ECG Identity Recognition Based on Feature Reuse Residual Network
With the increasing demand for security and privacy, identity recognition based on the unique biometric features of ECG signals is gaining more and more attention. This paper proposes a feature reuse residual network (FRRNet) model to address the problem that the recognition accuracy of conventional...
Saved in:
Published in | Processes Vol. 10; no. 4; p. 676 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the increasing demand for security and privacy, identity recognition based on the unique biometric features of ECG signals is gaining more and more attention. This paper proposes a feature reuse residual network (FRRNet) model to address the problem that the recognition accuracy of conventional ECG identification methods decreases with the increase in the number of testing samples at different moments or in different heartbeat cycles. The residual module of the proposed FRRNet model uses the adding layers of max pooling (MP) and average pooling (AP), and the proposed model splices the deep network with the shallow network to reduce noise extraction and enhance feature reuse. The FRRNet model is tested on 20 and 47 subjects under the MIT-BIH dataset, and its recognition accuracy is 99.32% and 100%, respectively. Additionally, the FRRNet model is tested on 50 and 87 subjects under the PhysioNet/Computing in Cardiology Challenge 2017 (CinC_2017) dataset, and its recognition accuracy is 94.52% and 93.51%, respectively. A total of 20 subjects are taken from the MIT-BIH and the CinC_2017 datasets for testing, and the recognition accuracy is 98.97%. The experimental results show that the FRRNet model proposed in this paper has high recognition accuracy, and the recognition accuracy is not greatly affected when the number of individuals increases. |
---|---|
AbstractList | With the increasing demand for security and privacy, identity recognition based on the unique biometric features of ECG signals is gaining more and more attention. This paper proposes a feature reuse residual network (FRRNet) model to address the problem that the recognition accuracy of conventional ECG identification methods decreases with the increase in the number of testing samples at different moments or in different heartbeat cycles. The residual module of the proposed FRRNet model uses the adding layers of max pooling (MP) and average pooling (AP), and the proposed model splices the deep network with the shallow network to reduce noise extraction and enhance feature reuse. The FRRNet model is tested on 20 and 47 subjects under the MIT-BIH dataset, and its recognition accuracy is 99.32% and 100%, respectively. Additionally, the FRRNet model is tested on 50 and 87 subjects under the PhysioNet/Computing in Cardiology Challenge 2017 (CinC_2017) dataset, and its recognition accuracy is 94.52% and 93.51%, respectively. A total of 20 subjects are taken from the MIT-BIH and the CinC_2017 datasets for testing, and the recognition accuracy is 98.97%. The experimental results show that the FRRNet model proposed in this paper has high recognition accuracy, and the recognition accuracy is not greatly affected when the number of individuals increases. |
Author | Li, Ning Yang, Zhengqiang Liu, Linyue Tian, Junwei |
Author_xml | – sequence: 1 givenname: Zhengqiang surname: Yang fullname: Yang, Zhengqiang – sequence: 2 givenname: Linyue surname: Liu fullname: Liu, Linyue – sequence: 3 givenname: Ning orcidid: 0000-0001-9014-5913 surname: Li fullname: Li, Ning – sequence: 4 givenname: Junwei surname: Tian fullname: Tian, Junwei |
BookMark | eNptUE1LAzEQDVLBWnvxFyx4E1YzyW7S3NTS1kJRED0v2XxIat3UJIv035tSQRHnMPPgvTfDvFM06HxnEDoHfEWpwNfbABhXmHF2hIaEEF4KDnzwC5-gcYxrnEsAndRsiG5m00Wx1KZLLu2KJ6P8a-eS811xJ6PRRQZzI1MfTCb7uO_R6V5uigeTPn14O0PHVm6iGX_PEXqZz56n9-XqcbGc3q5KRUSdSlopUFpVldITCYyDFkpWttW1ZUy3FoRqK8pVpqwAoqkFAxZIS1nLNZZ0hC4Oe7fBf_Qmpmbt-9Dlkw1hNcWEcqBZhQ8qFXyMwdhGuST3_6Qg3aYB3Oyjan6iypbLP5ZtcO8y7P4TfwHGt2pg |
CitedBy_id | crossref_primary_10_1155_2022_3466787 |
Cites_doi | 10.1109/RTEICT.2016.7808164 10.1109/ACCESS.2018.2820684 10.1016/j.bspc.2013.01.005 10.1016/j.eswa.2010.09.143 10.1111/exsy.12547 10.1016/j.eswa.2017.06.025 10.1016/j.neunet.2019.07.020 10.1109/MACS48846.2019.9024820 10.3390/s20102920 10.1016/j.patcog.2018.01.026 10.1007/s00500-020-04700-6 10.1109/TBME.1985.325532 10.3390/electronics10172052 10.1016/j.neunet.2019.11.009 10.1109/ACCESS.2020.3016938 10.1109/JIOT.2020.3004362 10.1109/CVPR.2016.90 10.1016/j.patcog.2004.05.014 10.22489/CinC.2017.065-469 10.1145/3423603.3424053 10.1016/j.bspc.2014.04.001 10.1109/ICCE-Taiwan49838.2020.9258330 10.3390/s20154078 10.1016/j.patcog.2017.01.021 10.1016/j.patrec.2017.08.001 10.1109/TITB.2012.2188535 10.1016/j.ins.2021.01.001 10.1049/iet-bmt.2013.0014 10.3390/e23060733 10.1016/j.patrec.2019.07.009 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.3390/pr10040676 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2227-9717 |
ExternalDocumentID | 10_3390_pr10040676 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c295t-34c1cdc44cd8a1671d9ca4fbd5f66dbf19cb437c167f912d3f1e1f12b36b7d0a3 |
IEDL.DBID | BENPR |
ISSN | 2227-9717 |
IngestDate | Fri Jul 25 12:03:05 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 Tue Jul 01 02:34:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-34c1cdc44cd8a1671d9ca4fbd5f66dbf19cb437c167f912d3f1e1f12b36b7d0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9014-5913 |
OpenAccessLink | https://www.proquest.com/docview/2653023713?pq-origsite=%requestingapplication% |
PQID | 2653023713 |
PQPubID | 2032344 |
ParticipantIDs | proquest_journals_2653023713 crossref_citationtrail_10_3390_pr10040676 crossref_primary_10_3390_pr10040676 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Processes |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Huang (ref_7) 2017; 98 (ref_20) 2020; 24 ref_14 ref_36 ref_13 ref_34 ref_33 ref_30 Pan (ref_35) 1985; 3 Belgacem (ref_18) 2012; 2 ref_15 Israel (ref_16) 2005; 38 Islam (ref_11) 2012; 16 Lin (ref_4) 2011; 38 Wu (ref_10) 2020; 8 Dang (ref_23) 2020; 8 Hammad (ref_24) 2021; 38 Yu (ref_2) 2017; 66 Lin (ref_17) 2014; 3 Zokaee (ref_19) 2012; 2 ref_25 ref_22 ref_21 Varkarakis (ref_6) 2020; 121 ref_29 ref_28 Liu (ref_12) 2018; 6 ref_9 Srivastva (ref_27) 2021; 558 Yang (ref_3) 2018; 78 ref_8 Umer (ref_5) 2020; 122 Martis (ref_32) 2014; 13 Jalali (ref_1) 2017; 87 Zhang (ref_26) 2019; 125 Martis (ref_31) 2013; 8 |
References_xml | – ident: ref_28 – ident: ref_33 doi: 10.1109/RTEICT.2016.7808164 – ident: ref_9 – volume: 6 start-page: 18251 year: 2018 ident: ref_12 article-title: A multiscale autoregressive model-based electrocardiogram identification method publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2820684 – volume: 8 start-page: 437 year: 2013 ident: ref_31 article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.01.005 – volume: 38 start-page: 5081 year: 2011 ident: ref_4 article-title: Optical sensor measurement and biometric-based fractal pattern classifier for fingerprint recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.143 – volume: 38 start-page: E12547 year: 2021 ident: ref_24 article-title: ResNet-Attention model for human authentication using ECG signals publication-title: Expert Syst. doi: 10.1111/exsy.12547 – ident: ref_34 – volume: 87 start-page: 304 year: 2017 ident: ref_1 article-title: Sensitive deep convolutional neural network for face recognition at large standoffs with small dataset publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.06.025 – volume: 121 start-page: 101 year: 2020 ident: ref_6 article-title: Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.07.020 – ident: ref_14 doi: 10.1109/MACS48846.2019.9024820 – ident: ref_15 doi: 10.3390/s20102920 – volume: 78 start-page: 242 year: 2018 ident: ref_3 article-title: A fingerprint and finger-vein based cancelable multi-biometric system publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.01.026 – volume: 24 start-page: 12599 year: 2020 ident: ref_20 article-title: Multimodal biometric systems based on different fusion levels of ECG and fingerprint using different classifiers publication-title: Soft Comput. doi: 10.1007/s00500-020-04700-6 – volume: 3 start-page: 230 year: 1985 ident: ref_35 article-title: A Real-Time QRS Detection Algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – ident: ref_22 doi: 10.3390/electronics10172052 – volume: 122 start-page: 407 year: 2020 ident: ref_5 article-title: Person identification using fusion of iris and periocular deep features publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.11.009 – volume: 8 start-page: 153436 year: 2020 ident: ref_23 article-title: A Deep Biometric Recognition and Diagnosis Network With Residual Learning for Arrhythmia Screening Using Electrocardiogram Recordings publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016938 – volume: 8 start-page: 487 year: 2020 ident: ref_10 article-title: ECG Biometric Recognition: Unlinkability, Irreversibility, and Security publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3004362 – ident: ref_30 doi: 10.1109/CVPR.2016.90 – volume: 38 start-page: 133 year: 2005 ident: ref_16 article-title: ECG to identify individuals publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.05.014 – ident: ref_8 – ident: ref_29 doi: 10.22489/CinC.2017.065-469 – ident: ref_25 doi: 10.1145/3423603.3424053 – volume: 13 start-page: 295 year: 2014 ident: ref_32 article-title: Computer aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.04.001 – ident: ref_36 doi: 10.1109/ICCE-Taiwan49838.2020.9258330 – ident: ref_21 doi: 10.3390/s20154078 – volume: 2 start-page: 261 year: 2012 ident: ref_19 article-title: Human identification based on ECG and palmprint publication-title: Int. J. Electr. Comput. Eng. – volume: 66 start-page: 302 year: 2017 ident: ref_2 article-title: Discriminative multi-scale sparse coding for single-sample face recognition with occlusion publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.021 – volume: 98 start-page: 1 year: 2017 ident: ref_7 article-title: Hierarchical Bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.08.001 – volume: 2 start-page: 1 year: 2012 ident: ref_18 article-title: ECG based human authentication using wavelets and random forests publication-title: Int. J. Cryptogr. Inf. Secur. (IJCIS) – volume: 16 start-page: 445 year: 2012 ident: ref_11 article-title: HBS: A novel biometric feature based on heartbeat morphology publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2188535 – volume: 558 start-page: 208 year: 2021 ident: ref_27 article-title: PlexNet: A fast and robust ECG biometric system for human recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.001 – volume: 3 start-page: 257 year: 2014 ident: ref_17 article-title: Individual identification based on chaotic electrocardiogram signals during muscular exercise publication-title: IET Biom. doi: 10.1049/iet-bmt.2013.0014 – ident: ref_13 doi: 10.3390/e23060733 – volume: 125 start-page: 668 year: 2019 ident: ref_26 article-title: ECG-based personal recognition using a convolutional neural network publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.07.009 |
SSID | ssj0000913856 |
Score | 2.1931467 |
Snippet | With the increasing demand for security and privacy, identity recognition based on the unique biometric features of ECG signals is gaining more and more... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 676 |
SubjectTerms | Accuracy Artificial intelligence Biometrics Cardiology Datasets Deep learning Discriminant analysis EKG Feature extraction Identification Identification methods Model testing Network management systems Neural networks Noise Noise reduction Research methodology Support vector machines Wavelet transforms |
Title | ECG Identity Recognition Based on Feature Reuse Residual Network |
URI | https://www.proquest.com/docview/2653023713 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oXPRgBDWiSDbRgxwa2G67bU8qhEdMIIZIwq3ZV0-mIIWDF3-7s-0WJDFemjYzp5ndeXXmG4QegoD7yjWHV4IaPEZCR0Qud7hPdcThRNEcdnEyZeO597rwF7bgltm2ytIm5oZaLaWpkXdclu-3gZzqafXpmK1R5u-qXaFxjKpggkNIvqq9wfRttquyGNTL0GcFLimF_L6zWhuMNLDR7NATHRri3LsMz9GZDQvxS6HHGjrSaR2d_gILrKOavYYZfrRY0e0L9Dzoj7Adtv3Cs7IbaJniHrgnheHFBHnbtQbiNjPPLB-_wtOi__sSzYeD9_7YsUsRHOlG_sahniRSSc-TKuSEBURFknuJUH7CmBIJiaTwaCCBlETEVTQhmiTEFZSJQHU5vUKVdJnqa4Q1SAbSFUUJ1QamTHQ5D0DEEfCHQrEGapcCiqVFDDeLKz5iyByMMOO9MBvofse7KnAy_uRqlnKO7V3J4r1mb_4n36IT1wwf5H0zTVTZrLf6DkKCjWih43A4alntw9fke_ADbzK3Bg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCp2LAESHCJqO3GSA2IvLUsPCCRuwVtOqC1NK8RP8Y2MswCVELdeokhj5TB-nsWZeQOwF4YyMMyBV-M2-IJGnoqZ9GTAbSwRUTynXbxvi-aTf_McPNfgs-qFcWWVlU3MDbXpandHfsREPt8Gc6qT3pvnpka5v6vVCI0CFrf24x1Ttuy4dYn7u89Y4-rxoumVUwU8zeJg4HFfU22072sTSSpCamIt_VSZIBXCqJTGWvk81ChKY8oMT6mlKWWKCxWauuT43QmY8jmP3YmKGtffdzqOYzMKRMGCivL6Ua_vGNnQI4hRvzdq9nNf1piHuTIIJWcFahagZjuLMPuLmnARFspDn5GDkpn6cAlOry6uSdna-0EeqtqjboecozM0BF9cSDnsWxQOM_fM8mYv0i6qzZfhaSzKWoHJTrdjV4FY1AwmR4ZTbh0pmqpLGeKGxrg-UkaswWGloESX_ORuTMZrgnmKU2byo8w12P1e2ytYOf5ctVnpOSlPZpb84Gj9f_EOTDcf7--Su1b7dgNmmGt7yCt2NmFy0B_aLQxGBmo7RwCBl3FD7gs_wfH_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB5SB0J7CHm0NM8utIH6IOzdlVbSobT1K3HSGhMayE3Zl07BdiybkL-WX5dZaZUHlNxyEYIddJj9dh6rmW8AvsWxjAxz4NW4DaGgSaBSJgMZcZtKRBQvaRf_jsTJRXh6GV2uwH3dC-PKKmubWBpqM9XujrzFRDnfBnOqVu7LIsa9wc_ZTeAmSLk_rfU4jQoiZ_buFtO34sewh3t9xNig_697EvgJA4FmabQIeKipNjoMtUkkFTE1qZZhrkyUC2FUTlOtQh5rXMpTygzPqaU5ZYoLFZu25Pjdd7AaY1bUbsBqpz8anz_e8DjGzSQSFScq52m7NZs7fjb0D-KlF3zpBErPNtiAdR-Skt8VhjZhxU624MMzosIt2PQmoCDfPU91cxt-9bvHxDf63pHzuhJpOiEddI2G4IsLMJdzi4vLwj2LsvWLjKra849w8Sbq-gSNyXRiPwOxqBlMlQyn3DqKNNWWMsbtTVE-UUbsQLNWUKY9W7kbmnGdYdbilJk9KXMHvj7KziqOjv9K7dd6zvw5LbInVO2-vvwF1hBu2Z_h6GwP3jPXA1GW7-xDYzFf2gOMTBbq0EOAwNVbo-4BStD3kQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Identity+Recognition+Based+on+Feature+Reuse+Residual+Network&rft.jtitle=Processes&rft.au=Yang%2C+Zhengqiang&rft.au=Liu%2C+Linyue&rft.au=Li%2C+Ning&rft.au=Tian%2C+Junwei&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=10&rft.issue=4&rft.spage=676&rft_id=info:doi/10.3390%2Fpr10040676&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |