Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models
Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availabil...
Saved in:
Published in | IEEE communications letters Vol. 22; no. 11; pp. 2278 - 2281 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models. |
---|---|
AbstractList | Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models. |
Author | Raj, Vishnu Kalyani, Sheetal |
Author_xml | – sequence: 1 givenname: Vishnu orcidid: 0000-0002-6939-8884 surname: Raj fullname: Raj, Vishnu email: ee14d213@ee.iitm.ac.in organization: Department of Electrical Engineering, IIT Madras, Chennai, India – sequence: 2 givenname: Sheetal orcidid: 0000-0002-1530-0140 surname: Kalyani fullname: Kalyani, Sheetal email: skalyani@ee.iitm.ac.in organization: Department of Electrical Engineering, IIT Madras, Chennai, India |
BookMark | eNp9kD1Pw0AMhk-oSLSFPwDLScwp95Hk7thK-ZRSlaGoY-QkbpMSknK5DP33XCliYGCxLdmvX_sZkUHTNkjIJWcTzpm5SWaL-XwiGNcToWPNmTwhQx5FOhA-DHzNtAmUMvqMjLpuyxjTIuJDsrqD_H1n2x1swFXNhi5L2_abkroS6bSyt_QecUcTBNsc2uDoa7nvqhxqmsAeLV1Vrmx7R2clNA3WdN4WWHfn5HQNdYcXP3lM3h4flrPnIFk8vcymSZALE7lAhnEYr7kykc5QxP5AEDJkBpVQqihkFgJkueAmXhdGGgaoGWQhKgCJUnM5JtfHvf6Hzx47l27b3jbeMhVcCqa0VLGfEsep3LZdZ3Gd7mz1AXafcpYeAKbfANMDwPQHoBfpP6K8ch5S2zgLVf2_9OoorRDx10uHkX-ayS-sQH9b |
CODEN | ICLEF6 |
CitedBy_id | crossref_primary_10_1049_cmu2_12076 crossref_primary_10_3390_mi13010031 crossref_primary_10_1109_TAES_2021_3103560 crossref_primary_10_1109_TCOMM_2019_2924010 crossref_primary_10_1109_TWC_2020_2970707 crossref_primary_10_1109_LCOMM_2019_2915977 crossref_primary_10_1109_ACCESS_2022_3174369 crossref_primary_10_1007_s11265_020_01631_1 crossref_primary_10_1109_TCCN_2023_3307948 crossref_primary_10_1002_ett_4773 crossref_primary_10_1007_s12596_024_02006_6 crossref_primary_10_1109_TCCN_2022_3161936 crossref_primary_10_1109_JLT_2022_3148270 crossref_primary_10_1109_JSAC_2020_3036964 crossref_primary_10_1109_TWC_2019_2956146 crossref_primary_10_3390_s24102993 crossref_primary_10_1109_TCCN_2020_2985371 crossref_primary_10_1109_OJCOMS_2024_3381951 crossref_primary_10_1016_j_phycom_2023_102199 crossref_primary_10_1109_TWC_2021_3123948 crossref_primary_10_1109_JLT_2021_3103339 crossref_primary_10_1109_OJCOMS_2022_3210648 crossref_primary_10_1109_JLT_2023_3251660 crossref_primary_10_1109_MCOM_001_2000804 crossref_primary_10_1109_OJCOMS_2024_3425314 crossref_primary_10_1109_ACCESS_2022_3221800 crossref_primary_10_1109_TWC_2022_3183255 crossref_primary_10_1109_TCOMM_2022_3201931 crossref_primary_10_1109_ACCESS_2023_3245330 crossref_primary_10_1109_TCCN_2019_2943455 crossref_primary_10_1109_LCOMM_2021_3102319 crossref_primary_10_1371_journal_pone_0268952 crossref_primary_10_1109_ACCESS_2022_3224922 crossref_primary_10_1109_JSAC_2019_2933969 crossref_primary_10_1364_OE_433690 crossref_primary_10_1109_JPROC_2024_3438755 crossref_primary_10_1109_COMST_2023_3333342 crossref_primary_10_1007_s41683_022_00095_8 crossref_primary_10_1109_ACCESS_2020_2967402 crossref_primary_10_1109_JLT_2020_2991028 crossref_primary_10_1007_s11432_022_3643_y crossref_primary_10_1109_TCCN_2021_3061464 crossref_primary_10_1016_j_phycom_2021_101526 crossref_primary_10_1109_TCCN_2020_3018736 crossref_primary_10_3390_s23249848 crossref_primary_10_1109_TVT_2019_2951501 crossref_primary_10_1007_s11277_024_10923_9 crossref_primary_10_1016_j_dcan_2023_05_012 crossref_primary_10_1007_s11277_019_06275_4 crossref_primary_10_1109_ACCESS_2024_3380203 crossref_primary_10_1109_ACCESS_2019_2923321 crossref_primary_10_1109_TSP_2020_3019655 crossref_primary_10_1109_TCOMM_2019_2951563 crossref_primary_10_1109_TWC_2022_3169900 crossref_primary_10_1109_ACCESS_2020_2984218 crossref_primary_10_3390_electronics13050831 crossref_primary_10_1177_1477153520926200 crossref_primary_10_1109_TITS_2022_3154750 crossref_primary_10_1109_JSAC_2019_2933891 crossref_primary_10_1109_TCCN_2020_2985354 crossref_primary_10_1109_LWC_2020_2996745 crossref_primary_10_1109_ACCESS_2019_2928049 crossref_primary_10_1109_ACCESS_2022_3180055 |
Cites_doi | 10.1109/9.119632 10.1109/LCOMM.2017.2787646 10.1109/SPAWC.2018.8445920 10.1109/TCCN.2017.2758370 10.1109/LCOMM.2018.2792019 10.1109/SPAWC.2017.8227772 10.1109/JSTSP.2017.2784180 10.1109/LWC.2017.2757490 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/LCOMM.2018.2868103 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2558 |
EndPage | 2281 |
ExternalDocumentID | 10_1109_LCOMM_2018_2868103 8452950 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813 |
IEDL.DBID | RIE |
ISSN | 1089-7798 |
IngestDate | Mon Jun 30 02:25:15 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Tue Jul 01 04:16:00 EDT 2025 Wed Aug 27 02:49:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6939-8884 0000-0002-1530-0140 |
PQID | 2132078376 |
PQPubID | 85419 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2132078376 crossref_primary_10_1109_LCOMM_2018_2868103 ieee_primary_8452950 crossref_citationtrail_10_1109_LCOMM_2018_2868103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE communications letters |
PublicationTitleAbbrev | COML |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | kingma (ref15) 2015 ref14 ref1 ref8 ref7 ye (ref11) 2018 spall (ref13) 1998; 19 ref4 ballard (ref2) 1987 ref3 ref6 o’shea (ref10) 2018 ref5 aoudia (ref12) 2018 o’shea (ref9) 2018 |
References_xml | – ident: ref14 doi: 10.1109/9.119632 – volume: 19 start-page: 482 year: 1998 ident: ref13 article-title: An overview of the simultaneous perturbation method for efficient optimization publication-title: The Johns Hopkins APL Technical Digest – year: 2018 ident: ref9 publication-title: Physical layer communications system design over-the-air using adversarial networks – ident: ref4 doi: 10.1109/LCOMM.2017.2787646 – year: 2018 ident: ref11 publication-title: Channel agnostic end-to-end learning based communication systems with conditional GAN – start-page: 1 year: 2015 ident: ref15 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – ident: ref7 doi: 10.1109/SPAWC.2018.8445920 – start-page: 279 year: 1987 ident: ref2 article-title: Modular learning in neural networks publication-title: Proc AAAI – ident: ref1 doi: 10.1109/TCCN.2017.2758370 – year: 2018 ident: ref10 publication-title: Approximating the void Learning stochastic channel models from observation with variational generative adversarial networks – ident: ref3 doi: 10.1109/LCOMM.2018.2792019 – ident: ref6 doi: 10.1109/SPAWC.2017.8227772 – ident: ref8 doi: 10.1109/JSTSP.2017.2784180 – year: 2018 ident: ref12 publication-title: End-to-end learning of communications systems without a channel model – ident: ref5 doi: 10.1109/LWC.2017.2757490 |
SSID | ssj0008251 |
Score | 2.5667744 |
Snippet | Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2278 |
SubjectTerms | Artificial neural networks Channel models Communication systems Communications systems Computer simulation Deep learning Machine learning Neural networks optimization Perturbation methods Receivers Training Transmitters |
Title | Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models |
URI | https://ieeexplore.ieee.org/document/8452950 https://www.proquest.com/docview/2132078376 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8CqJQkAc2SJvGJonZyksINcDQim6R7VygomoRTRd-PXdJGvESYsvgONadfY_4vu8YOxI6sGCF60jdAUeCDRytTMcJw9Qj_y99oEQxuvNvBvJ2eDpcYicVFgYA8uIzaNFjfpefTO2cfpW1Q7olpAR9GRO3AqtVWV2CYBbF9AojRhUuADKuavcu7qOIqrjClhcS_5b44oTyrio_THHuX67XWbRYWVFW8tKaZ6Zl37-RNv536RtsrQw0ebfYGZtsCSZbbPUT_WCdPZ5r-4IfRJuiqfqZ94umPRyDQt4dvZ3xS4BXXlKwPnGd8YdSrbynMVbnj6PseTrPOGEUJjDm1FltPNtmg-ur_sWNUzZacCwuKnNQI9JP8WiehgY8H8WnPYGJH2BwEySJMFJrY9G2-WmihHI1hK42EgKtBaDLFzusNplOYJdxIRPjSsDJjJJJmhqVYA6UdvxAWyIDbLDOQvKxLVnIqRnGOM6zEVfFubZi0lZcaqvBjqt3XgsOjj9H10n81chS8g3WXCg4Lo_pLPYIQB5gju7v_f7WPluhuQvwYZPVsrc5HGAUkpnDfPt9ADJv11U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VcAAO0NJWBELZA5yQU8fe2LtIHEpLlbZJ6SFVe3N312OoGiVV4wi1z8Kr8G7M2JuoBcStEjcf1rvanc_z4535BuBtbFKHLg4DaToYSHRpYLTtBEoVEdt_mSAHioPDpHcs90-7p0vwY1ELg4hV8hm2-bG6y88nbsa_yjYV3xJ2Q59CeYDX3ylAm37c2yFpvoui3c_D7V7gewgEjoaWAS0mk4JQ11UWoyRNtYliimmQ7Haa57GVxlhHn21S5Jrif4MqNFZiakyMZM1imvcBPCQ_oxvV1WELPc9Fn3X6viYfVat5SU6oN_vbXwYDzhtT7Ugx41d8x-xVfVz-UP6VRdt9Bj_nZ1Ensly0Z6Vtu5vfaCL_18NahqfelRZbNfZXYAnHz-HJLYLFVTj5ZNwFbZC0puH8bjGs2xIJcnvF1vnVB7GDeCk8yexXYUpx5IEr-oaiEXFyXn6bzErBVRhjHAnuHTearsHxvexsHRrjyRhfgIhlbkOJNJnVMi8Kq3OK8opOkhrHdIdN6MwlnTnPs87tPkZZFW-FOqvQkTE6Mo-OJrxfvHNZs4z8c_Qqi3sx0ku6Ca05oDKviKZZxCXyqSIz8vLvb72BR73hoJ_19w4PXsFjXqcutWxBo7ya4WvyuUq7UUFfwNl9w-cXLlcznA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Backpropagating+Through+the+Air%3A+Deep+Learning+at+Physical+Layer+Without+Channel+Models&rft.jtitle=IEEE+communications+letters&rft.au=Raj%2C+Vishnu&rft.au=Kalyani%2C+Sheetal&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=1089-7798&rft.volume=22&rft.issue=11&rft.spage=2278&rft.epage=2281&rft_id=info:doi/10.1109%2FLCOMM.2018.2868103&rft.externalDocID=8452950 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |