Short-Term Electricity Price Forecasting With Stacked Denoising Autoencoders
A short-term forecasting of the electricity price with data-driven algorithms is studied in this research. A stacked denoising autoencoder (SDA) model, a class of deep neural networks, and its extended version are utilized to forecast the electricity price hourly. Data collected in Nebraska, Arkansa...
Saved in:
Published in | IEEE transactions on power systems Vol. 32; no. 4; pp. 2673 - 2681 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A short-term forecasting of the electricity price with data-driven algorithms is studied in this research. A stacked denoising autoencoder (SDA) model, a class of deep neural networks, and its extended version are utilized to forecast the electricity price hourly. Data collected in Nebraska, Arkansas, Louisiana, Texas, and Indiana hubs in U.S. are utilized. Two types of forecasting, the online hourly forecasting and day-ahead hourly forecasting, are examined. In online forecasting, SDA models are compared with data-driven approaches including the classical neural networks, support vector machine, multivariate adaptive regression splines, and least absolute shrinkage and selection operator. In the day-ahead forecasting, the effectiveness of SDA models is further validated through comparing with industrial results and a recently reported method. Computational results demonstrate that SDA models are capable to accurately forecast electricity prices and the extended SDA model further improves the forecasting performance. |
---|---|
AbstractList | A short-term forecasting of the electricity price with data-driven algorithms is studied in this research. A stacked denoising autoencoder (SDA) model, a class of deep neural networks, and its extended version are utilized to forecast the electricity price hourly. Data collected in Nebraska, Arkansas, Louisiana, Texas, and Indiana hubs in U.S. are utilized. Two types of forecasting, the online hourly forecasting and day-ahead hourly forecasting, are examined. In online forecasting, SDA models are compared with data-driven approaches including the classical neural networks, support vector machine, multivariate adaptive regression splines, and least absolute shrinkage and selection operator. In the day-ahead forecasting, the effectiveness of SDA models is further validated through comparing with industrial results and a recently reported method. Computational results demonstrate that SDA models are capable to accurately forecast electricity prices and the extended SDA model further improves the forecasting performance. |
Author | Jieqiu Chen Long Wang Zijun Zhang |
Author_xml | – sequence: 1 givenname: Long surname: Wang fullname: Wang, Long – sequence: 2 givenname: Zijun surname: Zhang fullname: Zhang, Zijun – sequence: 3 givenname: Jieqiu surname: Chen fullname: Chen, Jieqiu |
BookMark | eNp9kE1PAjEQhhujiYD-Ab1s4nmxH9vd9kgQ1IREIhiOTW1npQhbbMuBf-8ixIMHT5PMvM9M5umi88Y3gNANwX1CsLyfTxevsz7FpOzTkgpRsTPUIZyLHJeVPEcdLATPheT4EnVjXGGMy3bQQZPZ0oeUzyFsstEaTArOuLTPpm2FbOwDGB2Taz6yhUvLbJa0-QSbPUDjXTy0B7vkoTHeQohX6KLW6wjXp9pDb-PRfPiUT14en4eDSW6o5ClnvDS6JIWwvAYtpakwtzUllnFjGWbcmtJawUhNmKY1Z0VF2btsIxJqEIT10N1x7zb4rx3EpFZ-F5r2pCKSUFYIJmWbEseUCT7GALVqP9PJ-SYF7daKYHVwp37cqYM7dXLXovQPug1uo8P-f-j2CDkA-AWqqihKIdk3YSh9VQ |
CODEN | ITPSEG |
CitedBy_id | crossref_primary_10_1016_j_scs_2020_102275 crossref_primary_10_3390_en12214035 crossref_primary_10_1109_TMECH_2019_2908233 crossref_primary_10_1109_ACCESS_2019_2948367 crossref_primary_10_1016_j_ijepes_2018_11_031 crossref_primary_10_1002_for_3103 crossref_primary_10_1038_s41598_025_86982_0 crossref_primary_10_1016_j_energy_2023_127286 crossref_primary_10_1007_s13369_024_09486_5 crossref_primary_10_1016_j_jup_2021_101185 crossref_primary_10_1016_j_ijforecast_2022_03_001 crossref_primary_10_1002_er_5331 crossref_primary_10_1088_1361_6501_ac769d crossref_primary_10_1109_TKDE_2021_3067658 crossref_primary_10_1007_s10489_023_04752_9 crossref_primary_10_1109_OAJPE_2020_3029979 crossref_primary_10_1109_ACCESS_2022_3157941 crossref_primary_10_1109_TPWRS_2023_3257368 crossref_primary_10_2478_amns_2023_1_00466 crossref_primary_10_1109_TSG_2019_2891508 crossref_primary_10_1002_asmb_2518 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_3390_en15228445 crossref_primary_10_3390_s23104628 crossref_primary_10_1109_TPWRS_2024_3380834 crossref_primary_10_1109_TII_2019_2933009 crossref_primary_10_3390_en12050866 crossref_primary_10_3390_en12122445 crossref_primary_10_1007_s11831_024_10182_8 crossref_primary_10_3390_en16124696 crossref_primary_10_1016_j_jobe_2025_112055 crossref_primary_10_1109_TPWRS_2022_3217579 crossref_primary_10_1016_j_jclepro_2019_04_345 crossref_primary_10_35970_jinita_v5i2_2133 crossref_primary_10_1016_j_apenergy_2021_117766 crossref_primary_10_1109_TSG_2019_2962842 crossref_primary_10_3390_electronics8020122 crossref_primary_10_3390_en14227473 crossref_primary_10_1109_TPWRS_2022_3159493 crossref_primary_10_1016_j_ijepes_2021_107004 crossref_primary_10_1109_TSG_2019_2930299 crossref_primary_10_1016_j_segan_2024_101458 crossref_primary_10_1007_s13369_022_06632_9 crossref_primary_10_1016_j_solener_2022_09_020 crossref_primary_10_1049_iet_gtd_2018_5078 crossref_primary_10_1109_TPWRS_2022_3218712 crossref_primary_10_1109_ACCESS_2020_2978530 crossref_primary_10_1007_s12053_020_09898_w crossref_primary_10_1109_ACCESS_2020_3035328 crossref_primary_10_1016_j_asoc_2018_08_024 crossref_primary_10_1109_ACCESS_2021_3057382 crossref_primary_10_1109_TEMPR_2024_3386127 crossref_primary_10_3390_en13030687 crossref_primary_10_1109_TPWRS_2020_3028133 crossref_primary_10_1016_j_enbuild_2023_113680 crossref_primary_10_1021_acs_iecr_9b06866 crossref_primary_10_1080_00036846_2025_2458248 crossref_primary_10_1016_j_apenergy_2023_122059 crossref_primary_10_1016_j_asoc_2023_110864 crossref_primary_10_1109_ACCESS_2020_2972569 crossref_primary_10_1080_03772063_2021_2000510 crossref_primary_10_1088_1742_6596_2132_1_012015 crossref_primary_10_1016_j_epsr_2022_108325 crossref_primary_10_1049_iet_rpg_2018_5917 crossref_primary_10_2478_acss_2024_0020 crossref_primary_10_1016_j_asoc_2020_107003 crossref_primary_10_1016_j_ins_2020_03_019 crossref_primary_10_3390_app13042719 crossref_primary_10_1016_j_enconman_2020_112909 crossref_primary_10_1109_ACCESS_2021_3086039 crossref_primary_10_3390_su14053063 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_1109_TEM_2023_3270301 crossref_primary_10_1109_ACCESS_2022_3195053 crossref_primary_10_1016_j_renene_2021_12_136 crossref_primary_10_3390_su132212653 crossref_primary_10_1016_j_scs_2019_101642 crossref_primary_10_1007_s00521_019_04130_y crossref_primary_10_3390_math10122012 crossref_primary_10_1016_j_epsr_2023_109300 crossref_primary_10_1109_ACCESS_2020_2994444 crossref_primary_10_1007_s10100_018_0531_1 crossref_primary_10_1109_TIM_2020_3044719 crossref_primary_10_1016_j_scs_2022_104004 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_2139_ssrn_4156560 crossref_primary_10_1109_TPWRS_2021_3106263 crossref_primary_10_1049_gtd2_12115 crossref_primary_10_1007_s00202_023_02214_6 crossref_primary_10_2139_ssrn_4176700 crossref_primary_10_1145_3427476 crossref_primary_10_3390_en14248455 crossref_primary_10_1016_j_energy_2019_116704 crossref_primary_10_1016_j_ijepes_2022_108092 crossref_primary_10_3390_en14113224 crossref_primary_10_29109_gujsc_1470266 crossref_primary_10_3390_su14052546 crossref_primary_10_1109_TIA_2024_3400172 crossref_primary_10_1016_j_apenergy_2021_116983 crossref_primary_10_1016_j_epsr_2024_110517 crossref_primary_10_3390_en18030664 crossref_primary_10_1016_j_epsr_2018_10_029 crossref_primary_10_3390_su11092464 crossref_primary_10_1049_iet_rpg_2018_6257 crossref_primary_10_1049_tje2_12151 crossref_primary_10_1080_01605682_2020_1843976 crossref_primary_10_1016_j_eneco_2019_104648 crossref_primary_10_1016_j_ress_2020_107396 crossref_primary_10_1016_j_resourpol_2023_103956 crossref_primary_10_1016_j_asoc_2017_12_041 crossref_primary_10_1088_1742_6596_1746_1_012087 crossref_primary_10_1109_ACCESS_2020_2994415 crossref_primary_10_1142_S2196888822500257 crossref_primary_10_1109_TSG_2018_2795007 |
Cites_doi | 10.1155/2014/504064 10.1145/1390156.1390294 10.1016/j.epsr.2014.05.008 10.1016/j.eneco.2014.11.003 10.1016/j.neucom.2013.09.055 10.1016/j.ijepes.2013.08.023 10.1214/aos/1176347963 10.1126/science.1127647 10.1016/j.enconman.2014.10.003 10.1109/TPWRS.2016.2521545 10.1109/CVPR.2007.383157 10.1016/j.ijepes.2014.01.023 10.1109/TPWRS.2002.804943 10.1109/TPWRS.2005.846044 10.1016/j.enconman.2010.10.047 10.1109/59.744487 10.1111/j.2517-6161.1996.tb02080.x 10.1145/358669.358692 10.1016/j.ijforecast.2015.12.001 10.1016/0925-2312(93)90006-O 10.1109/TPWRS.2005.846054 10.1007/978-3-642-35289-8_26 10.1002/047122412X.ch1 10.1016/j.ijforecast.2008.08.004 10.1109/TSTE.2012.2212731 10.1016/j.neucom.2009.05.017 10.1162/neco.2006.18.7.1527 10.1109/ISEG.2014.7005607 10.1109/TPWRS.2006.873409 10.1002/er.3067 10.1016/j.physa.2007.03.050 10.1007/978-3-642-24477-3_1 10.1038/nature14539 10.1016/j.ijforecast.2016.02.001 10.1109/TSG.2013.2274465 10.1016/j.physa.2015.01.012 10.1109/TPWRS.2007.901670 10.5370/JICEE.2014.4.2.114 10.1214/aos/1013203451 10.1109/TPWRS.2002.1007902 10.1109/EPEC.2013.6802978 10.1016/j.ijforecast.2014.08.008 10.1109/TPWRS.2016.2550867 10.1016/j.ijforecast.2004.12.005 10.1109/TPWRS.2006.883688 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TPWRS.2016.2628873 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0679 |
EndPage | 2681 |
ExternalDocumentID | 10_1109_TPWRS_2016_2628873 7744689 |
Genre | orig-research |
GrantInformation_xml | – fundername: CityU Strategic Research grantid: 7004551 – fundername: Hong Kong Special Administrative Region under Project CityU grantid: 138313 – fundername: Early Career Scheme from the Research Grants Council |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c295t-356ca6148d5fea99c705df21d35cd3035dc6dd831f13a2f534723b9df29efe813 |
IEDL.DBID | RIE |
ISSN | 0885-8950 |
IngestDate | Fri Jul 25 19:13:30 EDT 2025 Tue Jul 01 01:35:36 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Wed Aug 27 02:51:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-356ca6148d5fea99c705df21d35cd3035dc6dd831f13a2f534723b9df29efe813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1912348399 |
PQPubID | 85441 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_TPWRS_2016_2628873 crossref_primary_10_1109_TPWRS_2016_2628873 proquest_journals_1912348399 ieee_primary_7744689 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-July 2017-7-00 20170701 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power systems |
PublicationTitleAbbrev | TPWRS |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 smola (ref44) 1997; 9 ref12 ref15 rifai (ref50) 0 ref14 ref53 srivastava (ref52) 2014; 15 ref55 ref11 ref54 ref10 tripathi (ref31) 2014; 2 ref17 ref16 ref19 ref18 bengio (ref56) 2012 ci-wei (ref6) 2007; 382 ref45 ref48 ref42 ref49 ref8 ref9 ref4 ref3 ref5 kröse (ref43) 1993 sutskever (ref39) 0 ref35 ref34 ref36 ref30 ref33 ref32 ref2 dahl (ref51) 0 ref1 ref38 cai (ref7) 0 tibshirani (ref46) 1996; 58 (ref41) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 (ref40) 2016 glorot (ref47) 0 van der maaten (ref37) 2008; 9 |
References_xml | – start-page: 249 year: 0 ident: ref47 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc Int Conf Artif Intell Statist – ident: ref28 doi: 10.1155/2014/504064 – ident: ref35 doi: 10.1145/1390156.1390294 – ident: ref1 doi: 10.1016/j.epsr.2014.05.008 – ident: ref22 doi: 10.1016/j.eneco.2014.11.003 – ident: ref53 doi: 10.1016/j.neucom.2013.09.055 – ident: ref12 doi: 10.1016/j.ijepes.2013.08.023 – ident: ref45 doi: 10.1214/aos/1176347963 – ident: ref54 doi: 10.1126/science.1127647 – ident: ref11 doi: 10.1016/j.enconman.2014.10.003 – ident: ref26 doi: 10.1109/TPWRS.2016.2521545 – year: 0 ident: ref7 article-title: A stochastic bi-level trading model for an active distribution company with distributed generation and interruptible loads publication-title: IET Renew Power Gener – ident: ref49 doi: 10.1109/CVPR.2007.383157 – ident: ref29 doi: 10.1016/j.ijepes.2014.01.023 – year: 2016 ident: ref40 – start-page: 1139 year: 0 ident: ref39 article-title: On the importance of initialization and momentum in deep learning publication-title: Proc Int Conf Mach Learn – ident: ref18 doi: 10.1109/TPWRS.2002.804943 – ident: ref4 doi: 10.1109/TPWRS.2005.846044 – ident: ref3 doi: 10.1016/j.enconman.2010.10.047 – ident: ref16 doi: 10.1109/59.744487 – volume: 58 start-page: 267 year: 1996 ident: ref46 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Statist Soc Ser B Statist Methodol doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref36 doi: 10.1145/358669.358692 – ident: ref25 doi: 10.1016/j.ijforecast.2015.12.001 – ident: ref55 doi: 10.1016/0925-2312(93)90006-O – year: 1993 ident: ref43 publication-title: An Introduction to Neural Networks – ident: ref24 doi: 10.1109/TPWRS.2005.846054 – start-page: 437 year: 2012 ident: ref56 article-title: Practical recommendations for gradient-based training of deep architectures publication-title: Neural Networks Tricks of the Trade doi: 10.1007/978-3-642-35289-8_26 – ident: ref5 doi: 10.1002/047122412X.ch1 – ident: ref23 doi: 10.1016/j.ijforecast.2008.08.004 – ident: ref17 doi: 10.1109/TSTE.2012.2212731 – ident: ref38 doi: 10.1016/j.neucom.2009.05.017 – ident: ref48 doi: 10.1162/neco.2006.18.7.1527 – start-page: 833 year: 0 ident: ref50 article-title: Contractive auto-encoders: Explicit invariance during feature extraction publication-title: Proc Int Conf Mach Learn – ident: ref2 doi: 10.1109/ISEG.2014.7005607 – ident: ref57 doi: 10.1109/TPWRS.2006.873409 – ident: ref10 doi: 10.1002/er.3067 – volume: 382 start-page: 98 year: 2007 ident: ref6 article-title: Price forecast in the competitive electricity market by support vector machine publication-title: Physica a Stat Mech Appl doi: 10.1016/j.physa.2007.03.050 – ident: ref34 doi: 10.1007/978-3-642-24477-3_1 – ident: ref33 doi: 10.1038/nature14539 – year: 2016 ident: ref41 – ident: ref27 doi: 10.1016/j.ijforecast.2016.02.001 – ident: ref14 doi: 10.1109/TSG.2013.2274465 – ident: ref13 doi: 10.1016/j.physa.2015.01.012 – ident: ref32 doi: 10.1109/TPWRS.2007.901670 – ident: ref9 doi: 10.5370/JICEE.2014.4.2.114 – ident: ref42 doi: 10.1214/aos/1013203451 – volume: 2 start-page: 137 year: 2014 ident: ref31 article-title: Electricity price forecasting using generalized regression neural network (GRNN) for PJM electricity market publication-title: Int J Manage -Theory Appl – volume: 15 start-page: 1929 year: 2014 ident: ref52 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – start-page: 469 year: 0 ident: ref51 article-title: Phone recognition with the mean-covariance restricted Boltzmann machine publication-title: Proc Adv Neural Inf Process Syst – ident: ref20 doi: 10.1109/TPWRS.2002.1007902 – ident: ref30 doi: 10.1109/EPEC.2013.6802978 – volume: 9 start-page: 155 year: 1997 ident: ref44 article-title: Support vector regression machines publication-title: Adv Neural Inf Process Syst – ident: ref8 doi: 10.1016/j.ijforecast.2014.08.008 – ident: ref15 doi: 10.1109/TPWRS.2016.2550867 – ident: ref21 doi: 10.1016/j.ijforecast.2004.12.005 – volume: 9 start-page: 2579 year: 2008 ident: ref37 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref19 doi: 10.1109/TPWRS.2006.883688 |
SSID | ssj0006679 |
Score | 2.5902743 |
Snippet | A short-term forecasting of the electricity price with data-driven algorithms is studied in this research. A stacked denoising autoencoder (SDA) model, a class... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2673 |
SubjectTerms | Artificial neural networks Comparative analysis data mining Data models Electric utilities electricity price Electricity pricing Forecasting hourly forecasting Hubs Mathematical models Neural networks Noise reduction Predictive models Splines Wind forecasting |
Title | Short-Term Electricity Price Forecasting With Stacked Denoising Autoencoders |
URI | https://ieeexplore.ieee.org/document/7744689 https://www.proquest.com/docview/1912348399 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21nODAjigU5AM3cJt4S3ysWIQQRQiK6C1KvKgVqEWQXvh6bCet2IS45TCWLI898-zMvAdwlKgk0lQyXAhKMGPM4pwYinMqdKI5tVHokOvfiMsHdjXkwwacLHphjDGh-Mx0_Gf4l6-nauafyroOqjCRyiY03cWt6tVaRF0hKl69NOU4lTyaN8hEsju4fby791VcokO8um5CvyShoKryIxSH_HKxBv35zKqykqfOrCw66v0baeN_p74OqzXQRL1qZ2xAw0w2YeUT_eAWXN-PHPjGAxec0XmQwxkrB8pRkIJHXrRT5W--LBo9jssRcrjUHXmNzsxkOvZPDKg3K6eeCNMXQ2_Dw8X54PQS1-oKWBHJS0y5ULmnAdXcmlxK5zSuLYk15Uq7xMa1ElqnNLYxzYnllCWEFtKZSGNNGtMdWJpMJ2YXkFaFdrjQxdwiYrTIi1zJSDGTWqsTlbIWxPPlzlRNPe4VMJ6zcAWJZBZclHkXZbWLWnC8GPNSEW_8ab3l13xhWS93C9pzr2b12XzL3A2VUOaAodz7fdQ-LBOfvENRbhuWyteZOXDQoywOw577AP421bA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTtxAEC0BOQQO2UiUYUn6kJxQD3Zvdh9yQCwawoAiGAQ3x-5FjEAziPEoSr6FX8m_pbrtGWVTbki5-dC27K6nqlftqnoA7zKTJZZrQSvFGRVCeFoyx2nJlc2s5D6JHXLHJ6p3Lj5eyssFuJ_3wjjnYvGZ64bL-C_fjs00HJVtI1URKtdtCeWR-_oFE7TJh8M9tOZ7xg72B7s92moIUMO0rCmXypRh2KWV3pVa46tJ61lquTQW3be0Rlmb89SnvGRecpExXmlcop13ecrxuYvwCHmGZE132NzPK9VM8stzSXMtk1lLTqK3B58uTs9C3ZjqsqDnm_Ffwl7UcfnD-ceIdvAUvs_2oilkue5O66prvv02JvJ_3axn8KSl0mSnwf5zWHCjF7Dy04DFVeifXWF6QQcYfsh-FPwZGkw7SBS7J0GW1JSTUPhNLob1FUHmjU7Nkj03Gg_DIQrZmdbjMOozlHu_hPMH-ZxXsDQaj9xrINZUFpkvRpUqEbwqq9LoxAiXe28zk4sOpDPzFqYdrh40Pm6KmGQluoiQKAIkihYSHdia33PbjBb55-rVYOP5yta8HdiYoahovc-kwByccYHUV6_9_a638Lg3OO4X_cOTo3VYZoGqxBLkDViq76ZuE4lWXb2JeCfw-aEx8wPdZzOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Electricity+Price+Forecasting+With+Stacked+Denoising+Autoencoders&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Wang%2C+Long&rft.au=Zhang%2C+Zijun&rft.au=Chen%2C+Jieqiu&rft.date=2017-07-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=32&rft.issue=4&rft.spage=2673&rft.epage=2681&rft_id=info:doi/10.1109%2FTPWRS.2016.2628873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2016_2628873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |