Short-Term Electricity Price Forecasting With Stacked Denoising Autoencoders

A short-term forecasting of the electricity price with data-driven algorithms is studied in this research. A stacked denoising autoencoder (SDA) model, a class of deep neural networks, and its extended version are utilized to forecast the electricity price hourly. Data collected in Nebraska, Arkansa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 32; no. 4; pp. 2673 - 2681
Main Authors Wang, Long, Zhang, Zijun, Chen, Jieqiu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A short-term forecasting of the electricity price with data-driven algorithms is studied in this research. A stacked denoising autoencoder (SDA) model, a class of deep neural networks, and its extended version are utilized to forecast the electricity price hourly. Data collected in Nebraska, Arkansas, Louisiana, Texas, and Indiana hubs in U.S. are utilized. Two types of forecasting, the online hourly forecasting and day-ahead hourly forecasting, are examined. In online forecasting, SDA models are compared with data-driven approaches including the classical neural networks, support vector machine, multivariate adaptive regression splines, and least absolute shrinkage and selection operator. In the day-ahead forecasting, the effectiveness of SDA models is further validated through comparing with industrial results and a recently reported method. Computational results demonstrate that SDA models are capable to accurately forecast electricity prices and the extended SDA model further improves the forecasting performance.
AbstractList A short-term forecasting of the electricity price with data-driven algorithms is studied in this research. A stacked denoising autoencoder (SDA) model, a class of deep neural networks, and its extended version are utilized to forecast the electricity price hourly. Data collected in Nebraska, Arkansas, Louisiana, Texas, and Indiana hubs in U.S. are utilized. Two types of forecasting, the online hourly forecasting and day-ahead hourly forecasting, are examined. In online forecasting, SDA models are compared with data-driven approaches including the classical neural networks, support vector machine, multivariate adaptive regression splines, and least absolute shrinkage and selection operator. In the day-ahead forecasting, the effectiveness of SDA models is further validated through comparing with industrial results and a recently reported method. Computational results demonstrate that SDA models are capable to accurately forecast electricity prices and the extended SDA model further improves the forecasting performance.
Author Jieqiu Chen
Long Wang
Zijun Zhang
Author_xml – sequence: 1
  givenname: Long
  surname: Wang
  fullname: Wang, Long
– sequence: 2
  givenname: Zijun
  surname: Zhang
  fullname: Zhang, Zijun
– sequence: 3
  givenname: Jieqiu
  surname: Chen
  fullname: Chen, Jieqiu
BookMark eNp9kE1PAjEQhhujiYD-Ab1s4nmxH9vd9kgQ1IREIhiOTW1npQhbbMuBf-8ixIMHT5PMvM9M5umi88Y3gNANwX1CsLyfTxevsz7FpOzTkgpRsTPUIZyLHJeVPEcdLATPheT4EnVjXGGMy3bQQZPZ0oeUzyFsstEaTArOuLTPpm2FbOwDGB2Taz6yhUvLbJa0-QSbPUDjXTy0B7vkoTHeQohX6KLW6wjXp9pDb-PRfPiUT14en4eDSW6o5ClnvDS6JIWwvAYtpakwtzUllnFjGWbcmtJawUhNmKY1Z0VF2btsIxJqEIT10N1x7zb4rx3EpFZ-F5r2pCKSUFYIJmWbEseUCT7GALVqP9PJ-SYF7daKYHVwp37cqYM7dXLXovQPug1uo8P-f-j2CDkA-AWqqihKIdk3YSh9VQ
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_scs_2020_102275
crossref_primary_10_3390_en12214035
crossref_primary_10_1109_TMECH_2019_2908233
crossref_primary_10_1109_ACCESS_2019_2948367
crossref_primary_10_1016_j_ijepes_2018_11_031
crossref_primary_10_1002_for_3103
crossref_primary_10_1038_s41598_025_86982_0
crossref_primary_10_1016_j_energy_2023_127286
crossref_primary_10_1007_s13369_024_09486_5
crossref_primary_10_1016_j_jup_2021_101185
crossref_primary_10_1016_j_ijforecast_2022_03_001
crossref_primary_10_1002_er_5331
crossref_primary_10_1088_1361_6501_ac769d
crossref_primary_10_1109_TKDE_2021_3067658
crossref_primary_10_1007_s10489_023_04752_9
crossref_primary_10_1109_OAJPE_2020_3029979
crossref_primary_10_1109_ACCESS_2022_3157941
crossref_primary_10_1109_TPWRS_2023_3257368
crossref_primary_10_2478_amns_2023_1_00466
crossref_primary_10_1109_TSG_2019_2891508
crossref_primary_10_1002_asmb_2518
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_3390_en15228445
crossref_primary_10_3390_s23104628
crossref_primary_10_1109_TPWRS_2024_3380834
crossref_primary_10_1109_TII_2019_2933009
crossref_primary_10_3390_en12050866
crossref_primary_10_3390_en12122445
crossref_primary_10_1007_s11831_024_10182_8
crossref_primary_10_3390_en16124696
crossref_primary_10_1016_j_jobe_2025_112055
crossref_primary_10_1109_TPWRS_2022_3217579
crossref_primary_10_1016_j_jclepro_2019_04_345
crossref_primary_10_35970_jinita_v5i2_2133
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1109_TSG_2019_2962842
crossref_primary_10_3390_electronics8020122
crossref_primary_10_3390_en14227473
crossref_primary_10_1109_TPWRS_2022_3159493
crossref_primary_10_1016_j_ijepes_2021_107004
crossref_primary_10_1109_TSG_2019_2930299
crossref_primary_10_1016_j_segan_2024_101458
crossref_primary_10_1007_s13369_022_06632_9
crossref_primary_10_1016_j_solener_2022_09_020
crossref_primary_10_1049_iet_gtd_2018_5078
crossref_primary_10_1109_TPWRS_2022_3218712
crossref_primary_10_1109_ACCESS_2020_2978530
crossref_primary_10_1007_s12053_020_09898_w
crossref_primary_10_1109_ACCESS_2020_3035328
crossref_primary_10_1016_j_asoc_2018_08_024
crossref_primary_10_1109_ACCESS_2021_3057382
crossref_primary_10_1109_TEMPR_2024_3386127
crossref_primary_10_3390_en13030687
crossref_primary_10_1109_TPWRS_2020_3028133
crossref_primary_10_1016_j_enbuild_2023_113680
crossref_primary_10_1021_acs_iecr_9b06866
crossref_primary_10_1080_00036846_2025_2458248
crossref_primary_10_1016_j_apenergy_2023_122059
crossref_primary_10_1016_j_asoc_2023_110864
crossref_primary_10_1109_ACCESS_2020_2972569
crossref_primary_10_1080_03772063_2021_2000510
crossref_primary_10_1088_1742_6596_2132_1_012015
crossref_primary_10_1016_j_epsr_2022_108325
crossref_primary_10_1049_iet_rpg_2018_5917
crossref_primary_10_2478_acss_2024_0020
crossref_primary_10_1016_j_asoc_2020_107003
crossref_primary_10_1016_j_ins_2020_03_019
crossref_primary_10_3390_app13042719
crossref_primary_10_1016_j_enconman_2020_112909
crossref_primary_10_1109_ACCESS_2021_3086039
crossref_primary_10_3390_su14053063
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_1109_TEM_2023_3270301
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_1016_j_renene_2021_12_136
crossref_primary_10_3390_su132212653
crossref_primary_10_1016_j_scs_2019_101642
crossref_primary_10_1007_s00521_019_04130_y
crossref_primary_10_3390_math10122012
crossref_primary_10_1016_j_epsr_2023_109300
crossref_primary_10_1109_ACCESS_2020_2994444
crossref_primary_10_1007_s10100_018_0531_1
crossref_primary_10_1109_TIM_2020_3044719
crossref_primary_10_1016_j_scs_2022_104004
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_2139_ssrn_4156560
crossref_primary_10_1109_TPWRS_2021_3106263
crossref_primary_10_1049_gtd2_12115
crossref_primary_10_1007_s00202_023_02214_6
crossref_primary_10_2139_ssrn_4176700
crossref_primary_10_1145_3427476
crossref_primary_10_3390_en14248455
crossref_primary_10_1016_j_energy_2019_116704
crossref_primary_10_1016_j_ijepes_2022_108092
crossref_primary_10_3390_en14113224
crossref_primary_10_29109_gujsc_1470266
crossref_primary_10_3390_su14052546
crossref_primary_10_1109_TIA_2024_3400172
crossref_primary_10_1016_j_apenergy_2021_116983
crossref_primary_10_1016_j_epsr_2024_110517
crossref_primary_10_3390_en18030664
crossref_primary_10_1016_j_epsr_2018_10_029
crossref_primary_10_3390_su11092464
crossref_primary_10_1049_iet_rpg_2018_6257
crossref_primary_10_1049_tje2_12151
crossref_primary_10_1080_01605682_2020_1843976
crossref_primary_10_1016_j_eneco_2019_104648
crossref_primary_10_1016_j_ress_2020_107396
crossref_primary_10_1016_j_resourpol_2023_103956
crossref_primary_10_1016_j_asoc_2017_12_041
crossref_primary_10_1088_1742_6596_1746_1_012087
crossref_primary_10_1109_ACCESS_2020_2994415
crossref_primary_10_1142_S2196888822500257
crossref_primary_10_1109_TSG_2018_2795007
Cites_doi 10.1155/2014/504064
10.1145/1390156.1390294
10.1016/j.epsr.2014.05.008
10.1016/j.eneco.2014.11.003
10.1016/j.neucom.2013.09.055
10.1016/j.ijepes.2013.08.023
10.1214/aos/1176347963
10.1126/science.1127647
10.1016/j.enconman.2014.10.003
10.1109/TPWRS.2016.2521545
10.1109/CVPR.2007.383157
10.1016/j.ijepes.2014.01.023
10.1109/TPWRS.2002.804943
10.1109/TPWRS.2005.846044
10.1016/j.enconman.2010.10.047
10.1109/59.744487
10.1111/j.2517-6161.1996.tb02080.x
10.1145/358669.358692
10.1016/j.ijforecast.2015.12.001
10.1016/0925-2312(93)90006-O
10.1109/TPWRS.2005.846054
10.1007/978-3-642-35289-8_26
10.1002/047122412X.ch1
10.1016/j.ijforecast.2008.08.004
10.1109/TSTE.2012.2212731
10.1016/j.neucom.2009.05.017
10.1162/neco.2006.18.7.1527
10.1109/ISEG.2014.7005607
10.1109/TPWRS.2006.873409
10.1002/er.3067
10.1016/j.physa.2007.03.050
10.1007/978-3-642-24477-3_1
10.1038/nature14539
10.1016/j.ijforecast.2016.02.001
10.1109/TSG.2013.2274465
10.1016/j.physa.2015.01.012
10.1109/TPWRS.2007.901670
10.5370/JICEE.2014.4.2.114
10.1214/aos/1013203451
10.1109/TPWRS.2002.1007902
10.1109/EPEC.2013.6802978
10.1016/j.ijforecast.2014.08.008
10.1109/TPWRS.2016.2550867
10.1016/j.ijforecast.2004.12.005
10.1109/TPWRS.2006.883688
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2016.2628873
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 2681
ExternalDocumentID 10_1109_TPWRS_2016_2628873
7744689
Genre orig-research
GrantInformation_xml – fundername: CityU Strategic Research
  grantid: 7004551
– fundername: Hong Kong Special Administrative Region under Project CityU
  grantid: 138313
– fundername: Early Career Scheme from the Research Grants Council
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-356ca6148d5fea99c705df21d35cd3035dc6dd831f13a2f534723b9df29efe813
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 25 19:13:30 EDT 2025
Tue Jul 01 01:35:36 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Wed Aug 27 02:51:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-356ca6148d5fea99c705df21d35cd3035dc6dd831f13a2f534723b9df29efe813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1912348399
PQPubID 85441
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TPWRS_2016_2628873
crossref_primary_10_1109_TPWRS_2016_2628873
proquest_journals_1912348399
ieee_primary_7744689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-July
2017-7-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
smola (ref44) 1997; 9
ref12
ref15
rifai (ref50) 0
ref14
ref53
srivastava (ref52) 2014; 15
ref55
ref11
ref54
ref10
tripathi (ref31) 2014; 2
ref17
ref16
ref19
ref18
bengio (ref56) 2012
ci-wei (ref6) 2007; 382
ref45
ref48
ref42
ref49
ref8
ref9
ref4
ref3
ref5
kröse (ref43) 1993
sutskever (ref39) 0
ref35
ref34
ref36
ref30
ref33
ref32
ref2
dahl (ref51) 0
ref1
ref38
cai (ref7) 0
tibshirani (ref46) 1996; 58
(ref41) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
(ref40) 2016
glorot (ref47) 0
van der maaten (ref37) 2008; 9
References_xml – start-page: 249
  year: 0
  ident: ref47
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref28
  doi: 10.1155/2014/504064
– ident: ref35
  doi: 10.1145/1390156.1390294
– ident: ref1
  doi: 10.1016/j.epsr.2014.05.008
– ident: ref22
  doi: 10.1016/j.eneco.2014.11.003
– ident: ref53
  doi: 10.1016/j.neucom.2013.09.055
– ident: ref12
  doi: 10.1016/j.ijepes.2013.08.023
– ident: ref45
  doi: 10.1214/aos/1176347963
– ident: ref54
  doi: 10.1126/science.1127647
– ident: ref11
  doi: 10.1016/j.enconman.2014.10.003
– ident: ref26
  doi: 10.1109/TPWRS.2016.2521545
– year: 0
  ident: ref7
  article-title: A stochastic bi-level trading model for an active distribution company with distributed generation and interruptible loads
  publication-title: IET Renew Power Gener
– ident: ref49
  doi: 10.1109/CVPR.2007.383157
– ident: ref29
  doi: 10.1016/j.ijepes.2014.01.023
– year: 2016
  ident: ref40
– start-page: 1139
  year: 0
  ident: ref39
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref18
  doi: 10.1109/TPWRS.2002.804943
– ident: ref4
  doi: 10.1109/TPWRS.2005.846044
– ident: ref3
  doi: 10.1016/j.enconman.2010.10.047
– ident: ref16
  doi: 10.1109/59.744487
– volume: 58
  start-page: 267
  year: 1996
  ident: ref46
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc Ser B Statist Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref36
  doi: 10.1145/358669.358692
– ident: ref25
  doi: 10.1016/j.ijforecast.2015.12.001
– ident: ref55
  doi: 10.1016/0925-2312(93)90006-O
– year: 1993
  ident: ref43
  publication-title: An Introduction to Neural Networks
– ident: ref24
  doi: 10.1109/TPWRS.2005.846054
– start-page: 437
  year: 2012
  ident: ref56
  article-title: Practical recommendations for gradient-based training of deep architectures
  publication-title: Neural Networks Tricks of the Trade
  doi: 10.1007/978-3-642-35289-8_26
– ident: ref5
  doi: 10.1002/047122412X.ch1
– ident: ref23
  doi: 10.1016/j.ijforecast.2008.08.004
– ident: ref17
  doi: 10.1109/TSTE.2012.2212731
– ident: ref38
  doi: 10.1016/j.neucom.2009.05.017
– ident: ref48
  doi: 10.1162/neco.2006.18.7.1527
– start-page: 833
  year: 0
  ident: ref50
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
  publication-title: Proc Int Conf Mach Learn
– ident: ref2
  doi: 10.1109/ISEG.2014.7005607
– ident: ref57
  doi: 10.1109/TPWRS.2006.873409
– ident: ref10
  doi: 10.1002/er.3067
– volume: 382
  start-page: 98
  year: 2007
  ident: ref6
  article-title: Price forecast in the competitive electricity market by support vector machine
  publication-title: Physica a Stat Mech Appl
  doi: 10.1016/j.physa.2007.03.050
– ident: ref34
  doi: 10.1007/978-3-642-24477-3_1
– ident: ref33
  doi: 10.1038/nature14539
– year: 2016
  ident: ref41
– ident: ref27
  doi: 10.1016/j.ijforecast.2016.02.001
– ident: ref14
  doi: 10.1109/TSG.2013.2274465
– ident: ref13
  doi: 10.1016/j.physa.2015.01.012
– ident: ref32
  doi: 10.1109/TPWRS.2007.901670
– ident: ref9
  doi: 10.5370/JICEE.2014.4.2.114
– ident: ref42
  doi: 10.1214/aos/1013203451
– volume: 2
  start-page: 137
  year: 2014
  ident: ref31
  article-title: Electricity price forecasting using generalized regression neural network (GRNN) for PJM electricity market
  publication-title: Int J Manage -Theory Appl
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref52
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– start-page: 469
  year: 0
  ident: ref51
  article-title: Phone recognition with the mean-covariance restricted Boltzmann machine
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/TPWRS.2002.1007902
– ident: ref30
  doi: 10.1109/EPEC.2013.6802978
– volume: 9
  start-page: 155
  year: 1997
  ident: ref44
  article-title: Support vector regression machines
  publication-title: Adv Neural Inf Process Syst
– ident: ref8
  doi: 10.1016/j.ijforecast.2014.08.008
– ident: ref15
  doi: 10.1109/TPWRS.2016.2550867
– ident: ref21
  doi: 10.1016/j.ijforecast.2004.12.005
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref37
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref19
  doi: 10.1109/TPWRS.2006.883688
SSID ssj0006679
Score 2.5902743
Snippet A short-term forecasting of the electricity price with data-driven algorithms is studied in this research. A stacked denoising autoencoder (SDA) model, a class...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2673
SubjectTerms Artificial neural networks
Comparative analysis
data mining
Data models
Electric utilities
electricity price
Electricity pricing
Forecasting
hourly forecasting
Hubs
Mathematical models
Neural networks
Noise reduction
Predictive models
Splines
Wind forecasting
Title Short-Term Electricity Price Forecasting With Stacked Denoising Autoencoders
URI https://ieeexplore.ieee.org/document/7744689
https://www.proquest.com/docview/1912348399
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21nODAjigU5AM3cJt4S3ysWIQQRQiK6C1KvKgVqEWQXvh6bCet2IS45TCWLI898-zMvAdwlKgk0lQyXAhKMGPM4pwYinMqdKI5tVHokOvfiMsHdjXkwwacLHphjDGh-Mx0_Gf4l6-nauafyroOqjCRyiY03cWt6tVaRF0hKl69NOU4lTyaN8hEsju4fby791VcokO8um5CvyShoKryIxSH_HKxBv35zKqykqfOrCw66v0baeN_p74OqzXQRL1qZ2xAw0w2YeUT_eAWXN-PHPjGAxec0XmQwxkrB8pRkIJHXrRT5W--LBo9jssRcrjUHXmNzsxkOvZPDKg3K6eeCNMXQ2_Dw8X54PQS1-oKWBHJS0y5ULmnAdXcmlxK5zSuLYk15Uq7xMa1ElqnNLYxzYnllCWEFtKZSGNNGtMdWJpMJ2YXkFaFdrjQxdwiYrTIi1zJSDGTWqsTlbIWxPPlzlRNPe4VMJ6zcAWJZBZclHkXZbWLWnC8GPNSEW_8ab3l13xhWS93C9pzr2b12XzL3A2VUOaAodz7fdQ-LBOfvENRbhuWyteZOXDQoywOw577AP421bA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTtxAEC0BOQQO2UiUYUn6kJxQD3Zvdh9yQCwawoAiGAQ3x-5FjEAziPEoSr6FX8m_pbrtGWVTbki5-dC27K6nqlftqnoA7zKTJZZrQSvFGRVCeFoyx2nJlc2s5D6JHXLHJ6p3Lj5eyssFuJ_3wjjnYvGZ64bL-C_fjs00HJVtI1URKtdtCeWR-_oFE7TJh8M9tOZ7xg72B7s92moIUMO0rCmXypRh2KWV3pVa46tJ61lquTQW3be0Rlmb89SnvGRecpExXmlcop13ecrxuYvwCHmGZE132NzPK9VM8stzSXMtk1lLTqK3B58uTs9C3ZjqsqDnm_Ffwl7UcfnD-ceIdvAUvs_2oilkue5O66prvv02JvJ_3axn8KSl0mSnwf5zWHCjF7Dy04DFVeifXWF6QQcYfsh-FPwZGkw7SBS7J0GW1JSTUPhNLob1FUHmjU7Nkj03Gg_DIQrZmdbjMOozlHu_hPMH-ZxXsDQaj9xrINZUFpkvRpUqEbwqq9LoxAiXe28zk4sOpDPzFqYdrh40Pm6KmGQluoiQKAIkihYSHdia33PbjBb55-rVYOP5yta8HdiYoahovc-kwByccYHUV6_9_a638Lg3OO4X_cOTo3VYZoGqxBLkDViq76ZuE4lWXb2JeCfw-aEx8wPdZzOY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Electricity+Price+Forecasting+With+Stacked+Denoising+Autoencoders&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Wang%2C+Long&rft.au=Zhang%2C+Zijun&rft.au=Chen%2C+Jieqiu&rft.date=2017-07-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=32&rft.issue=4&rft.spage=2673&rft.epage=2681&rft_id=info:doi/10.1109%2FTPWRS.2016.2628873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2016_2628873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon