Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces
Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate...
Saved in:
Published in | IEEE transactions on communications Vol. 69; no. 4; pp. 2673 - 2691 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate for the large end-to-end path-loss, which is caused by the multiplication of the individual path-losses of the transmitter-to-IRS and IRS-to-receiver channels. However, optimizing a large number of sub-wavelength IRS elements imposes a significant challenge for online transmission. To address this issue, in this article, we develop a physics-based model and a scalable optimization framework for large IRSs. The basic idea is to partition the IRS unit cells into several subsets, referred to as tiles, model the impact of each tile on the wireless channel, and then optimize each tile in two stages, namely an offline design stage and an online optimization stage. For physics-based modeling, we borrow concepts from the radar literature, model each tile as an anomalous reflector, and derive its impact on the wireless channel for a given phase shift by solving the corresponding integral equations for the electric and magnetic vector fields. In the offline design stage, the IRS unit cells of each tile are jointly designed for the support of different transmission modes, where each transmission mode effectively corresponds to a given configuration of the phase shifts that the unit cells of the tile apply to an impinging electromagnetic wave. In the online optimization stage, the best transmission mode of each tile is selected such that a desired quality-of-service (QoS) criterion is maximized. We consider an exemplary downlink system and study the minimization of the base station (BS) transmit power subject to QoS constraints for the users. Since the resulting mixed-integer programming problem for joint optimization of the BS beamforming vectors and the tile transmission modes is non-convex, we derive two efficient suboptimal solutions, which are based on alternating optimization and a greedy approach, respectively. We show that the proposed modeling and optimization framework can be used to efficiently optimize large IRSs comprising thousands of unit cells. |
---|---|
AbstractList | Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate for the large end-to-end path-loss, which is caused by the multiplication of the individual path-losses of the transmitter-to-IRS and IRS-to-receiver channels. However, optimizing a large number of sub-wavelength IRS elements imposes a significant challenge for online transmission. To address this issue, in this article, we develop a physics-based model and a scalable optimization framework for large IRSs. The basic idea is to partition the IRS unit cells into several subsets, referred to as tiles, model the impact of each tile on the wireless channel, and then optimize each tile in two stages, namely an offline design stage and an online optimization stage. For physics-based modeling, we borrow concepts from the radar literature, model each tile as an anomalous reflector, and derive its impact on the wireless channel for a given phase shift by solving the corresponding integral equations for the electric and magnetic vector fields. In the offline design stage, the IRS unit cells of each tile are jointly designed for the support of different transmission modes, where each transmission mode effectively corresponds to a given configuration of the phase shifts that the unit cells of the tile apply to an impinging electromagnetic wave. In the online optimization stage, the best transmission mode of each tile is selected such that a desired quality-of-service (QoS) criterion is maximized. We consider an exemplary downlink system and study the minimization of the base station (BS) transmit power subject to QoS constraints for the users. Since the resulting mixed-integer programming problem for joint optimization of the BS beamforming vectors and the tile transmission modes is non-convex, we derive two efficient suboptimal solutions, which are based on alternating optimization and a greedy approach, respectively. We show that the proposed modeling and optimization framework can be used to efficiently optimize large IRSs comprising thousands of unit cells. |
Author | Jamali, Vahid Schober, Robert Poor, H. Vincent Najafi, Marzieh |
Author_xml | – sequence: 1 givenname: Marzieh orcidid: 0000-0003-2962-4311 surname: Najafi fullname: Najafi, Marzieh email: marzieh.najafi@fau.de organization: Institute for Digital Communications, University of Erlangen-Nuremberg, Erlangen, Germany – sequence: 2 givenname: Vahid orcidid: 0000-0003-3920-7415 surname: Jamali fullname: Jamali, Vahid email: vahid.jamali@fau.de organization: Institute for Digital Communications, University of Erlangen-Nuremberg, Erlangen, Germany – sequence: 3 givenname: Robert surname: Schober fullname: Schober, Robert email: robert.schober@fau.de organization: Institute for Digital Communications, University of Erlangen-Nuremberg, Erlangen, Germany – sequence: 4 givenname: H. Vincent orcidid: 0000-0002-2062-131X surname: Poor fullname: Poor, H. Vincent email: poor@princeton.edu organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA |
BookMark | eNp9kE1PAjEQhhuDiYD-Ab1s4nlxut2P7lGJHyQQjODB06a0UyxZutiWA_56l4948OBp5jDPO3mfHunYxiIh1xQGlEJ5Nx9OJ5NBAgkMGKQFlPyMdGmW8Rh4VnRIF6CEOC8KfkF63q8AIAXGuuTj9XPnjfTxg_CookmjsDZ2GQmropkUtVjUGE03wazNtwimsVGjo7FwS4xGNmBdmyXaEL2hrlGGPTnbOi0k-ktyrkXt8eo0--T96XE-fInH0-fR8H4cy6TMQsxkWmKhRC4Vzds1VUVWpHmZsyKFhOYLlSVU8raFAq0p5lIuFggUtUbKtGB9cnvM3bjma4s-VKtm62z7skoy2mYxDtBe8eOVdI33DnUlTTgUCk6YuqJQ7UVWB5HVXmR1EtmiyR9048xauN3_0M0RMoj4C5QMct5W-wFDg4F0 |
CODEN | IECMBT |
CitedBy_id | crossref_primary_10_1109_TCOMM_2022_3231893 crossref_primary_10_1109_ACCESS_2023_3328613 crossref_primary_10_1109_TWC_2023_3309006 crossref_primary_10_1109_MWC_001_2100170 crossref_primary_10_1109_TITS_2024_3408315 crossref_primary_10_1109_TVT_2023_3266116 crossref_primary_10_1109_TWC_2022_3142437 crossref_primary_10_1109_LCOMM_2021_3110714 crossref_primary_10_1109_TCOMM_2022_3163767 crossref_primary_10_1109_LSP_2022_3175417 crossref_primary_10_1109_OJCOMS_2024_3353173 crossref_primary_10_1109_JLT_2022_3176762 crossref_primary_10_1109_JIOT_2024_3456603 crossref_primary_10_1109_LCOMM_2021_3083485 crossref_primary_10_1109_JSAC_2022_3143220 crossref_primary_10_1109_TWC_2022_3174154 crossref_primary_10_1109_LWC_2023_3277136 crossref_primary_10_1109_OJCOMS_2023_3279889 crossref_primary_10_1109_TCOMM_2023_3244246 crossref_primary_10_1109_ACCESS_2023_3305727 crossref_primary_10_1109_ACCESS_2023_3283610 crossref_primary_10_1109_JIOT_2023_3241168 crossref_primary_10_1109_TWC_2023_3271365 crossref_primary_10_1109_TCOMM_2023_3250454 crossref_primary_10_1051_sands_2023015 crossref_primary_10_1109_TCOMM_2023_3321731 crossref_primary_10_1109_TCOMM_2023_3328259 crossref_primary_10_1109_IOTM_001_2100117 crossref_primary_10_1109_LCOMM_2023_3321897 crossref_primary_10_1109_TCOMM_2022_3161688 crossref_primary_10_1109_LWC_2022_3227028 crossref_primary_10_1109_TCOMM_2023_3249227 crossref_primary_10_1016_j_icte_2024_10_003 crossref_primary_10_1109_TWC_2023_3315580 crossref_primary_10_1109_MWC_001_2100145 crossref_primary_10_1109_OJCOMS_2022_3156163 crossref_primary_10_1109_ACCESS_2023_3273602 crossref_primary_10_1002_admt_202400850 crossref_primary_10_1109_JPROC_2022_3186087 crossref_primary_10_1109_TCCN_2024_3431889 crossref_primary_10_1109_TWC_2021_3128415 crossref_primary_10_1109_ACCESS_2023_3338208 crossref_primary_10_1109_TCOMM_2022_3193400 crossref_primary_10_1109_OJCOMS_2024_3496866 crossref_primary_10_1109_ACCESS_2023_3313561 crossref_primary_10_3390_math10173075 crossref_primary_10_1109_JIOT_2024_3443173 crossref_primary_10_3390_electronics11172798 crossref_primary_10_1109_JSAC_2024_3389117 crossref_primary_10_1109_TVT_2022_3166656 crossref_primary_10_1109_TSP_2022_3157975 crossref_primary_10_1109_ACCESS_2022_3205117 crossref_primary_10_1109_JSTSP_2021_3127725 crossref_primary_10_1109_LCOMM_2021_3120688 crossref_primary_10_1109_TVT_2023_3266831 crossref_primary_10_1109_TWC_2022_3218531 crossref_primary_10_1109_TNANO_2022_3195116 crossref_primary_10_1109_LWC_2024_3400974 crossref_primary_10_1109_TCOMM_2021_3084637 crossref_primary_10_1109_TVT_2024_3436663 crossref_primary_10_1109_TWC_2023_3262272 crossref_primary_10_1109_TAP_2024_3382869 crossref_primary_10_1109_TWC_2023_3328255 crossref_primary_10_26599_TST_2023_9010001 crossref_primary_10_1016_j_phycom_2024_102459 crossref_primary_10_1109_TVT_2022_3227319 crossref_primary_10_3390_electronics13142882 crossref_primary_10_1109_TCOMM_2022_3197625 crossref_primary_10_3390_electronics14061081 crossref_primary_10_1016_j_adhoc_2023_103312 crossref_primary_10_1109_TWC_2023_3236811 crossref_primary_10_1109_JSTSP_2022_3195671 crossref_primary_10_1007_s12518_024_00572_9 crossref_primary_10_1109_TSP_2022_3221345 crossref_primary_10_1109_LCOMM_2022_3225585 crossref_primary_10_1109_JSAC_2021_3088679 crossref_primary_10_32604_cmes_2023_027663 crossref_primary_10_1016_j_isci_2024_110595 crossref_primary_10_1109_TWC_2022_3196834 crossref_primary_10_1109_TWC_2023_3297396 crossref_primary_10_1186_s13638_024_02346_8 crossref_primary_10_1109_JSAC_2022_3143230 crossref_primary_10_1109_TCOMM_2023_3239932 crossref_primary_10_1109_JIOT_2024_3478210 crossref_primary_10_1109_LWC_2023_3324693 crossref_primary_10_1109_TCOMM_2023_3293858 crossref_primary_10_1016_j_phycom_2024_102301 crossref_primary_10_1109_TCOMM_2022_3181056 crossref_primary_10_1109_ACCESS_2021_3107316 crossref_primary_10_1109_LWC_2023_3297231 crossref_primary_10_1109_TCOMM_2021_3124953 crossref_primary_10_1109_TWC_2024_3505296 crossref_primary_10_1109_TCOMM_2023_3341899 crossref_primary_10_1109_JSAC_2023_3288264 crossref_primary_10_1109_OJCOMS_2022_3163574 crossref_primary_10_1109_TCOMM_2022_3206884 crossref_primary_10_1109_JSTSP_2022_3177925 crossref_primary_10_1109_LWC_2022_3152563 crossref_primary_10_1109_LWC_2024_3445713 crossref_primary_10_3389_frcmn_2021_733698 crossref_primary_10_1109_JSAC_2022_3196095 crossref_primary_10_1109_TVT_2024_3427001 crossref_primary_10_1109_TWC_2023_3262063 crossref_primary_10_1109_TVT_2023_3326488 crossref_primary_10_1109_TCOMM_2022_3176316 crossref_primary_10_1002_mop_33924 crossref_primary_10_1109_ACCESS_2024_3482564 crossref_primary_10_1109_TCOMM_2022_3159658 crossref_primary_10_1109_TCOMM_2023_3327464 crossref_primary_10_1109_JSTSP_2022_3229567 crossref_primary_10_1109_TWC_2022_3212466 crossref_primary_10_1109_JSYST_2022_3182465 crossref_primary_10_1109_TVT_2022_3224024 crossref_primary_10_1109_TWC_2023_3237955 crossref_primary_10_1109_TVT_2023_3332107 crossref_primary_10_1109_LWC_2023_3336821 crossref_primary_10_1109_TCOMM_2023_3321909 crossref_primary_10_1109_TCOMM_2024_3358954 crossref_primary_10_1109_TCOMM_2024_3422247 crossref_primary_10_1109_JIOT_2023_3279357 crossref_primary_10_1109_TWC_2023_3307450 crossref_primary_10_1109_TCOMM_2022_3212749 crossref_primary_10_1109_TWC_2024_3504839 crossref_primary_10_1080_24751839_2023_2272488 crossref_primary_10_1109_TCOMM_2024_3381707 crossref_primary_10_3390_info14020075 crossref_primary_10_1109_TCOMM_2023_3258486 crossref_primary_10_23919_ICN_2022_0029 crossref_primary_10_1109_TCOMM_2021_3081452 crossref_primary_10_1109_JIOT_2023_3332670 crossref_primary_10_1109_LWC_2023_3344225 crossref_primary_10_1093_nsr_nwad299 crossref_primary_10_1109_MNET_107_2200623 crossref_primary_10_1109_TCOMM_2022_3140467 crossref_primary_10_1109_TIT_2023_3243836 crossref_primary_10_1109_TNSE_2024_3396136 crossref_primary_10_1109_JSTSP_2022_3175036 crossref_primary_10_1109_TVT_2022_3165855 crossref_primary_10_1109_TCSII_2023_3251373 crossref_primary_10_1109_TIFS_2023_3348242 crossref_primary_10_1109_LWC_2023_3256001 crossref_primary_10_1109_TCOMM_2021_3129926 crossref_primary_10_1016_j_phycom_2024_102474 crossref_primary_10_1002_ett_70066 crossref_primary_10_1109_TGCN_2023_3332571 crossref_primary_10_1049_cmu2_12364 crossref_primary_10_1109_JPROC_2022_3174140 crossref_primary_10_1109_JSAC_2024_3398730 crossref_primary_10_1109_TWC_2023_3277514 crossref_primary_10_1016_j_dsp_2025_105047 crossref_primary_10_1109_TAP_2024_3520416 crossref_primary_10_1109_ACCESS_2022_3217204 crossref_primary_10_1109_TSP_2022_3150145 crossref_primary_10_3390_electronics13142868 crossref_primary_10_1109_TWC_2021_3108020 crossref_primary_10_1109_TMC_2023_3299792 crossref_primary_10_1109_TWC_2023_3239371 crossref_primary_10_1109_TWC_2023_3254526 crossref_primary_10_1109_TWC_2022_3194910 crossref_primary_10_1109_MAP_2022_3169396 crossref_primary_10_1109_ACCESS_2023_3343250 crossref_primary_10_1109_JLT_2022_3199608 crossref_primary_10_1109_LCOMM_2023_3304292 crossref_primary_10_1109_JSAC_2022_3196102 crossref_primary_10_1109_LWC_2021_3077991 crossref_primary_10_1109_TCOMM_2022_3168284 crossref_primary_10_1109_TCOMM_2024_3356452 crossref_primary_10_1109_TWC_2023_3287040 crossref_primary_10_1109_LCOMM_2022_3143850 crossref_primary_10_1109_TWC_2023_3330977 crossref_primary_10_1109_LWC_2023_3328661 crossref_primary_10_1109_TCOMM_2023_3326202 crossref_primary_10_1109_JLT_2023_3299520 crossref_primary_10_1109_LWC_2023_3281821 crossref_primary_10_1109_OJCOMS_2021_3092217 crossref_primary_10_1109_JPHOT_2023_3292133 crossref_primary_10_1109_TAP_2022_3149660 crossref_primary_10_1109_TWC_2022_3224035 crossref_primary_10_1109_MWC_010_2200312 crossref_primary_10_1109_TMTT_2023_3237029 crossref_primary_10_1109_TWC_2024_3367131 crossref_primary_10_1109_TCOMM_2023_3342234 crossref_primary_10_1109_TWC_2023_3312796 crossref_primary_10_1109_TWC_2024_3463211 crossref_primary_10_1109_LCOMM_2022_3152320 crossref_primary_10_1109_TWC_2023_3347749 crossref_primary_10_1109_JSAC_2023_3240710 crossref_primary_10_1109_TWC_2023_3236405 crossref_primary_10_1109_ACCESS_2022_3183139 crossref_primary_10_1109_JIOT_2024_3397007 crossref_primary_10_1109_TAP_2025_3533902 crossref_primary_10_1109_JIOT_2023_3304715 crossref_primary_10_1109_ACCESS_2023_3233947 crossref_primary_10_1109_TGRS_2024_3373020 crossref_primary_10_1109_LWC_2022_3145885 crossref_primary_10_1109_ACCESS_2024_3485227 crossref_primary_10_1109_OJCOMS_2022_3188579 crossref_primary_10_1109_TCOMM_2023_3239647 crossref_primary_10_1109_TWC_2021_3139611 crossref_primary_10_1109_TCOMM_2023_3296619 crossref_primary_10_1109_TWC_2024_3512668 crossref_primary_10_1109_LCOMM_2022_3159525 crossref_primary_10_1109_LCOMM_2022_3141206 |
Cites_doi | 10.1364/OE.22.014530 10.1109/GLOBECOM38437.2019.9013840 10.1109/OJCOMS.2020.2992791 10.1109/JSAC.2020.3000835 10.1109/TCOMM.2019.2940183 10.1109/ICC.2019.8761603 10.1109/TVT.2020.3031657 10.1109/PIMRC.2019.8904332 10.1109/JSAC.2020.3007211 10.1103/PhysRevB.94.075142 10.1109/ACCESS.2020.2977772 10.1109/JSTSP.2018.2813973 10.1023/A:1017501703105 10.1109/ICCW.2019.8756746 10.1109/JSAC.2020.3007043 10.1038/srep35692 10.1186/s13638-019-1438-9 10.1109/TWC.2019.2922609 10.1038/srep03059 10.1109/JSAC.2020.3007035 10.1038/srep06693 10.1109/TCOMM.2020.3001125 10.1109/TWC.2020.3024887 10.1109/JSTSP.2014.2334278 10.1109/MWC.001.1900534 10.1109/TWC.2014.2314654 10.1109/OJCOMS.2020.3020925 10.1109/TWC.2020.2990766 10.1109/LWC.2019.2960779 10.1109/SPAWC48557.2020.9154326 10.1109/GLOBECOM38437.2019.9013288 10.1016/j.adhoc.2018.11.001 10.1109/LWC.2019.2961357 10.1109/ICC40277.2020.9149146 10.1109/TWC.2017.2686399 10.1109/TWC.2019.2936025 10.1109/LWC.2019.2950624 10.1109/LCOMM.2016.2559458 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCOMM.2020.3047098 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0857 |
EndPage | 2691 |
ExternalDocumentID | 10_1109_TCOMM_2020_3047098 9306896 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. National Science Foundation grantid: CCF-1908308 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c295t-3c49e7da6cd1649e4d75746963740216bd521c8857d0ff1e6ccbbe01effe13fa3 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Mon Jun 30 10:16:27 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Tue Jul 01 02:51:33 EDT 2025 Wed Aug 27 02:30:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-3c49e7da6cd1649e4d75746963740216bd521c8857d0ff1e6ccbbe01effe13fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3920-7415 0000-0002-2062-131X 0000-0003-2962-4311 |
PQID | 2515743800 |
PQPubID | 85472 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1109_TCOMM_2020_3047098 proquest_journals_2515743800 ieee_primary_9306896 crossref_primary_10_1109_TCOMM_2020_3047098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 balanis (ref25) 2012 ref10 ref17 ref16 ref18 jamali (ref46) 2020 ref51 ref50 wei (ref23) 2020 lau (ref37) 2012 ref45 ref48 ref47 ref42 ref41 ref44 ref43 lee (ref28) 2011; 154 ref49 ref8 liu (ref31) 2019; 11 ref7 ref9 ref4 ref3 ref6 ref5 najafi (ref35) 2020 ref40 björnson (ref19) 2020; 9 ref34 zhang (ref38) 2020 ref30 ref32 balanis (ref36) 2005 ref2 ref39 estakhri (ref33) 2016; 6 ref26 ref20 ref22 ref21 cao (ref24) 2019 ref27 ref29 najafi (ref1) 2020 jamali (ref14) 2019 |
References_xml | – start-page: 1 year: 2020 ident: ref1 article-title: Physics-based modeling of large intelligent reflecting surfaces for scalable optimization publication-title: Proc Asilomar Conf Signal Syst Comput – ident: ref26 doi: 10.1364/OE.22.014530 – year: 2019 ident: ref14 article-title: Intelligent reflecting and transmitting surface aided millimeter wave massive MIMO publication-title: arXiv 1902 07670 – ident: ref27 doi: 10.1109/GLOBECOM38437.2019.9013840 – volume: 11 year: 2019 ident: ref31 article-title: Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions publication-title: Phys Rev A Gen Phys – ident: ref45 doi: 10.1109/OJCOMS.2020.2992791 – ident: ref43 doi: 10.1109/JSAC.2020.3000835 – ident: ref42 doi: 10.1109/TCOMM.2019.2940183 – ident: ref9 doi: 10.1109/ICC.2019.8761603 – ident: ref18 doi: 10.1109/TVT.2020.3031657 – ident: ref40 doi: 10.1109/PIMRC.2019.8904332 – ident: ref4 doi: 10.1109/JSAC.2020.3007211 – year: 2005 ident: ref36 publication-title: Antenna Theory Analysis and Design – start-page: 1 year: 2020 ident: ref35 article-title: Physics-based modeling and scalable optimization of large intelligent reflecting surfaces (extended version) publication-title: arXiv 2004 12957 – ident: ref34 doi: 10.1103/PhysRevB.94.075142 – ident: ref12 doi: 10.1109/ACCESS.2020.2977772 – ident: ref47 doi: 10.1109/JSTSP.2018.2813973 – ident: ref41 doi: 10.1023/A:1017501703105 – year: 2020 ident: ref46 article-title: Power efficiency, overhead, and complexity tradeoff in IRS-assisted communications-quadratic phase-shift design publication-title: arXiv 2009 05956 – ident: ref30 doi: 10.1109/ICCW.2019.8756746 – ident: ref13 doi: 10.1109/JSAC.2020.3007043 – ident: ref11 doi: 10.1038/srep35692 – ident: ref2 doi: 10.1186/s13638-019-1438-9 – ident: ref15 doi: 10.1109/TWC.2019.2922609 – ident: ref7 doi: 10.1038/srep03059 – ident: ref22 doi: 10.1109/JSAC.2020.3007035 – ident: ref6 doi: 10.1038/srep06693 – ident: ref32 doi: 10.1109/TCOMM.2020.3001125 – ident: ref10 doi: 10.1109/TWC.2020.3024887 – ident: ref39 doi: 10.1109/JSTSP.2014.2334278 – ident: ref5 doi: 10.1109/MWC.001.1900534 – ident: ref29 doi: 10.1109/TWC.2014.2314654 – ident: ref20 doi: 10.1109/OJCOMS.2020.3020925 – ident: ref16 doi: 10.1109/TWC.2020.2990766 – year: 2020 ident: ref23 article-title: Channel estimation for RIS-empowered multi-user MISO wireless communications publication-title: arXiv 2008 01459 – volume: 9 start-page: 581 year: 2020 ident: ref19 article-title: Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling publication-title: IEEE Wireless Commun Lett doi: 10.1109/LWC.2019.2960779 – ident: ref21 doi: 10.1109/SPAWC48557.2020.9154326 – ident: ref17 doi: 10.1109/GLOBECOM38437.2019.9013288 – ident: ref3 doi: 10.1016/j.adhoc.2018.11.001 – ident: ref44 doi: 10.1109/LWC.2019.2961357 – volume: 6 year: 2016 ident: ref33 article-title: Wave-front transformation with gradient metasurfaces publication-title: Phys Rev X – ident: ref50 doi: 10.1109/ICC40277.2020.9149146 – ident: ref49 doi: 10.1109/TWC.2017.2686399 – year: 2012 ident: ref37 article-title: Reconfigurable transmitarray antennas – ident: ref8 doi: 10.1109/TWC.2019.2936025 – volume: 154 year: 2011 ident: ref28 publication-title: Mixed Integer Nonlinear Programming – ident: ref51 doi: 10.1109/LWC.2019.2950624 – year: 2019 ident: ref24 article-title: Delay-constrained joint power control, user detection and passive beamforming in intelligent reflecting surface assisted uplink mmWave system publication-title: arXiv 1912 10030 – year: 2020 ident: ref38 article-title: A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network publication-title: arXiv 2002 03744 – year: 2012 ident: ref25 publication-title: Advanced Engineering Electromagnetics – ident: ref48 doi: 10.1109/LCOMM.2016.2559458 |
SSID | ssj0004033 |
Score | 2.7128038 |
Snippet | Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2673 |
SubjectTerms | anamolous reflection Beamforming Channels codebook design Design optimization Electromagnetic radiation Far fields Fields (mathematics) Integer programming Integral equations Intelligent reflecting surfaces (IRSs) Mixed integer Modelling Multiplication Optimization Physics physics-based modeling Quality of service Radar cross-sections Receivers Reconfigurable intelligent surfaces Solid modeling Surface waves two-stage optimization Wireless communication Wireless communications |
Title | Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces |
URI | https://ieeexplore.ieee.org/document/9306896 https://www.proquest.com/docview/2515743800 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKohCQR7YIMVunDgeoaICRKlEWwmmKPFjAVrUpgu_nrOblqcQS5TBlhyf47vP_r47gGOFPoEj1ECQw3jAdZ4FOdf4SCi6V2ljKZwauXsXXw35zUP0UIHTpRbGGOPJZ6bpXv1dvh6rmTsqO5MY3yYyXoEVBG5zrdaHBpKGZcZJR2cXyUIgQ-XZoN3rdhEKthChUi6oTL44IV9V5cdW7P1LZwO6i5HNaSVPzVmRN9Xbt6SN_x36JqyXgSY5n6-MLaiY0TasfUo_WINHT_9U0-ACXZkmriyaE6eTbKRJH23nVFWkh3vKSynWJGNLbh11nFwvM3kW5N5Yd_bvevZnE-s4Xjsw7FwO2ldBWWohUC0ZFUGouDRCZ7HSiJ-k4VpEApFzHAoEmCzONdpSJUkkNLWWmVipPDeUOdIJC20W7kJ1NB6ZPSCMW4k-z8c6nGWR1MxSbGWZzSk3og5sMfepKvOQu3IYz6nHI1Sm3l6ps1da2qsOJ8s-r_MsHH-2rjkDLFuWc1-HxsLEafmjTlMM7_BDQwyb93_vdQCrLUdj8WSdBlSLycwcYhxS5Ed-Ab4D-03YeQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbBBWrtx4ngERFWgAQmKBFOU-LEALSrpwq_n7KblKcQSZbAlx-f47rO_7w7gQKFP4Ag1EOQwHnBd5EHBNT4Siu5V2lgKp0ZOr-L2Hb-4j-6n4GiihTHGePKZqbtXf5ev-2rojsoaEuPbRMbTMIt-P2qO1FofKkgaVjknHaFdJGOJDJWN7ul1miIYbCJGpVxQmXxxQ76uyo_N2HuY1hKk47GNiCWP9WFZ1NXbt7SN_x38MixWoSY5Hq2NFZgyvVVY-JSAcA0ePAFUvQYn6Mw0cYXRnDyd5D1NbtF6TldFrnFXea7kmqRvSceRx8n5JJdnSW6Mdaf_ruftcGAdy2sd7lpn3dN2UBVbCFRTRmUQKi6N0HmsNCIoabgWkUDsHIcCISaLC43WVEkSCU2tZSZWqigMZY52wkKbhxsw0-v3zCYQxq1Er-ejHc7ySGpmKbayzBaUG1EDNp77TFWZyF1BjKfMIxIqM2-vzNkrq-xVg8NJn5dRHo4_W685A0xaVnNfg52xibPqV33NMMDDDw0xcN76vdc-zLW7aSfrnF9dbsN805FaPHVnB2bKwdDsYlRSFnt-Mb4Dctjbww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-Based+Modeling+and+Scalable+Optimization+of+Large+Intelligent+Reflecting+Surfaces&rft.jtitle=IEEE+transactions+on+communications&rft.au=Najafi%2C+Marzieh&rft.au=Jamali%2C+Vahid&rft.au=Schober%2C+Robert&rft.au=Poor%2C+H.+Vincent&rft.date=2021-04-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=69&rft.issue=4&rft.spage=2673&rft.epage=2691&rft_id=info:doi/10.1109%2FTCOMM.2020.3047098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2020_3047098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |