A Representable Uninorm-Based Intuitionistic Fuzzy Analytic Hierarchy Process

Intuitionistic fuzzy preference relations (IFPRs) have been exposed to be an appropriate and effective preference representation framework in an analytic hierarchy process (AHP) with vagueness and hesitancy. This article focuses mainly on obtaining an intuitionistic fuzzy extension of Tanino's...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 28; no. 10; pp. 2555 - 2569
Main Author Wang, Zhou-Jing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intuitionistic fuzzy preference relations (IFPRs) have been exposed to be an appropriate and effective preference representation framework in an analytic hierarchy process (AHP) with vagueness and hesitancy. This article focuses mainly on obtaining an intuitionistic fuzzy extension of Tanino's multiplicative consistency and deriving an analytic solution of normalized intuitionistic fuzzy weights (NIFWs) from IFPRs as well as checking acceptability of IFPRs. This article first introduces two indices to, respectively, measure hesitancy of intuitionistic fuzzy judgments and hesitancy of IFPRs, and illustrates that any existing multiplicative consistency model of IFPRs is not an actual intuitionistic fuzzy extension of Tanino's multiplicative consistency. A conjunctive-representable cross-ratio uninorm-based functional equation is then developed to define multiplicative consistency of IFPRs and a consistency index is devised to measure the inconsistency degree of an IFPR. This article establishes a representable uninorm-based transformation method for consistent IFPRs and intuitionistic fuzzy weights, and proposes a new framework of NIFWs. Based on the transformation method and the row hesitancy distribution of an IFPR, a logarithmic least square model is constructed and its analytic solution is found by applying the Lagrange multiplier method to its equivalent least square model. This article puts forward a novel acceptability checking method by taking both acceptable consistency and acceptable hesitancy into consideration. A representable uninorm-based fusion method is presented to aggregate local NIFWs into global intuitionistic fuzzy weights and a representable uninorm-based likelihood formula is given and used to compare and rank intuitionistic fuzzy weights in the proposed intuitionistic fuzzy AHP. Six numerical examples including an outstanding Ph.D. student selection problem are provided to illustrate and validate the obtained results.
AbstractList Intuitionistic fuzzy preference relations (IFPRs) have been exposed to be an appropriate and effective preference representation framework in an analytic hierarchy process (AHP) with vagueness and hesitancy. This article focuses mainly on obtaining an intuitionistic fuzzy extension of Tanino's multiplicative consistency and deriving an analytic solution of normalized intuitionistic fuzzy weights (NIFWs) from IFPRs as well as checking acceptability of IFPRs. This article first introduces two indices to, respectively, measure hesitancy of intuitionistic fuzzy judgments and hesitancy of IFPRs, and illustrates that any existing multiplicative consistency model of IFPRs is not an actual intuitionistic fuzzy extension of Tanino's multiplicative consistency. A conjunctive-representable cross-ratio uninorm-based functional equation is then developed to define multiplicative consistency of IFPRs and a consistency index is devised to measure the inconsistency degree of an IFPR. This article establishes a representable uninorm-based transformation method for consistent IFPRs and intuitionistic fuzzy weights, and proposes a new framework of NIFWs. Based on the transformation method and the row hesitancy distribution of an IFPR, a logarithmic least square model is constructed and its analytic solution is found by applying the Lagrange multiplier method to its equivalent least square model. This article puts forward a novel acceptability checking method by taking both acceptable consistency and acceptable hesitancy into consideration. A representable uninorm-based fusion method is presented to aggregate local NIFWs into global intuitionistic fuzzy weights and a representable uninorm-based likelihood formula is given and used to compare and rank intuitionistic fuzzy weights in the proposed intuitionistic fuzzy AHP. Six numerical examples including an outstanding Ph.D. student selection problem are provided to illustrate and validate the obtained results.
Author Wang, Zhou-Jing
Author_xml – sequence: 1
  givenname: Zhou-Jing
  orcidid: 0000-0001-5778-5855
  surname: Wang
  fullname: Wang, Zhou-Jing
  email: wangzj@xmu.edu.cn
  organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China
BookMark eNp9kE9PwkAQxTcGExH9Anpp4rm4f9vuEYkICUZj4MJls12mcUlpcXd7KJ_eVogHD57mTfJ-kzfvGg2qugKE7ggeE4Ll42q23mzGFBM5ppITkvILNCSdijFmfNBpnLA4SXFyha6932FMuCDZEL1Oog84OPBQBZ2XEK0rW9VuHz9pD9toUYXGBltX1gdrollzPLbRpNJl269zC04789lG76424P0Nuix06eH2PEdoPXteTefx8u1lMZ0sY0OlCDHTWkhIwRQ5kCJjYLQUBMB0mUyidU63uCAUtnkiuMglLWRCJBEJNjg1KbARejjdPbj6qwEf1K5uXBfLK8q5ZIRTwTpXdnIZV3vvoFDGBt1_E5y2pSJY9eWpn_JUX546l9eh9A96cHavXfs_dH-CLAD8AlnGeCoz9g2nN35o
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s10489_021_03081_z
crossref_primary_10_3390_su15076255
crossref_primary_10_1080_01605682_2022_2155591
crossref_primary_10_1016_j_ins_2022_10_031
crossref_primary_10_1007_s10489_024_06096_4
crossref_primary_10_1016_j_eswa_2023_121215
crossref_primary_10_32604_cmes_2022_020598
crossref_primary_10_1016_j_ins_2024_121573
crossref_primary_10_1021_acsomega_1c06700
crossref_primary_10_1016_j_eswa_2023_121554
crossref_primary_10_1016_j_ijepes_2023_109387
crossref_primary_10_1155_2022_6772467
crossref_primary_10_1007_s00500_021_06121_5
crossref_primary_10_1016_j_robot_2022_104122
crossref_primary_10_1016_j_fss_2023_108674
crossref_primary_10_3390_ijerph17176259
crossref_primary_10_1139_tcsme_2020_0190
crossref_primary_10_1016_j_cie_2021_107215
crossref_primary_10_3233_JIFS_234906
crossref_primary_10_1007_s10479_025_06530_x
crossref_primary_10_1016_j_eswa_2022_118832
crossref_primary_10_3390_app142411904
crossref_primary_10_1016_j_ins_2019_12_055
crossref_primary_10_3390_sym14112255
crossref_primary_10_1109_ACCESS_2020_3011946
crossref_primary_10_3390_sym14112271
crossref_primary_10_1007_s40815_023_01672_1
Cites_doi 10.1016/j.ejor.2017.05.022
10.1007/s00500-009-0432-2
10.1016/j.knosys.2015.06.020
10.1109/TFUZZ.2006.890678
10.1016/j.fss.2011.06.003
10.1109/TFUZZ.2013.2272585
10.1109/TFUZZ.2008.2008028
10.1016/j.fss.2010.11.007
10.1016/S0377-2217(03)00418-1
10.1016/j.inffus.2013.04.002
10.1002/int.20494
10.1016/j.asoc.2016.01.035
10.1057/jors.2013.135
10.1016/j.eswa.2016.08.064
10.1016/j.knosys.2014.12.034
10.1016/0165-0114(84)90032-0
10.1016/j.cie.2009.05.007
10.1109/TFUZZ.2014.2302495
10.1007/978-3-319-12502-2
10.1016/0165-0114(78)90001-5
10.1016/j.ijar.2017.12.001
10.1016/j.knosys.2012.03.009
10.1007/s10700-014-9205-1
10.1016/S0165-0114(96)00339-9
10.1016/S1874-8651(08)60069-1
10.1109/TFUZZ.2015.2426315
10.1016/j.ejor.2006.11.011
10.1016/j.ins.2015.07.039
10.1016/j.fss.2004.11.002
10.1016/j.ins.2018.06.006
10.1109/TFUZZ.2017.2788881
10.1007/978-3-642-02187-9_2
10.1016/j.ins.2018.10.044
10.1109/TFUZZ.2016.2646749
10.1109/TFUZZ.2014.2348013
10.1080/03081070600913726
10.1109/TFUZZ.2017.2701324
10.1007/s10700-012-9118-9
10.1109/TFUZZ.2018.2852307
10.1016/j.knosys.2014.07.024
10.1016/j.ins.2017.08.082
10.1016/S0165-0114(86)80034-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2019.2941174
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 2569
ExternalDocumentID 10_1109_TFUZZ_2019_2941174
8834798
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY19G010004
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 71671160
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-3aa59e7ecfbe1f83eca951eec451c6aab2d0f12edb6545b92f96191560c07c7e3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Mon Jun 30 03:47:53 EDT 2025
Tue Jul 01 01:55:29 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Wed Aug 27 02:31:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3aa59e7ecfbe1f83eca951eec451c6aab2d0f12edb6545b92f96191560c07c7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5778-5855
PQID 2449314253
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_2449314253
crossref_citationtrail_10_1109_TFUZZ_2019_2941174
ieee_primary_8834798
crossref_primary_10_1109_TFUZZ_2019_2941174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
xu (ref40) 2007; 15
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
saaty (ref1) 1980
ref5
References_xml – ident: ref19
  doi: 10.1016/j.ejor.2017.05.022
– ident: ref32
  doi: 10.1007/s00500-009-0432-2
– ident: ref15
  doi: 10.1016/j.knosys.2015.06.020
– volume: 15
  start-page: 1179
  year: 2007
  ident: ref40
  article-title: Intuitionistic fuzzy aggregation operators
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2006.890678
– ident: ref6
  doi: 10.1016/j.fss.2011.06.003
– ident: ref13
  doi: 10.1109/TFUZZ.2013.2272585
– ident: ref23
  doi: 10.1109/TFUZZ.2008.2008028
– ident: ref5
  doi: 10.1016/j.fss.2010.11.007
– ident: ref43
  doi: 10.1016/S0377-2217(03)00418-1
– ident: ref7
  doi: 10.1016/j.inffus.2013.04.002
– ident: ref26
  doi: 10.1002/int.20494
– ident: ref38
  doi: 10.1016/j.asoc.2016.01.035
– ident: ref28
  doi: 10.1057/jors.2013.135
– ident: ref9
  doi: 10.1016/j.eswa.2016.08.064
– ident: ref11
  doi: 10.1016/j.knosys.2014.12.034
– ident: ref22
  doi: 10.1016/0165-0114(84)90032-0
– ident: ref25
  doi: 10.1016/j.cie.2009.05.007
– ident: ref30
  doi: 10.1109/TFUZZ.2014.2302495
– ident: ref17
  doi: 10.1007/978-3-319-12502-2
– ident: ref4
  doi: 10.1016/0165-0114(78)90001-5
– ident: ref29
  doi: 10.1016/j.ijar.2017.12.001
– ident: ref36
  doi: 10.1016/j.knosys.2012.03.009
– ident: ref27
  doi: 10.1007/s10700-014-9205-1
– ident: ref3
  doi: 10.1016/S0165-0114(96)00339-9
– ident: ref24
  doi: 10.1016/S1874-8651(08)60069-1
– ident: ref8
  doi: 10.1109/TFUZZ.2015.2426315
– ident: ref42
  doi: 10.1016/j.ejor.2006.11.011
– ident: ref18
  doi: 10.1016/j.ins.2015.07.039
– ident: ref20
  doi: 10.1016/j.fss.2004.11.002
– ident: ref33
  doi: 10.1016/j.ins.2018.06.006
– ident: ref12
  doi: 10.1109/TFUZZ.2017.2788881
– ident: ref39
  doi: 10.1007/978-3-642-02187-9_2
– ident: ref35
  doi: 10.1016/j.ins.2018.10.044
– ident: ref31
  doi: 10.1109/TFUZZ.2016.2646749
– ident: ref14
  doi: 10.1109/TFUZZ.2014.2348013
– ident: ref2
  doi: 10.1080/03081070600913726
– ident: ref16
  doi: 10.1109/TFUZZ.2017.2701324
– year: 1980
  ident: ref1
  publication-title: The Analytic Hierarchy Process
– ident: ref41
  doi: 10.1007/s10700-012-9118-9
– ident: ref37
  doi: 10.1109/TFUZZ.2018.2852307
– ident: ref21
  doi: 10.1016/j.knosys.2014.07.024
– ident: ref34
  doi: 10.1016/j.ins.2017.08.082
– ident: ref10
  doi: 10.1016/S0165-0114(86)80034-3
SSID ssj0014518
Score 2.4577324
Snippet Intuitionistic fuzzy preference relations (IFPRs) have been exposed to be an appropriate and effective preference representation framework in an analytic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2555
SubjectTerms Acceptability
Analytic hierarchy process
Analytical models
Computational modeling
Consistency
Exact solutions
Functional equations
Fuzzy sets
Indexes
intuitionistic fuzzy analytic hierarchy process
intuitionistic fuzzy preference relation
Lagrange multiplier
Least squares
Mathematical analysis
Mathematical model
multiplicative consistency
representable uninorm
Title A Representable Uninorm-Based Intuitionistic Fuzzy Analytic Hierarchy Process
URI https://ieeexplore.ieee.org/document/8834798
https://www.proquest.com/docview/2449314253
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sJz34FqtVcvCm2-5mN7ubYxVLFepBLJReljxmUSxVdHuwv94k-8AX4m0DCYSdJPNN8n0zAKc0zY0f8oUXMKG9iJllLHXKPJ5GoVaK6Ti3VwOj23g4jm4mbLIC540WBhEd-Qy79tO95etntbBXZb00tbrHtAUtE7iVWq3mxSBiQSl7i0MvTvy4Fsj4vHc_GE-nlsXFu5RHQZBEX5yQq6ry4yh2_mWwCaN6ZiWt5Km7KGRXLb8lbfzv1LdgowKapF-ujG1YwfkObNZFHEi1p3dg_VNGwl0Y9cmd48ZaSrmcITGYdG5grXdhvJ0m18ZDOY6XS-9MBovl8p24vCa2OXy0amb18E4q-cEejAdX95dDr6q44CnKWeGFQjCOCapcYpCnISphEBiiMn9XxUJIqv08oKhlbJCX5DTnJgCzYmzlJyrBcB9W589zPACiOKaCydzmhoxoQiUTBoyELI8k15jwNgS1CTJVpSO3VTFmmQtLfJ45s2XWbFlltjacNWNeymQcf_betXZoelYmaEOntnRW7de3zIAcHgbm_AoPfx91BGvURtqOxteB1eJ1gccGjhTyxK3DD85a3Gk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcgAOFFoqtrTFBzihbBMnTuIDh1K62qXdHtCuVPUS_DFRK6otaneFdn8Lf4X_xthxVnxUvVXilih2pHgmnmf7vRmAN7ysKQ7FKkqEslEmyI21LUUkyyy1xgib125rYHiS98fZp1NxugI_lloYRPTkM-y6S3-Wb6_MzG2V7ZWl0z2WgUJ5hPPvtEC7eT_4SNZ8y3nvcHTQj0INgchwKaZRqpSQWKCpNSZ1maJRhCkQTSYSkyuluY3rhKPVOWEJLXktaUnh5MUmLkyBKb33ATykZ4I36rDlGQW9oRHa5WmUF3HeSnJiuTfqjc_OHG9MdrnMkqTI_gh7vo7LP5O_j2i9NfjZjkVDZPnanU111yz-ShP5vw7WM3gaoDTbb3z_OazgZB3W2jIVLMxa6_Dkt5yLGzDcZ589-9eR5vUlMkLdEwLu0QeK55YNKAZ7FptPYM16s8ViznzmFnfbv3B6bXM-Z0Fg8QLG9_KJm7A6uZrgS2BGYqmErl32y4wXXAtFcCsVdaalxUJ2IGlNXpmQcN3V_bis_MIrlpV3k8q5SRXcpAPvln2-NelG7my94ey-bBlM3oHt1rOqMCPdVATjZJrQDJ1u3d7rNTzqj4bH1fHg5OgVPOZuX8GTFrdhdXo9wx0CX1O96_8BBl_u249-AYudPHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Representable+Uninorm-Based+Intuitionistic+Fuzzy+Analytic+Hierarchy+Process&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhou-Jing%2C+Wang&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=28&rft.issue=10&rft.spage=2555&rft_id=info:doi/10.1109%2FTFUZZ.2019.2941174&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon