Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models

Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availabil...

Full description

Saved in:
Bibliographic Details
Published inIEEE communications letters Vol. 22; no. 11; pp. 2278 - 2281
Main Authors Raj, Vishnu, Kalyani, Sheetal
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.
AbstractList Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.
Author Raj, Vishnu
Kalyani, Sheetal
Author_xml – sequence: 1
  givenname: Vishnu
  orcidid: 0000-0002-6939-8884
  surname: Raj
  fullname: Raj, Vishnu
  email: ee14d213@ee.iitm.ac.in
  organization: Department of Electrical Engineering, IIT Madras, Chennai, India
– sequence: 2
  givenname: Sheetal
  orcidid: 0000-0002-1530-0140
  surname: Kalyani
  fullname: Kalyani, Sheetal
  email: skalyani@ee.iitm.ac.in
  organization: Department of Electrical Engineering, IIT Madras, Chennai, India
BookMark eNp9kD1Pw0AMhk-oSLSFPwDLScwp95Hk7thK-ZRSlaGoY-QkbpMSknK5DP33XCliYGCxLdmvX_sZkUHTNkjIJWcTzpm5SWaL-XwiGNcToWPNmTwhQx5FOhA-DHzNtAmUMvqMjLpuyxjTIuJDsrqD_H1n2x1swFXNhi5L2_abkroS6bSyt_QecUcTBNsc2uDoa7nvqhxqmsAeLV1Vrmx7R2clNA3WdN4WWHfn5HQNdYcXP3lM3h4flrPnIFk8vcymSZALE7lAhnEYr7kykc5QxP5AEDJkBpVQqihkFgJkueAmXhdGGgaoGWQhKgCJUnM5JtfHvf6Hzx47l27b3jbeMhVcCqa0VLGfEsep3LZdZ3Gd7mz1AXafcpYeAKbfANMDwPQHoBfpP6K8ch5S2zgLVf2_9OoorRDx10uHkX-ayS-sQH9b
CODEN ICLEF6
CitedBy_id crossref_primary_10_1049_cmu2_12076
crossref_primary_10_3390_mi13010031
crossref_primary_10_1109_TAES_2021_3103560
crossref_primary_10_1109_TCOMM_2019_2924010
crossref_primary_10_1109_TWC_2020_2970707
crossref_primary_10_1109_LCOMM_2019_2915977
crossref_primary_10_1109_ACCESS_2022_3174369
crossref_primary_10_1007_s11265_020_01631_1
crossref_primary_10_1109_TCCN_2023_3307948
crossref_primary_10_1002_ett_4773
crossref_primary_10_1007_s12596_024_02006_6
crossref_primary_10_1109_TCCN_2022_3161936
crossref_primary_10_1109_JLT_2022_3148270
crossref_primary_10_1109_JSAC_2020_3036964
crossref_primary_10_1109_TWC_2019_2956146
crossref_primary_10_3390_s24102993
crossref_primary_10_1109_TCCN_2020_2985371
crossref_primary_10_1109_OJCOMS_2024_3381951
crossref_primary_10_1016_j_phycom_2023_102199
crossref_primary_10_1109_TWC_2021_3123948
crossref_primary_10_1109_JLT_2021_3103339
crossref_primary_10_1109_OJCOMS_2022_3210648
crossref_primary_10_1109_JLT_2023_3251660
crossref_primary_10_1109_MCOM_001_2000804
crossref_primary_10_1109_OJCOMS_2024_3425314
crossref_primary_10_1109_ACCESS_2022_3221800
crossref_primary_10_1109_TWC_2022_3183255
crossref_primary_10_1109_TCOMM_2022_3201931
crossref_primary_10_1109_ACCESS_2023_3245330
crossref_primary_10_1109_TCCN_2019_2943455
crossref_primary_10_1109_LCOMM_2021_3102319
crossref_primary_10_1371_journal_pone_0268952
crossref_primary_10_1109_ACCESS_2022_3224922
crossref_primary_10_1109_JSAC_2019_2933969
crossref_primary_10_1364_OE_433690
crossref_primary_10_1109_JPROC_2024_3438755
crossref_primary_10_1109_COMST_2023_3333342
crossref_primary_10_1007_s41683_022_00095_8
crossref_primary_10_1109_ACCESS_2020_2967402
crossref_primary_10_1109_JLT_2020_2991028
crossref_primary_10_1007_s11432_022_3643_y
crossref_primary_10_1109_TCCN_2021_3061464
crossref_primary_10_1016_j_phycom_2021_101526
crossref_primary_10_1109_TCCN_2020_3018736
crossref_primary_10_3390_s23249848
crossref_primary_10_1109_TVT_2019_2951501
crossref_primary_10_1007_s11277_024_10923_9
crossref_primary_10_1016_j_dcan_2023_05_012
crossref_primary_10_1007_s11277_019_06275_4
crossref_primary_10_1109_ACCESS_2024_3380203
crossref_primary_10_1109_ACCESS_2019_2923321
crossref_primary_10_1109_TSP_2020_3019655
crossref_primary_10_1109_TCOMM_2019_2951563
crossref_primary_10_1109_TWC_2022_3169900
crossref_primary_10_1109_ACCESS_2020_2984218
crossref_primary_10_3390_electronics13050831
crossref_primary_10_1177_1477153520926200
crossref_primary_10_1109_TITS_2022_3154750
crossref_primary_10_1109_JSAC_2019_2933891
crossref_primary_10_1109_TCCN_2020_2985354
crossref_primary_10_1109_LWC_2020_2996745
crossref_primary_10_1109_ACCESS_2019_2928049
crossref_primary_10_1109_ACCESS_2022_3180055
Cites_doi 10.1109/9.119632
10.1109/LCOMM.2017.2787646
10.1109/SPAWC.2018.8445920
10.1109/TCCN.2017.2758370
10.1109/LCOMM.2018.2792019
10.1109/SPAWC.2017.8227772
10.1109/JSTSP.2017.2784180
10.1109/LWC.2017.2757490
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2018.2868103
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 2281
ExternalDocumentID 10_1109_LCOMM_2018_2868103
8452950
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813
IEDL.DBID RIE
ISSN 1089-7798
IngestDate Mon Jun 30 02:25:15 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Tue Jul 01 04:16:00 EDT 2025
Wed Aug 27 02:49:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6939-8884
0000-0002-1530-0140
PQID 2132078376
PQPubID 85419
PageCount 4
ParticipantIDs proquest_journals_2132078376
crossref_primary_10_1109_LCOMM_2018_2868103
ieee_primary_8452950
crossref_citationtrail_10_1109_LCOMM_2018_2868103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev COML
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References kingma (ref15) 2015
ref14
ref1
ref8
ref7
ye (ref11) 2018
spall (ref13) 1998; 19
ref4
ballard (ref2) 1987
ref3
ref6
o’shea (ref10) 2018
ref5
aoudia (ref12) 2018
o’shea (ref9) 2018
References_xml – ident: ref14
  doi: 10.1109/9.119632
– volume: 19
  start-page: 482
  year: 1998
  ident: ref13
  article-title: An overview of the simultaneous perturbation method for efficient optimization
  publication-title: The Johns Hopkins APL Technical Digest
– year: 2018
  ident: ref9
  publication-title: Physical layer communications system design over-the-air using adversarial networks
– ident: ref4
  doi: 10.1109/LCOMM.2017.2787646
– year: 2018
  ident: ref11
  publication-title: Channel agnostic end-to-end learning based communication systems with conditional GAN
– start-page: 1
  year: 2015
  ident: ref15
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref7
  doi: 10.1109/SPAWC.2018.8445920
– start-page: 279
  year: 1987
  ident: ref2
  article-title: Modular learning in neural networks
  publication-title: Proc AAAI
– ident: ref1
  doi: 10.1109/TCCN.2017.2758370
– year: 2018
  ident: ref10
  publication-title: Approximating the void Learning stochastic channel models from observation with variational generative adversarial networks
– ident: ref3
  doi: 10.1109/LCOMM.2018.2792019
– ident: ref6
  doi: 10.1109/SPAWC.2017.8227772
– ident: ref8
  doi: 10.1109/JSTSP.2017.2784180
– year: 2018
  ident: ref12
  publication-title: End-to-end learning of communications systems without a channel model
– ident: ref5
  doi: 10.1109/LWC.2017.2757490
SSID ssj0008251
Score 2.5667744
Snippet Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2278
SubjectTerms Artificial neural networks
Channel models
Communication systems
Communications systems
Computer simulation
Deep learning
Machine learning
Neural networks
optimization
Perturbation methods
Receivers
Training
Transmitters
Title Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models
URI https://ieeexplore.ieee.org/document/8452950
https://www.proquest.com/docview/2132078376
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8CqJQkAc2SJvGJonZyksINcDQim6R7VygomoRTRd-PXdJGvESYsvgONadfY_4vu8YOxI6sGCF60jdAUeCDRytTMcJw9Qj_y99oEQxuvNvBvJ2eDpcYicVFgYA8uIzaNFjfpefTO2cfpW1Q7olpAR9GRO3AqtVWV2CYBbF9AojRhUuADKuavcu7qOIqrjClhcS_5b44oTyrio_THHuX67XWbRYWVFW8tKaZ6Zl37-RNv536RtsrQw0ebfYGZtsCSZbbPUT_WCdPZ5r-4IfRJuiqfqZ94umPRyDQt4dvZ3xS4BXXlKwPnGd8YdSrbynMVbnj6PseTrPOGEUJjDm1FltPNtmg-ur_sWNUzZacCwuKnNQI9JP8WiehgY8H8WnPYGJH2BwEySJMFJrY9G2-WmihHI1hK42EgKtBaDLFzusNplOYJdxIRPjSsDJjJJJmhqVYA6UdvxAWyIDbLDOQvKxLVnIqRnGOM6zEVfFubZi0lZcaqvBjqt3XgsOjj9H10n81chS8g3WXCg4Lo_pLPYIQB5gju7v_f7WPluhuQvwYZPVsrc5HGAUkpnDfPt9ADJv11U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VcAAO0NJWBELZA5yQU8fe2LtIHEpLlbZJ6SFVe3N312OoGiVV4wi1z8Kr8G7M2JuoBcStEjcf1rvanc_z4535BuBtbFKHLg4DaToYSHRpYLTtBEoVEdt_mSAHioPDpHcs90-7p0vwY1ELg4hV8hm2-bG6y88nbsa_yjYV3xJ2Q59CeYDX3ylAm37c2yFpvoui3c_D7V7gewgEjoaWAS0mk4JQ11UWoyRNtYliimmQ7Haa57GVxlhHn21S5Jrif4MqNFZiakyMZM1imvcBPCQ_oxvV1WELPc9Fn3X6viYfVat5SU6oN_vbXwYDzhtT7Ugx41d8x-xVfVz-UP6VRdt9Bj_nZ1Ensly0Z6Vtu5vfaCL_18NahqfelRZbNfZXYAnHz-HJLYLFVTj5ZNwFbZC0puH8bjGs2xIJcnvF1vnVB7GDeCk8yexXYUpx5IEr-oaiEXFyXn6bzErBVRhjHAnuHTearsHxvexsHRrjyRhfgIhlbkOJNJnVMi8Kq3OK8opOkhrHdIdN6MwlnTnPs87tPkZZFW-FOqvQkTE6Mo-OJrxfvHNZs4z8c_Qqi3sx0ku6Ca05oDKviKZZxCXyqSIz8vLvb72BR73hoJ_19w4PXsFjXqcutWxBo7ya4WvyuUq7UUFfwNl9w-cXLlcznA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Backpropagating+Through+the+Air%3A+Deep+Learning+at+Physical+Layer+Without+Channel+Models&rft.jtitle=IEEE+communications+letters&rft.au=Raj%2C+Vishnu&rft.au=Kalyani%2C+Sheetal&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=1089-7798&rft.volume=22&rft.issue=11&rft.spage=2278&rft.epage=2281&rft_id=info:doi/10.1109%2FLCOMM.2018.2868103&rft.externalDocID=8452950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon