
– ident: ref8
  doi: 10.1109/TWC.2019.2936025
– volume: 154
  year: 2011
  ident: ref28
  publication-title: Mixed Integer Nonlinear Programming
– ident: ref51
  doi: 10.1109/LWC.2019.2950624
– year: 2019
  ident: ref24
  article-title: Delay-constrained joint power control, user detection and passive beamforming in intelligent reflecting surface assisted uplink mmWave system
  publication-title: arXiv 1912 10030
– year: 2020
  ident: ref38
  article-title: A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network
  publication-title: arXiv 2002 03744
– year: 2012
  ident: ref25
  publication-title: Advanced Engineering Electromagnetics
– ident: ref48
  doi: 10.1109/LCOMM.2016.2559458
SSID ssj0004033
Score 2.7128038
Snippet Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2673
SubjectTerms anamolous reflection
Beamforming
Channels
codebook design
Design optimization
Electromagnetic radiation
Far fields
Fields (mathematics)
Integer programming
Integral equations
Intelligent reflecting surfaces (IRSs)
Mixed integer
Modelling
Multiplication
Optimization
Physics
physics-based modeling
Quality of service
Radar cross-sections
Receivers
Reconfigurable intelligent surfaces
Solid modeling
Surface waves
two-stage optimization
Wireless communication
Wireless communications
Title Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces
URI https://ieeexplore.ieee.org/document/9306896
https://www.proquest.com/docview/2515743800
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKohCQR7YIMVunDgeoaICRKlEWwmmKPFjAVrUpgu_nrOblqcQS5TBlhyf47vP_r47gGOFPoEj1ECQw3jAdZ4FOdf4SCi6V2ljKZwauXsXXw35zUP0UIHTpRbGGOPJZ6bpXv1dvh6rmTsqO5MY3yYyXoEVBG5zrdaHBpKGZcZJR2cXyUIgQ-XZoN3rdhEKthChUi6oTL44IV9V5cdW7P1LZwO6i5HNaSVPzVmRN9Xbt6SN_x36JqyXgSY5n6-MLaiY0TasfUo_WINHT_9U0-ACXZkmriyaE6eTbKRJH23nVFWkh3vKSynWJGNLbh11nFwvM3kW5N5Yd_bvevZnE-s4Xjsw7FwO2ldBWWohUC0ZFUGouDRCZ7HSiJ-k4VpEApFzHAoEmCzONdpSJUkkNLWWmVipPDeUOdIJC20W7kJ1NB6ZPSCMW4k-z8c6nGWR1MxSbGWZzSk3og5sMfepKvOQu3IYz6nHI1Sm3l6ps1da2qsOJ8s-r_MsHH-2rjkDLFuWc1-HxsLEafmjTlMM7_BDQwyb93_vdQCrLUdj8WSdBlSLycwcYhxS5Ed-Ab4D-03YeQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbBBWrtx4ngERFWgAQmKBFOU-LEALSrpwq_n7KblKcQSZbAlx-f47rO_7w7gQKFP4Ag1EOQwHnBd5EHBNT4Siu5V2lgKp0ZOr-L2Hb-4j-6n4GiihTHGePKZqbtXf5ev-2rojsoaEuPbRMbTMIt-P2qO1FofKkgaVjknHaFdJGOJDJWN7ul1miIYbCJGpVxQmXxxQ76uyo_N2HuY1hKk47GNiCWP9WFZ1NXbt7SN_x38MixWoSY5Hq2NFZgyvVVY-JSAcA0ePAFUvQYn6Mw0cYXRnDyd5D1NbtF6TldFrnFXea7kmqRvSceRx8n5JJdnSW6Mdaf_ruftcGAdy2sd7lpn3dN2UBVbCFRTRmUQKi6N0HmsNCIoabgWkUDsHIcCISaLC43WVEkSCU2tZSZWqigMZY52wkKbhxsw0-v3zCYQxq1Er-ejHc7ySGpmKbayzBaUG1EDNp77TFWZyF1BjKfMIxIqM2-vzNkrq-xVg8NJn5dRHo4_W685A0xaVnNfg52xibPqV33NMMDDDw0xcN76vdc-zLW7aSfrnF9dbsN805FaPHVnB2bKwdDsYlRSFnt-Mb4Dctjbww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-Based+Modeling+and+Scalable+Optimization+of+Large+Intelligent+Reflecting+Surfaces&rft.jtitle=IEEE+transactions+on+communications&rft.au=Najafi%2C+Marzieh&rft.au=Jamali%2C+Vahid&rft.au=Schober%2C+Robert&rft.au=Poor%2C+H.+Vincent&rft.date=2021-04-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=69&rft.issue=4&rft.spage=2673&rft.epage=2691&rft_id=info:doi/10.1109%2FTCOMM.2020.3047098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2020_3047098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon