Learning to Communicate and Energize: Modulation, Coding, and Multiple Access Designs for Wireless Information-Power Transmission
The explosion of the number of low-power devices in the next decades calls for a re-thinking of wireless network design, namely, unifying wireless transmission of information and power so as to make the best use of the RF spectrum, radiation, and infrastructure for the dual purpose of communicating...
Saved in:
Published in | IEEE transactions on communications Vol. 68; no. 11; pp. 6822 - 6839 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0090-6778 1558-0857 |
DOI | 10.1109/TCOMM.2020.3017020 |
Cover
Abstract | The explosion of the number of low-power devices in the next decades calls for a re-thinking of wireless network design, namely, unifying wireless transmission of information and power so as to make the best use of the RF spectrum, radiation, and infrastructure for the dual purpose of communicating and energizing. This article provides a novel learning-based approach towards such wireless network design. To that end, a parametric model of a practical energy harvester, accounting for various sources of nonlinearities, is proposed using a nonlinear regression algorithm applied over collected real data. Relying on the proposed model, the learning problem of modulation design for Simultaneous Wireless Information-Power Transmission (SWIPT) over a point-to-point link is studied. Joint optimization of the transmitter and the receiver is implemented using Neural Network (NN)-based autoencoders. The results reveal that by increasing the receiver power demand, the baseband transmit modulation constellation converges to an On-Off keying signalling. Utilizing the observations obtained via learning, an algorithmic SWIPT modulation design is proposed. It is observed via numerical results that the performance loss of the proposed modulations are negligible compared to the ones obtained from learning. Extension of the studied problem to learning modulation design for multi-user SWIPT scenarios and coded modulation design for point-to-point SWIPT are considered. The major conclusion of this work is to utilize learning-based results to design non learning-based algorithms, which perform as well. In particular, inspired by the results obtained via learning, an algorithmic approach for coded modulation design is proposed, which performs very close to its learning counterparts, and is significantly superior due to its high real-time adaptability to new system design parameters. |
---|---|
AbstractList | The explosion of the number of low-power devices in the next decades calls for a re-thinking of wireless network design, namely, unifying wireless transmission of information and power so as to make the best use of the RF spectrum, radiation, and infrastructure for the dual purpose of communicating and energizing. This article provides a novel learning-based approach towards such wireless network design. To that end, a parametric model of a practical energy harvester, accounting for various sources of nonlinearities, is proposed using a nonlinear regression algorithm applied over collected real data. Relying on the proposed model, the learning problem of modulation design for Simultaneous Wireless Information-Power Transmission (SWIPT) over a point-to-point link is studied. Joint optimization of the transmitter and the receiver is implemented using Neural Network (NN)-based autoencoders. The results reveal that by increasing the receiver power demand, the baseband transmit modulation constellation converges to an On-Off keying signalling. Utilizing the observations obtained via learning, an algorithmic SWIPT modulation design is proposed. It is observed via numerical results that the performance loss of the proposed modulations are negligible compared to the ones obtained from learning. Extension of the studied problem to learning modulation design for multi-user SWIPT scenarios and coded modulation design for point-to-point SWIPT are considered. The major conclusion of this work is to utilize learning-based results to design non learning-based algorithms, which perform as well. In particular, inspired by the results obtained via learning, an algorithmic approach for coded modulation design is proposed, which performs very close to its learning counterparts, and is significantly superior due to its high real-time adaptability to new system design parameters. |
Author | Varasteh, Morteza Hoydis, Jakob Clerckx, Bruno |
Author_xml | – sequence: 1 givenname: Morteza orcidid: 0000-0002-1163-5074 surname: Varasteh fullname: Varasteh, Morteza email: m.varasteh@essex.ac.uk organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K – sequence: 2 givenname: Jakob orcidid: 0000-0002-0438-967X surname: Hoydis fullname: Hoydis, Jakob email: jakob.hoydis@nokia-bell-labs.com organization: Nokia Bell Labs, Nozay, France – sequence: 3 givenname: Bruno orcidid: 0000-0001-5949-6459 surname: Clerckx fullname: Clerckx, Bruno email: b.clerckx@imperial.ac.uk organization: EEE Department, Imperial College London, London, U.K |
BookMark | eNp9kE1v2zAMhoWiA5qm_QPrRcCudUpJtmX3VmTZFiBBdkixo0HbdKDAljLJxrDd9s_nfGCHHnoiSDwPCb637No6S4x9FDATAvKn7XyzXs8kSJgpEHqsV2wikiSLIEv0NZsA5BClWmc37DaEPQDEoNSE_V0RemvsjveOz13XDdZU2BNHW_OFJb8zf-iZr109tNgbZx9Hqh75xxOxHtreHFriL1VFIfDPFMzOBt44z38YT-1xuLRj253s6Lv7RZ5vPdrQmRDG0R370GAb6P5Sp-z1y2I7_xatNl-X85dVVMk86SOFKVIFKLFsUCGgkGWZadRATSmbWINWgKnKVarKSiS1gJh0Uje6qVUspJqyT-e9B-9-DhT6Yu8Gb8eThYxTKWWcp8lIyTNVeReCp6Y4eNOh_10IKI5RF6eoi2PUxSXqUcreSJXpT__2Hk37vvpwVg0R_b-VizTXAOofC3iQAQ |
CODEN | IECMBT |
CitedBy_id | crossref_primary_10_1109_TCOMM_2021_3129931 crossref_primary_10_1109_TVT_2023_3262624 crossref_primary_10_1109_ACCESS_2024_3519522 crossref_primary_10_1109_JPROC_2021_3120888 crossref_primary_10_1109_JMW_2022_3223254 crossref_primary_10_1007_s12559_024_10383_0 crossref_primary_10_1109_OJCOMS_2024_3472094 crossref_primary_10_1109_TCOMM_2024_3413672 crossref_primary_10_1109_MMM_2021_3109554 crossref_primary_10_1109_TVT_2024_3471668 crossref_primary_10_1109_TCOMM_2023_3265421 crossref_primary_10_1109_JSTSP_2021_3098478 crossref_primary_10_1109_TWC_2023_3269815 crossref_primary_10_1016_j_comcom_2021_05_026 crossref_primary_10_1109_JPROC_2021_3132369 |
Cites_doi | 10.1017/CBO9781139030687 10.1109/TSP.2016.2601284 10.1109/LAWP.2017.2706944 10.1109/ICC.2018.8422269 10.1109/SPAWC.2018.8445920 10.1109/ICCW.2018.8403666 10.1109/SPAWC.2019.8815474 10.1109/MMM.2014.2309499 10.1109/TCCN.2017.2758370 10.1109/JSTSP.2017.2784180 10.1109/JSAC.2018.2872615 10.1109/LCOMM.2015.2478460 10.1109/JSTSP.2017.2788405 10.1109/ICASSP.2019.8682485 10.1109/SPAWC.2017.8227719 10.1109/ITW.2017.8278010 10.1109/MMM.2012.2234631 10.1109/TSP.2017.2775593 10.1109/TWC.2013.031813.120224 10.1109/LWC.2017.2757490 10.1109/ISSPIT.2016.7886039 10.1109/ISIT.2008.4595260 10.1109/TVT.2010.2049594 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCOMM.2020.3017020 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0857 |
EndPage | 6839 |
ExternalDocumentID | 10_1109_TCOMM_2020_3017020 9169700 |
Genre | orig-research |
GrantInformation_xml | – fundername: EPSRC of the UK grantid: EP/P003885/1 funderid: 10.13039/501100000266 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c295t-3a6aec0a2abfa3a0a12bb87a70efb2f470730a639363bc15d104e75df7fd34123 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Mon Jun 30 10:20:02 EDT 2025 Tue Jul 01 02:51:33 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Wed Aug 27 02:29:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-3a6aec0a2abfa3a0a12bb87a70efb2f470730a639363bc15d104e75df7fd34123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5949-6459 0000-0002-0438-967X 0000-0002-1163-5074 |
PQID | 2462224965 |
PQPubID | 85472 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2462224965 crossref_primary_10_1109_TCOMM_2020_3017020 ieee_primary_9169700 crossref_citationtrail_10_1109_TCOMM_2020_3017020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 varasteh (ref27) 2020 ref30 ref11 ref10 ref2 ref1 ref16 ref19 ref18 ait aoudia (ref25) 2018 valenta (ref21) 2014; 15 chen (ref26) 2018 szegedy (ref28) 2014 kim (ref23) 2019 ref24 ref20 ref22 varasteh (ref12) 2017 ref8 ref7 ref9 ref4 ref3 ref6 ref5 o’shea (ref17) 2017 qi (ref29) 2010; 59 |
References_xml | – ident: ref30 doi: 10.1017/CBO9781139030687 – ident: ref6 doi: 10.1109/TSP.2016.2601284 – ident: ref8 doi: 10.1109/LAWP.2017.2706944 – ident: ref11 doi: 10.1109/ICC.2018.8422269 – ident: ref18 doi: 10.1109/SPAWC.2018.8445920 – year: 2017 ident: ref17 article-title: Deep learning based MIMO communications publication-title: arXiv 1707 07980 – ident: ref16 doi: 10.1109/ICCW.2018.8403666 – ident: ref2 doi: 10.1109/SPAWC.2019.8815474 – volume: 15 start-page: 108 year: 2014 ident: ref21 article-title: Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems publication-title: IEEE Microw Mag doi: 10.1109/MMM.2014.2309499 – ident: ref13 doi: 10.1109/TCCN.2017.2758370 – ident: ref24 doi: 10.1109/JSTSP.2017.2784180 – ident: ref5 doi: 10.1109/JSAC.2018.2872615 – ident: ref22 doi: 10.1109/LCOMM.2015.2478460 – ident: ref15 doi: 10.1109/JSTSP.2017.2788405 – ident: ref1 doi: 10.1109/ICASSP.2019.8682485 – ident: ref20 doi: 10.1109/SPAWC.2017.8227719 – year: 2018 ident: ref26 article-title: Data-rate driven transmission strategy for deep learning based communication systems publication-title: arXiv 1812 08869 – ident: ref10 doi: 10.1109/ITW.2017.8278010 – year: 2014 ident: ref28 article-title: Going deeper with convolutions publication-title: arXiv 1409 4842 – ident: ref7 doi: 10.1109/MMM.2012.2234631 – year: 2017 ident: ref12 article-title: On capacity-achieving distributions for complex AWGN channels under nonlinear power constraints and their applications to SWIPT publication-title: arXiv 1712 01226 – ident: ref9 doi: 10.1109/TSP.2017.2775593 – ident: ref4 doi: 10.1109/TWC.2013.031813.120224 – year: 2020 ident: ref27 publication-title: Codes of the Results – year: 2018 ident: ref25 article-title: Model-free training of End-to-end communication systems publication-title: arXiv 1812 05929 – ident: ref19 doi: 10.1109/LWC.2017.2757490 – ident: ref14 doi: 10.1109/ISSPIT.2016.7886039 – ident: ref3 doi: 10.1109/ISIT.2008.4595260 – volume: 59 start-page: 2921 year: 2010 ident: ref29 article-title: Analysis and compensation of power amplifier nonlinearity in MIMO transmit diversity systems publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2010.2049594 – year: 2019 ident: ref23 article-title: Signal and system design for wireless power transfer: Prototype, experiment and validation publication-title: arXiv 1901 01156 |
SSID | ssj0004033 |
Score | 2.4250267 |
Snippet | The explosion of the number of low-power devices in the next decades calls for a re-thinking of wireless network design, namely, unifying wireless transmission... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6822 |
SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Additive White Gaussian Noise (AWGN) <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Simultaneous Wireless Information-Power Transmission (SWIPT) Algorithms Baseband Communication Constellations Data models Design parameters Electronic devices Energy harvesting Machine learning Machine Learning (ML) decoding Machine learning algorithms Modulation Neural networks noisy channel nonlinear energy harvester On-Off Keying Optimization Power management power transfer Radio frequency Receivers SNR symbol error rate (SER) Systems design Wireless communication Wireless networks Wireless power transmission |
Title | Learning to Communicate and Energize: Modulation, Coding, and Multiple Access Designs for Wireless Information-Power Transmission |
URI | https://ieeexplore.ieee.org/document/9169700 https://www.proquest.com/docview/2462224965 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9xADB0BJzjQlgWxlKI59NbNkkwymd3eEAWhSoEeFolb5PmqKlCCIHvh1n9eezJZEK1Qc4oiOxrJztie-D0z9tnbTNhUumQGuUgKZXyCQdAkhfXSlTOnSx8aZC_Li-vi-428WWOTFRbGOReaz9yUbsO_fNuaJR2VHWMqM1cpFujr6GY9VusZA5nmkXGS2tnVbADIpPPjxelVVWEpKLBCJboYmu39IgiFqSp_bcUhvpy_Y9Wwsr6t5Ha67PTUPL0ibfzfpb9n2zHR5Ce9Z3xga67ZYVsv6AdH7HckV_3Ju5Y_I0Uch8byMwIF_npyX3nV2jjja4JSFOsmQaKKvYj8JAxd5N9CM8gjxzSYU1PtHT2McCfSTn7QRDYeoiN6Fx3T7bLr87PF6UUSRzIkRsxll-RQgjMpCNAeckghE1rPFKjUeS18oWjHAMx68jLXJpMWqz2npPXKW4yXIt9jG03buH3G0SUASqk9XpjFaACbGQEglbOlz-SYZYONahP5ymlsxl0d6pZ0Xge71mTXOtp1zL6sdO57to43pUdkqJVktNGYHQ6uUMcP-rEWRYmZFJHrH_xb6yPbpHf3MMVDttE9LN0nzFc6fRQc9Q87Jukd |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLaq9gAceBXULQXmwI3NNplkMru9VaXVAk3hsJV6izwvhFrtojZ76Y1_jj2Z3VaAEDlFka2MZGdsT_x9BngXXCFdrnw2xlJmlbYhoyBos8oF5euxN3WIDbJn9fS8-nShLjZguMbCeO9j85kf8W38l-8WdslHZfuUykx0TgX6FsX9SvVorTsUZF4mzkluaNfjFUQmn-zPjr40DRWDkmpUJozh6d73wlCcq_LHZhwjzMkTaFZr6xtLLkfLzozs7W-0jf-7-KfwOKWa4rD3jWew4efP4dE9AsJt-JnoVb-JbiHusCJe4NyJY4YFfr_1B6JZuDTla0hSHO2GUaJJ3YjiMI5dFB9iO8iNoERYcFvtFT9MgCfWzr7yTDYR4yP5Fx_UvYDzk-PZ0TRLQxkyKyeqy0qs0dscJZqAJeZYSGPGGnXug5Gh0rxnIOU9ZV0aWyhH9Z7XygUdHEVMWb6Ezfli7ndAkFMg1soEuiiPMYiusBJRae_qUKgBFCsbtTYxlvPgjKs2Vi75pI12bdmubbLrAN6vdX70fB3_lN5mQ60lk40GsLdyhTZ90jetrGrKpZhef_fvWm_hwXTWnLanH88-v4KH_J4etLgHm9310r-m7KUzb6LT_gKTcuxq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Communicate+and+Energize%3A+Modulation%2C+Coding%2C+and+Multiple+Access+Designs+for+Wireless+Information-Power+Transmission&rft.jtitle=IEEE+transactions+on+communications&rft.au=Varasteh%2C+Morteza&rft.au=Hoydis%2C+Jakob&rft.au=Clerckx%2C+Bruno&rft.date=2020-11-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=68&rft.issue=11&rft.spage=6822&rft.epage=6839&rft_id=info:doi/10.1109%2FTCOMM.2020.3017020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2020_3017020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |