A Representable Uninorm-Based Intuitionistic Fuzzy Analytic Hierarchy Process
Intuitionistic fuzzy preference relations (IFPRs) have been exposed to be an appropriate and effective preference representation framework in an analytic hierarchy process (AHP) with vagueness and hesitancy. This article focuses mainly on obtaining an intuitionistic fuzzy extension of Tanino's...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 28; no. 10; pp. 2555 - 2569 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intuitionistic fuzzy preference relations (IFPRs) have been exposed to be an appropriate and effective preference representation framework in an analytic hierarchy process (AHP) with vagueness and hesitancy. This article focuses mainly on obtaining an intuitionistic fuzzy extension of Tanino's multiplicative consistency and deriving an analytic solution of normalized intuitionistic fuzzy weights (NIFWs) from IFPRs as well as checking acceptability of IFPRs. This article first introduces two indices to, respectively, measure hesitancy of intuitionistic fuzzy judgments and hesitancy of IFPRs, and illustrates that any existing multiplicative consistency model of IFPRs is not an actual intuitionistic fuzzy extension of Tanino's multiplicative consistency. A conjunctive-representable cross-ratio uninorm-based functional equation is then developed to define multiplicative consistency of IFPRs and a consistency index is devised to measure the inconsistency degree of an IFPR. This article establishes a representable uninorm-based transformation method for consistent IFPRs and intuitionistic fuzzy weights, and proposes a new framework of NIFWs. Based on the transformation method and the row hesitancy distribution of an IFPR, a logarithmic least square model is constructed and its analytic solution is found by applying the Lagrange multiplier method to its equivalent least square model. This article puts forward a novel acceptability checking method by taking both acceptable consistency and acceptable hesitancy into consideration. A representable uninorm-based fusion method is presented to aggregate local NIFWs into global intuitionistic fuzzy weights and a representable uninorm-based likelihood formula is given and used to compare and rank intuitionistic fuzzy weights in the proposed intuitionistic fuzzy AHP. Six numerical examples including an outstanding Ph.D. student selection problem are provided to illustrate and validate the obtained results. |
---|---|
AbstractList | Intuitionistic fuzzy preference relations (IFPRs) have been exposed to be an appropriate and effective preference representation framework in an analytic hierarchy process (AHP) with vagueness and hesitancy. This article focuses mainly on obtaining an intuitionistic fuzzy extension of Tanino's multiplicative consistency and deriving an analytic solution of normalized intuitionistic fuzzy weights (NIFWs) from IFPRs as well as checking acceptability of IFPRs. This article first introduces two indices to, respectively, measure hesitancy of intuitionistic fuzzy judgments and hesitancy of IFPRs, and illustrates that any existing multiplicative consistency model of IFPRs is not an actual intuitionistic fuzzy extension of Tanino's multiplicative consistency. A conjunctive-representable cross-ratio uninorm-based functional equation is then developed to define multiplicative consistency of IFPRs and a consistency index is devised to measure the inconsistency degree of an IFPR. This article establishes a representable uninorm-based transformation method for consistent IFPRs and intuitionistic fuzzy weights, and proposes a new framework of NIFWs. Based on the transformation method and the row hesitancy distribution of an IFPR, a logarithmic least square model is constructed and its analytic solution is found by applying the Lagrange multiplier method to its equivalent least square model. This article puts forward a novel acceptability checking method by taking both acceptable consistency and acceptable hesitancy into consideration. A representable uninorm-based fusion method is presented to aggregate local NIFWs into global intuitionistic fuzzy weights and a representable uninorm-based likelihood formula is given and used to compare and rank intuitionistic fuzzy weights in the proposed intuitionistic fuzzy AHP. Six numerical examples including an outstanding Ph.D. student selection problem are provided to illustrate and validate the obtained results. |
Author | Wang, Zhou-Jing |
Author_xml | – sequence: 1 givenname: Zhou-Jing orcidid: 0000-0001-5778-5855 surname: Wang fullname: Wang, Zhou-Jing email: wangzj@xmu.edu.cn organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China |
BookMark | eNp9kE9PwkAQxTcGExH9Anpp4rm4f9vuEYkICUZj4MJls12mcUlpcXd7KJ_eVogHD57mTfJ-kzfvGg2qugKE7ggeE4Ll42q23mzGFBM5ppITkvILNCSdijFmfNBpnLA4SXFyha6932FMuCDZEL1Oog84OPBQBZ2XEK0rW9VuHz9pD9toUYXGBltX1gdrollzPLbRpNJl269zC04789lG76424P0Nuix06eH2PEdoPXteTefx8u1lMZ0sY0OlCDHTWkhIwRQ5kCJjYLQUBMB0mUyidU63uCAUtnkiuMglLWRCJBEJNjg1KbARejjdPbj6qwEf1K5uXBfLK8q5ZIRTwTpXdnIZV3vvoFDGBt1_E5y2pSJY9eWpn_JUX546l9eh9A96cHavXfs_dH-CLAD8AlnGeCoz9g2nN35o |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1007_s10489_021_03081_z crossref_primary_10_3390_su15076255 crossref_primary_10_1080_01605682_2022_2155591 crossref_primary_10_1016_j_ins_2022_10_031 crossref_primary_10_1007_s10489_024_06096_4 crossref_primary_10_1016_j_eswa_2023_121215 crossref_primary_10_32604_cmes_2022_020598 crossref_primary_10_1016_j_ins_2024_121573 crossref_primary_10_1021_acsomega_1c06700 crossref_primary_10_1016_j_eswa_2023_121554 crossref_primary_10_1016_j_ijepes_2023_109387 crossref_primary_10_1155_2022_6772467 crossref_primary_10_1007_s00500_021_06121_5 crossref_primary_10_1016_j_robot_2022_104122 crossref_primary_10_1016_j_fss_2023_108674 crossref_primary_10_3390_ijerph17176259 crossref_primary_10_1139_tcsme_2020_0190 crossref_primary_10_1016_j_cie_2021_107215 crossref_primary_10_3233_JIFS_234906 crossref_primary_10_1007_s10479_025_06530_x crossref_primary_10_1016_j_eswa_2022_118832 crossref_primary_10_3390_app142411904 crossref_primary_10_1016_j_ins_2019_12_055 crossref_primary_10_3390_sym14112255 crossref_primary_10_1109_ACCESS_2020_3011946 crossref_primary_10_3390_sym14112271 crossref_primary_10_1007_s40815_023_01672_1 |
Cites_doi | 10.1016/j.ejor.2017.05.022 10.1007/s00500-009-0432-2 10.1016/j.knosys.2015.06.020 10.1109/TFUZZ.2006.890678 10.1016/j.fss.2011.06.003 10.1109/TFUZZ.2013.2272585 10.1109/TFUZZ.2008.2008028 10.1016/j.fss.2010.11.007 10.1016/S0377-2217(03)00418-1 10.1016/j.inffus.2013.04.002 10.1002/int.20494 10.1016/j.asoc.2016.01.035 10.1057/jors.2013.135 10.1016/j.eswa.2016.08.064 10.1016/j.knosys.2014.12.034 10.1016/0165-0114(84)90032-0 10.1016/j.cie.2009.05.007 10.1109/TFUZZ.2014.2302495 10.1007/978-3-319-12502-2 10.1016/0165-0114(78)90001-5 10.1016/j.ijar.2017.12.001 10.1016/j.knosys.2012.03.009 10.1007/s10700-014-9205-1 10.1016/S0165-0114(96)00339-9 10.1016/S1874-8651(08)60069-1 10.1109/TFUZZ.2015.2426315 10.1016/j.ejor.2006.11.011 10.1016/j.ins.2015.07.039 10.1016/j.fss.2004.11.002 10.1016/j.ins.2018.06.006 10.1109/TFUZZ.2017.2788881 10.1007/978-3-642-02187-9_2 10.1016/j.ins.2018.10.044 10.1109/TFUZZ.2016.2646749 10.1109/TFUZZ.2014.2348013 10.1080/03081070600913726 10.1109/TFUZZ.2017.2701324 10.1007/s10700-012-9118-9 10.1109/TFUZZ.2018.2852307 10.1016/j.knosys.2014.07.024 10.1016/j.ins.2017.08.082 10.1016/S0165-0114(86)80034-3 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2019.2941174 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 2569 |
ExternalDocumentID | 10_1109_TFUZZ_2019_2941174 8834798 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LY19G010004 funderid: 10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 71671160 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-3aa59e7ecfbe1f83eca951eec451c6aab2d0f12edb6545b92f96191560c07c7e3 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Mon Jun 30 03:47:53 EDT 2025 Tue Jul 01 01:55:29 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Wed Aug 27 02:31:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-3aa59e7ecfbe1f83eca951eec451c6aab2d0f12edb6545b92f96191560c07c7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5778-5855 |
PQID | 2449314253 |
PQPubID | 85428 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2449314253 crossref_citationtrail_10_1109_TFUZZ_2019_2941174 ieee_primary_8834798 crossref_primary_10_1109_TFUZZ_2019_2941174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref39 ref17 ref38 ref16 ref19 ref18 xu (ref40) 2007; 15 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 saaty (ref1) 1980 ref5 |
References_xml | – ident: ref19 doi: 10.1016/j.ejor.2017.05.022 – ident: ref32 doi: 10.1007/s00500-009-0432-2 – ident: ref15 doi: 10.1016/j.knosys.2015.06.020 – volume: 15 start-page: 1179 year: 2007 ident: ref40 article-title: Intuitionistic fuzzy aggregation operators publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2006.890678 – ident: ref6 doi: 10.1016/j.fss.2011.06.003 – ident: ref13 doi: 10.1109/TFUZZ.2013.2272585 – ident: ref23 doi: 10.1109/TFUZZ.2008.2008028 – ident: ref5 doi: 10.1016/j.fss.2010.11.007 – ident: ref43 doi: 10.1016/S0377-2217(03)00418-1 – ident: ref7 doi: 10.1016/j.inffus.2013.04.002 – ident: ref26 doi: 10.1002/int.20494 – ident: ref38 doi: 10.1016/j.asoc.2016.01.035 – ident: ref28 doi: 10.1057/jors.2013.135 – ident: ref9 doi: 10.1016/j.eswa.2016.08.064 – ident: ref11 doi: 10.1016/j.knosys.2014.12.034 – ident: ref22 doi: 10.1016/0165-0114(84)90032-0 – ident: ref25 doi: 10.1016/j.cie.2009.05.007 – ident: ref30 doi: 10.1109/TFUZZ.2014.2302495 – ident: ref17 doi: 10.1007/978-3-319-12502-2 – ident: ref4 doi: 10.1016/0165-0114(78)90001-5 – ident: ref29 doi: 10.1016/j.ijar.2017.12.001 – ident: ref36 doi: 10.1016/j.knosys.2012.03.009 – ident: ref27 doi: 10.1007/s10700-014-9205-1 – ident: ref3 doi: 10.1016/S0165-0114(96)00339-9 – ident: ref24 doi: 10.1016/S1874-8651(08)60069-1 – ident: ref8 doi: 10.1109/TFUZZ.2015.2426315 – ident: ref42 doi: 10.1016/j.ejor.2006.11.011 – ident: ref18 doi: 10.1016/j.ins.2015.07.039 – ident: ref20 doi: 10.1016/j.fss.2004.11.002 – ident: ref33 doi: 10.1016/j.ins.2018.06.006 – ident: ref12 doi: 10.1109/TFUZZ.2017.2788881 – ident: ref39 doi: 10.1007/978-3-642-02187-9_2 – ident: ref35 doi: 10.1016/j.ins.2018.10.044 – ident: ref31 doi: 10.1109/TFUZZ.2016.2646749 – ident: ref14 doi: 10.1109/TFUZZ.2014.2348013 – ident: ref2 doi: 10.1080/03081070600913726 – ident: ref16 doi: 10.1109/TFUZZ.2017.2701324 – year: 1980 ident: ref1 publication-title: The Analytic Hierarchy Process – ident: ref41 doi: 10.1007/s10700-012-9118-9 – ident: ref37 doi: 10.1109/TFUZZ.2018.2852307 – ident: ref21 doi: 10.1016/j.knosys.2014.07.024 – ident: ref34 doi: 10.1016/j.ins.2017.08.082 – ident: ref10 doi: 10.1016/S0165-0114(86)80034-3 |
SSID | ssj0014518 |
Score | 2.4577324 |
Snippet | Intuitionistic fuzzy preference relations (IFPRs) have been exposed to be an appropriate and effective preference representation framework in an analytic... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2555 |
SubjectTerms | Acceptability Analytic hierarchy process Analytical models Computational modeling Consistency Exact solutions Functional equations Fuzzy sets Indexes intuitionistic fuzzy analytic hierarchy process intuitionistic fuzzy preference relation Lagrange multiplier Least squares Mathematical analysis Mathematical model multiplicative consistency representable uninorm |
Title | A Representable Uninorm-Based Intuitionistic Fuzzy Analytic Hierarchy Process |
URI | https://ieeexplore.ieee.org/document/8834798 https://www.proquest.com/docview/2449314253 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sJz34FqtVcvCm2-5mN7ubYxVLFepBLJReljxmUSxVdHuwv94k-8AX4m0DCYSdJPNN8n0zAKc0zY0f8oUXMKG9iJllLHXKPJ5GoVaK6Ti3VwOj23g4jm4mbLIC540WBhEd-Qy79tO95etntbBXZb00tbrHtAUtE7iVWq3mxSBiQSl7i0MvTvy4Fsj4vHc_GE-nlsXFu5RHQZBEX5yQq6ry4yh2_mWwCaN6ZiWt5Km7KGRXLb8lbfzv1LdgowKapF-ujG1YwfkObNZFHEi1p3dg_VNGwl0Y9cmd48ZaSrmcITGYdG5grXdhvJ0m18ZDOY6XS-9MBovl8p24vCa2OXy0amb18E4q-cEejAdX95dDr6q44CnKWeGFQjCOCapcYpCnISphEBiiMn9XxUJIqv08oKhlbJCX5DTnJgCzYmzlJyrBcB9W589zPACiOKaCydzmhoxoQiUTBoyELI8k15jwNgS1CTJVpSO3VTFmmQtLfJ45s2XWbFlltjacNWNeymQcf_betXZoelYmaEOntnRW7de3zIAcHgbm_AoPfx91BGvURtqOxteB1eJ1gccGjhTyxK3DD85a3Gk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcgAOFFoqtrTFBzihbBMnTuIDh1K62qXdHtCuVPUS_DFRK6otaneFdn8Lf4X_xthxVnxUvVXilih2pHgmnmf7vRmAN7ysKQ7FKkqEslEmyI21LUUkyyy1xgib125rYHiS98fZp1NxugI_lloYRPTkM-y6S3-Wb6_MzG2V7ZWl0z2WgUJ5hPPvtEC7eT_4SNZ8y3nvcHTQj0INgchwKaZRqpSQWKCpNSZ1maJRhCkQTSYSkyuluY3rhKPVOWEJLXktaUnh5MUmLkyBKb33ATykZ4I36rDlGQW9oRHa5WmUF3HeSnJiuTfqjc_OHG9MdrnMkqTI_gh7vo7LP5O_j2i9NfjZjkVDZPnanU111yz-ShP5vw7WM3gaoDTbb3z_OazgZB3W2jIVLMxa6_Dkt5yLGzDcZ589-9eR5vUlMkLdEwLu0QeK55YNKAZ7FptPYM16s8ViznzmFnfbv3B6bXM-Z0Fg8QLG9_KJm7A6uZrgS2BGYqmErl32y4wXXAtFcCsVdaalxUJ2IGlNXpmQcN3V_bis_MIrlpV3k8q5SRXcpAPvln2-NelG7my94ey-bBlM3oHt1rOqMCPdVATjZJrQDJ1u3d7rNTzqj4bH1fHg5OgVPOZuX8GTFrdhdXo9wx0CX1O96_8BBl_u249-AYudPHM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Representable+Uninorm-Based+Intuitionistic+Fuzzy+Analytic+Hierarchy+Process&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhou-Jing%2C+Wang&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=28&rft.issue=10&rft.spage=2555&rft_id=info:doi/10.1109%2FTFUZZ.2019.2941174&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |