ECG Identity Recognition Based on Feature Reuse Residual Network

With the increasing demand for security and privacy, identity recognition based on the unique biometric features of ECG signals is gaining more and more attention. This paper proposes a feature reuse residual network (FRRNet) model to address the problem that the recognition accuracy of conventional...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 10; no. 4; p. 676
Main Authors Yang, Zhengqiang, Liu, Linyue, Li, Ning, Tian, Junwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increasing demand for security and privacy, identity recognition based on the unique biometric features of ECG signals is gaining more and more attention. This paper proposes a feature reuse residual network (FRRNet) model to address the problem that the recognition accuracy of conventional ECG identification methods decreases with the increase in the number of testing samples at different moments or in different heartbeat cycles. The residual module of the proposed FRRNet model uses the adding layers of max pooling (MP) and average pooling (AP), and the proposed model splices the deep network with the shallow network to reduce noise extraction and enhance feature reuse. The FRRNet model is tested on 20 and 47 subjects under the MIT-BIH dataset, and its recognition accuracy is 99.32% and 100%, respectively. Additionally, the FRRNet model is tested on 50 and 87 subjects under the PhysioNet/Computing in Cardiology Challenge 2017 (CinC_2017) dataset, and its recognition accuracy is 94.52% and 93.51%, respectively. A total of 20 subjects are taken from the MIT-BIH and the CinC_2017 datasets for testing, and the recognition accuracy is 98.97%. The experimental results show that the FRRNet model proposed in this paper has high recognition accuracy, and the recognition accuracy is not greatly affected when the number of individuals increases.
AbstractList With the increasing demand for security and privacy, identity recognition based on the unique biometric features of ECG signals is gaining more and more attention. This paper proposes a feature reuse residual network (FRRNet) model to address the problem that the recognition accuracy of conventional ECG identification methods decreases with the increase in the number of testing samples at different moments or in different heartbeat cycles. The residual module of the proposed FRRNet model uses the adding layers of max pooling (MP) and average pooling (AP), and the proposed model splices the deep network with the shallow network to reduce noise extraction and enhance feature reuse. The FRRNet model is tested on 20 and 47 subjects under the MIT-BIH dataset, and its recognition accuracy is 99.32% and 100%, respectively. Additionally, the FRRNet model is tested on 50 and 87 subjects under the PhysioNet/Computing in Cardiology Challenge 2017 (CinC_2017) dataset, and its recognition accuracy is 94.52% and 93.51%, respectively. A total of 20 subjects are taken from the MIT-BIH and the CinC_2017 datasets for testing, and the recognition accuracy is 98.97%. The experimental results show that the FRRNet model proposed in this paper has high recognition accuracy, and the recognition accuracy is not greatly affected when the number of individuals increases.
Author Li, Ning
Yang, Zhengqiang
Liu, Linyue
Tian, Junwei
Author_xml – sequence: 1
  givenname: Zhengqiang
  surname: Yang
  fullname: Yang, Zhengqiang
– sequence: 2
  givenname: Linyue
  surname: Liu
  fullname: Liu, Linyue
– sequence: 3
  givenname: Ning
  orcidid: 0000-0001-9014-5913
  surname: Li
  fullname: Li, Ning
– sequence: 4
  givenname: Junwei
  surname: Tian
  fullname: Tian, Junwei
BookMark eNptUE1LAzEQDVLBWnvxFyx4E1YzyW7S3NTS1kJRED0v2XxIat3UJIv035tSQRHnMPPgvTfDvFM06HxnEDoHfEWpwNfbABhXmHF2hIaEEF4KDnzwC5-gcYxrnEsAndRsiG5m00Wx1KZLLu2KJ6P8a-eS811xJ6PRRQZzI1MfTCb7uO_R6V5uigeTPn14O0PHVm6iGX_PEXqZz56n9-XqcbGc3q5KRUSdSlopUFpVldITCYyDFkpWttW1ZUy3FoRqK8pVpqwAoqkFAxZIS1nLNZZ0hC4Oe7fBf_Qmpmbt-9Dlkw1hNcWEcqBZhQ8qFXyMwdhGuST3_6Qg3aYB3Oyjan6iypbLP5ZtcO8y7P4TfwHGt2pg
CitedBy_id crossref_primary_10_1155_2022_3466787
Cites_doi 10.1109/RTEICT.2016.7808164
10.1109/ACCESS.2018.2820684
10.1016/j.bspc.2013.01.005
10.1016/j.eswa.2010.09.143
10.1111/exsy.12547
10.1016/j.eswa.2017.06.025
10.1016/j.neunet.2019.07.020
10.1109/MACS48846.2019.9024820
10.3390/s20102920
10.1016/j.patcog.2018.01.026
10.1007/s00500-020-04700-6
10.1109/TBME.1985.325532
10.3390/electronics10172052
10.1016/j.neunet.2019.11.009
10.1109/ACCESS.2020.3016938
10.1109/JIOT.2020.3004362
10.1109/CVPR.2016.90
10.1016/j.patcog.2004.05.014
10.22489/CinC.2017.065-469
10.1145/3423603.3424053
10.1016/j.bspc.2014.04.001
10.1109/ICCE-Taiwan49838.2020.9258330
10.3390/s20154078
10.1016/j.patcog.2017.01.021
10.1016/j.patrec.2017.08.001
10.1109/TITB.2012.2188535
10.1016/j.ins.2021.01.001
10.1049/iet-bmt.2013.0014
10.3390/e23060733
10.1016/j.patrec.2019.07.009
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/pr10040676
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr10040676
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c295t-34c1cdc44cd8a1671d9ca4fbd5f66dbf19cb437c167f912d3f1e1f12b36b7d0a3
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Fri Jul 25 12:03:05 EDT 2025
Thu Apr 24 22:55:01 EDT 2025
Tue Jul 01 02:34:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-34c1cdc44cd8a1671d9ca4fbd5f66dbf19cb437c167f912d3f1e1f12b36b7d0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9014-5913
OpenAccessLink https://www.proquest.com/docview/2653023713?pq-origsite=%requestingapplication%
PQID 2653023713
PQPubID 2032344
ParticipantIDs proquest_journals_2653023713
crossref_citationtrail_10_3390_pr10040676
crossref_primary_10_3390_pr10040676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_7) 2017; 98
(ref_20) 2020; 24
ref_14
ref_36
ref_13
ref_34
ref_33
ref_30
Pan (ref_35) 1985; 3
Belgacem (ref_18) 2012; 2
ref_15
Israel (ref_16) 2005; 38
Islam (ref_11) 2012; 16
Lin (ref_4) 2011; 38
Wu (ref_10) 2020; 8
Dang (ref_23) 2020; 8
Hammad (ref_24) 2021; 38
Yu (ref_2) 2017; 66
Lin (ref_17) 2014; 3
Zokaee (ref_19) 2012; 2
ref_25
ref_22
ref_21
Varkarakis (ref_6) 2020; 121
ref_29
ref_28
Liu (ref_12) 2018; 6
ref_9
Srivastva (ref_27) 2021; 558
Yang (ref_3) 2018; 78
ref_8
Umer (ref_5) 2020; 122
Martis (ref_32) 2014; 13
Jalali (ref_1) 2017; 87
Zhang (ref_26) 2019; 125
Martis (ref_31) 2013; 8
References_xml – ident: ref_28
– ident: ref_33
  doi: 10.1109/RTEICT.2016.7808164
– ident: ref_9
– volume: 6
  start-page: 18251
  year: 2018
  ident: ref_12
  article-title: A multiscale autoregressive model-based electrocardiogram identification method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820684
– volume: 8
  start-page: 437
  year: 2013
  ident: ref_31
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.01.005
– volume: 38
  start-page: 5081
  year: 2011
  ident: ref_4
  article-title: Optical sensor measurement and biometric-based fractal pattern classifier for fingerprint recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.143
– volume: 38
  start-page: E12547
  year: 2021
  ident: ref_24
  article-title: ResNet-Attention model for human authentication using ECG signals
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12547
– ident: ref_34
– volume: 87
  start-page: 304
  year: 2017
  ident: ref_1
  article-title: Sensitive deep convolutional neural network for face recognition at large standoffs with small dataset
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.06.025
– volume: 121
  start-page: 101
  year: 2020
  ident: ref_6
  article-title: Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.07.020
– ident: ref_14
  doi: 10.1109/MACS48846.2019.9024820
– ident: ref_15
  doi: 10.3390/s20102920
– volume: 78
  start-page: 242
  year: 2018
  ident: ref_3
  article-title: A fingerprint and finger-vein based cancelable multi-biometric system
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.01.026
– volume: 24
  start-page: 12599
  year: 2020
  ident: ref_20
  article-title: Multimodal biometric systems based on different fusion levels of ECG and fingerprint using different classifiers
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-04700-6
– volume: 3
  start-page: 230
  year: 1985
  ident: ref_35
  article-title: A Real-Time QRS Detection Algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– ident: ref_22
  doi: 10.3390/electronics10172052
– volume: 122
  start-page: 407
  year: 2020
  ident: ref_5
  article-title: Person identification using fusion of iris and periocular deep features
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.11.009
– volume: 8
  start-page: 153436
  year: 2020
  ident: ref_23
  article-title: A Deep Biometric Recognition and Diagnosis Network With Residual Learning for Arrhythmia Screening Using Electrocardiogram Recordings
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016938
– volume: 8
  start-page: 487
  year: 2020
  ident: ref_10
  article-title: ECG Biometric Recognition: Unlinkability, Irreversibility, and Security
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3004362
– ident: ref_30
  doi: 10.1109/CVPR.2016.90
– volume: 38
  start-page: 133
  year: 2005
  ident: ref_16
  article-title: ECG to identify individuals
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.05.014
– ident: ref_8
– ident: ref_29
  doi: 10.22489/CinC.2017.065-469
– ident: ref_25
  doi: 10.1145/3423603.3424053
– volume: 13
  start-page: 295
  year: 2014
  ident: ref_32
  article-title: Computer aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.04.001
– ident: ref_36
  doi: 10.1109/ICCE-Taiwan49838.2020.9258330
– ident: ref_21
  doi: 10.3390/s20154078
– volume: 2
  start-page: 261
  year: 2012
  ident: ref_19
  article-title: Human identification based on ECG and palmprint
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 66
  start-page: 302
  year: 2017
  ident: ref_2
  article-title: Discriminative multi-scale sparse coding for single-sample face recognition with occlusion
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.01.021
– volume: 98
  start-page: 1
  year: 2017
  ident: ref_7
  article-title: Hierarchical Bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.08.001
– volume: 2
  start-page: 1
  year: 2012
  ident: ref_18
  article-title: ECG based human authentication using wavelets and random forests
  publication-title: Int. J. Cryptogr. Inf. Secur. (IJCIS)
– volume: 16
  start-page: 445
  year: 2012
  ident: ref_11
  article-title: HBS: A novel biometric feature based on heartbeat morphology
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2188535
– volume: 558
  start-page: 208
  year: 2021
  ident: ref_27
  article-title: PlexNet: A fast and robust ECG biometric system for human recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.001
– volume: 3
  start-page: 257
  year: 2014
  ident: ref_17
  article-title: Individual identification based on chaotic electrocardiogram signals during muscular exercise
  publication-title: IET Biom.
  doi: 10.1049/iet-bmt.2013.0014
– ident: ref_13
  doi: 10.3390/e23060733
– volume: 125
  start-page: 668
  year: 2019
  ident: ref_26
  article-title: ECG-based personal recognition using a convolutional neural network
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.07.009
SSID ssj0000913856
Score 2.1931467
Snippet With the increasing demand for security and privacy, identity recognition based on the unique biometric features of ECG signals is gaining more and more...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 676
SubjectTerms Accuracy
Artificial intelligence
Biometrics
Cardiology
Datasets
Deep learning
Discriminant analysis
EKG
Feature extraction
Identification
Identification methods
Model testing
Network management systems
Neural networks
Noise
Noise reduction
Research methodology
Support vector machines
Wavelet transforms
Title ECG Identity Recognition Based on Feature Reuse Residual Network
URI https://www.proquest.com/docview/2653023713
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oXPRgBDWiSDbRgxwa2G67bU8qhEdMIIZIwq3ZV0-mIIWDF3-7s-0WJDFemjYzp5ndeXXmG4QegoD7yjWHV4IaPEZCR0Qud7hPdcThRNEcdnEyZeO597rwF7bgltm2ytIm5oZaLaWpkXdclu-3gZzqafXpmK1R5u-qXaFxjKpggkNIvqq9wfRttquyGNTL0GcFLimF_L6zWhuMNLDR7NATHRri3LsMz9GZDQvxS6HHGjrSaR2d_gILrKOavYYZfrRY0e0L9Dzoj7Adtv3Cs7IbaJniHrgnheHFBHnbtQbiNjPPLB-_wtOi__sSzYeD9_7YsUsRHOlG_sahniRSSc-TKuSEBURFknuJUH7CmBIJiaTwaCCBlETEVTQhmiTEFZSJQHU5vUKVdJnqa4Q1SAbSFUUJ1QamTHQ5D0DEEfCHQrEGapcCiqVFDDeLKz5iyByMMOO9MBvofse7KnAy_uRqlnKO7V3J4r1mb_4n36IT1wwf5H0zTVTZrLf6DkKCjWih43A4alntw9fke_ADbzK3Bg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCp2LAESHCJqO3GSA2IvLUsPCCRuwVtOqC1NK8RP8Y2MswCVELdeokhj5TB-nsWZeQOwF4YyMMyBV-M2-IJGnoqZ9GTAbSwRUTynXbxvi-aTf_McPNfgs-qFcWWVlU3MDbXpandHfsREPt8Gc6qT3pvnpka5v6vVCI0CFrf24x1Ttuy4dYn7u89Y4-rxoumVUwU8zeJg4HFfU22072sTSSpCamIt_VSZIBXCqJTGWvk81ChKY8oMT6mlKWWKCxWauuT43QmY8jmP3YmKGtffdzqOYzMKRMGCivL6Ua_vGNnQI4hRvzdq9nNf1piHuTIIJWcFahagZjuLMPuLmnARFspDn5GDkpn6cAlOry6uSdna-0EeqtqjboecozM0BF9cSDnsWxQOM_fM8mYv0i6qzZfhaSzKWoHJTrdjV4FY1AwmR4ZTbh0pmqpLGeKGxrg-UkaswWGloESX_ORuTMZrgnmKU2byo8w12P1e2ytYOf5ctVnpOSlPZpb84Gj9f_EOTDcf7--Su1b7dgNmmGt7yCt2NmFy0B_aLQxGBmo7RwCBl3FD7gs_wfH_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB5SB0J7CHm0NM8utIH6IOzdlVbSobT1K3HSGhMayE3Zl07BdiybkL-WX5dZaZUHlNxyEYIddJj9dh6rmW8AvsWxjAxz4NW4DaGgSaBSJgMZcZtKRBQvaRf_jsTJRXh6GV2uwH3dC-PKKmubWBpqM9XujrzFRDnfBnOqVu7LIsa9wc_ZTeAmSLk_rfU4jQoiZ_buFtO34sewh3t9xNig_697EvgJA4FmabQIeKipNjoMtUkkFTE1qZZhrkyUC2FUTlOtQh5rXMpTygzPqaU5ZYoLFZu25Pjdd7AaY1bUbsBqpz8anz_e8DjGzSQSFScq52m7NZs7fjb0D-KlF3zpBErPNtiAdR-Skt8VhjZhxU624MMzosIt2PQmoCDfPU91cxt-9bvHxDf63pHzuhJpOiEddI2G4IsLMJdzi4vLwj2LsvWLjKra849w8Sbq-gSNyXRiPwOxqBlMlQyn3DqKNNWWMsbtTVE-UUbsQLNWUKY9W7kbmnGdYdbilJk9KXMHvj7KziqOjv9K7dd6zvw5LbInVO2-vvwF1hBu2Z_h6GwP3jPXA1GW7-xDYzFf2gOMTBbq0EOAwNVbo-4BStD3kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Identity+Recognition+Based+on+Feature+Reuse+Residual+Network&rft.jtitle=Processes&rft.au=Yang%2C+Zhengqiang&rft.au=Liu%2C+Linyue&rft.au=Li%2C+Ning&rft.au=Tian%2C+Junwei&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=10&rft.issue=4&rft.spage=676&rft_id=info:doi/10.3390%2Fpr10040676&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon