An Alternative Derivation of the Method of Stationary Phase for Multivariate Signals
The method of stationary phase (msp) is a commonly established technique to asymptotically determine integrals (such as Fourier integrals) with strongly oscillating integrands. Basically, the method states that an integral over a strongly oscillating integrand only delivers contributions at those (&...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 50; no. 7; pp. 2710 - 2719 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.07.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The method of stationary phase (msp) is a commonly established technique to asymptotically determine integrals (such as Fourier integrals) with strongly oscillating integrands. Basically, the method states that an integral over a strongly oscillating integrand only delivers contributions at those ("stationary") points or regions, where the integrand does not change, i.e., where the phase derivative of its oscillation vanishes. In the engineering literature, various approaches for the derivation exist for univariate (1-D) signals, which, however, find their limitations for multivariate (multidimensional) signals, which cannot be factorized. On the other hand, from the field of applied mathematics, there are derivations, formulating and solving the problem in a rigorous and sophisticated way. This paper tries to close what the author interprets as a gap between these two worlds, aiming to substitute intuitive insights by some basic Dirac impulse modeling concepts, which are familiar to signal processing engineers. We first start with the general multivariate (multidimensional) case, introducing vectorial time and frequency representations. Here, we replace 1-D Taylor-series-based quadratic phase signals by multivariate signals with phase histories, being given by more general quadratic forms. The exponential, containing the quadratic form, is then related to an n -variate Dirac impulse, which provides the sifting property needed to establish the basic msp property that the integration over the entire integration range yields only one value of the integrand, evaluated in the point of stationary phase. This sifting capacity in connection with (time limiting) window functions in the integrand migrates time limitations of the signals to frequency limitations of the spectra-a multiplicative time window is transformed in a multiplicative frequency window of the same form, rather than into a convolution of the Fourier transforms. In this respect, this paper provides a closed-form comprehensive treatment of the subject. |
---|---|
AbstractList | The method of stationary phase (msp) is a commonly established technique to asymptotically determine integrals (such as Fourier integrals) with strongly oscillating integrands. Basically, the method states that an integral over a strongly oscillating integrand only delivers contributions at those ("stationary") points or regions, where the integrand does not change, i.e., where the phase derivative of its oscillation vanishes. In the engineering literature, various approaches for the derivation exist for univariate (1-D) signals, which, however, find their limitations for multivariate (multidimensional) signals, which cannot be factorized. On the other hand, from the field of applied mathematics, there are derivations, formulating and solving the problem in a rigorous and sophisticated way. This paper tries to close what the author interprets as a gap between these two worlds, aiming to substitute intuitive insights by some basic Dirac impulse modeling concepts, which are familiar to signal processing engineers. We first start with the general multivariate (multidimensional) case, introducing vectorial time and frequency representations. Here, we replace 1-D Taylor-series-based quadratic phase signals by multivariate signals with phase histories, being given by more general quadratic forms. The exponential, containing the quadratic form, is then related to an n -variate Dirac impulse, which provides the sifting property needed to establish the basic msp property that the integration over the entire integration range yields only one value of the integrand, evaluated in the point of stationary phase. This sifting capacity in connection with (time limiting) window functions in the integrand migrates time limitations of the signals to frequency limitations of the spectra-a multiplicative time window is transformed in a multiplicative frequency window of the same form, rather than into a convolution of the Fourier transforms. In this respect, this paper provides a closed-form comprehensive treatment of the subject. |
Author | Loffeld, O. |
Author_xml | – sequence: 1 givenname: O. surname: Loffeld fullname: Loffeld, O. email: Loffeld@zess.uni-siegen.de organization: Center for Sensor Syst. (ZESS), Univ. of Siegen, Siegen, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26136662$$DView record in Pascal Francis |
BookMark | eNp9kMtOwzAQRS1UJErhAxAbb1imePzIY1kVKEitQLSsLcexqVFIKttU4u9JSGHBgtXMaO65mrmnaNS0jUHoAsgUgBTXm8XzekoJwJRCxikXR2gMQuQJSTkfoTGBIk1oXtATdBrCGyHABWRjtJk1eFZH4xsV3d7gG-PdvmvbBrcWx63BKxO3bdVP6_i9UP4TP21VMNi2Hq8-6g5U3qlo8Nq9NqoOZ-jYdsWcH-oEvdzdbub3yfJx8TCfLRNNCxETxgQIXdDKAst5ya3JmdCltaRiuc6FoCorLK84FLwUpak4pUQbqzXRvMoVm6CrwXengla19arRLsidd-_dkZKmwNI0pZ0uG3TatyF4Y6V2wy_RK1dLILIPUfYhyj5EeQixI-EP-WP-H3M5MM4Y86tPASgFwr4AF1p_wQ |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TVT_2022_3201155 crossref_primary_10_1109_LAWP_2023_3331573 |
Cites_doi | 10.1109/TGRS.2006.875363 10.1016/S0031-8914(58)95919-6 10.2307/2008057 10.1109/TGRS.2011.2129573 10.1109/7.53462 10.1109/TGRS.2006.872725 10.1137/1.9780898719260 10.1137/0506042 10.1109/36.789617 10.1002/sapm19583711 10.1109/TGRS.2004.835295 10.1090/S0025-5718-1981-0628712-1 10.1109/8.320756 10.1109/IRET-MIL.1962.5008424 10.1016/0031-8914(49)90001-4 10.1109/TAP.1978.1141914 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW |
DOI | 10.1109/TGRS.2011.2174245 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 2719 |
ExternalDocumentID | 26136662 10_1109_TGRS_2011_2174245 6112210 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG IQODW |
ID | FETCH-LOGICAL-c295t-33515c92df1384b4fe835cbff0d38c8552a79f4d4194b5bed4220cefcc0c4d8a3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jul 21 09:13:33 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Tue Jul 01 01:33:46 EDT 2025 Tue Aug 26 17:18:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | multidimensional method of stationary phase (msp) spectra Fourier transformation n-variate msp monostatic point target reference spectrum quadratic phase history Chirp signals windows oscillations BASIC frequency |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-33515c92df1384b4fe835cbff0d38c8552a79f4d4194b5bed4220cefcc0c4d8a3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2011_2174245 ieee_primary_6112210 pascalfrancis_primary_26136662 crossref_primary_10_1109_TGRS_2011_2174245 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-01 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2012 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | york (ref13) 2010 mager (ref8) 1978; ap 26 ref15 ref10 ref1 ref17 ref16 ref19 papoulis (ref21) 1968 loffeld (ref3) 1996 lighthill (ref20) 2003 lega (ref14) 1999; math 583 b james (ref9) 1986 ref24 ref23 ref25 franceschetti (ref2) 1999 van kampen (ref12) 1958; 24 papoulis (ref22) 1987 ref7 ref4 ref6 ref5 jones (ref11) 1956; 37 bleistein (ref18) 1984 |
References_xml | – ident: ref7 doi: 10.1109/TGRS.2006.875363 – volume: 24 start-page: 437 year: 1958 ident: ref12 article-title: The method of stationary phase and the method of Fresnel zones publication-title: Physica doi: 10.1016/S0031-8914(58)95919-6 – ident: ref17 doi: 10.2307/2008057 – ident: ref25 doi: 10.1109/TGRS.2011.2129573 – ident: ref23 doi: 10.1109/7.53462 – ident: ref5 doi: 10.1109/TGRS.2006.872725 – ident: ref19 doi: 10.1137/1.9780898719260 – ident: ref15 doi: 10.1137/0506042 – ident: ref4 doi: 10.1109/36.789617 – volume: math 583 b year: 1999 ident: ref14 publication-title: Method of stationary phase – volume: 37 start-page: 1 year: 1956 ident: ref11 article-title: Asymptotic expansion of multiple integrals and the method of stationary phase publication-title: J Math Phys doi: 10.1002/sapm19583711 – year: 1987 ident: ref22 publication-title: Signal Analysis – ident: ref6 doi: 10.1109/TGRS.2004.835295 – ident: ref16 doi: 10.1090/S0025-5718-1981-0628712-1 – ident: ref1 doi: 10.1109/8.320756 – year: 2003 ident: ref20 publication-title: Introduction to Fourier Analysis and Generalized Functions – start-page: 143 year: 1996 ident: ref3 article-title: SAR processing by inverse scaled Fourier transformation publication-title: Proc EUSAR – ident: ref24 doi: 10.1109/IRET-MIL.1962.5008424 – year: 1999 ident: ref2 publication-title: Synthetic Aperture Radar Processing – year: 1986 ident: ref9 publication-title: Geometrical Theory of Diffraction for Electromagnetic Waves – year: 1968 ident: ref21 publication-title: Systems and Transforms with Applications in Optics – ident: ref10 doi: 10.1016/0031-8914(49)90001-4 – volume: ap 26 start-page: 695 year: 1978 ident: ref8 article-title: An examination of the limited aperture problem of physical optics inverse scattering publication-title: IEEE Trans Antennas Propag doi: 10.1109/TAP.1978.1141914 – year: 1984 ident: ref18 publication-title: Mathematical Methods for Wave Phenomena – year: 2010 ident: ref13 article-title: Stationary phase method publication-title: ECE 201C Antenna Theory |
SSID | ssj0014517 |
Score | 2.0364876 |
Snippet | The method of stationary phase (msp) is a commonly established technique to asymptotically determine integrals (such as Fourier integrals) with strongly... |
SourceID | pascalfrancis crossref ieee |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 2710 |
SubjectTerms | Applied geophysics Azimuth Chirp Chirp signals Earth sciences Earth, ocean, space Eigenvalues and eigenfunctions Equations Exact sciences and technology History Internal geophysics monostatic point target reference spectrum multidimensional method of stationary phase (msp) n-variate msp quadratic phase history Time frequency analysis |
Title | An Alternative Derivation of the Method of Stationary Phase for Multivariate Signals |
URI | https://ieeexplore.ieee.org/document/6112210 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sILQPtmqLZ6vsQ5-KOZP9yCWPR-sHwknpneBb2I_ZKsqd6J2gf31nN2s4Sym-JWQmLDsL85ud-c0AfEUb-Y8u817oTCIvs1rURWY1DhwBeDEwIaM7OitPzuXphbpYgf2OC4OIsfgM--Ex5vLdzC7CVdlBSeCABz7VGwrcWq5WlzGQqkjU6DKjIIKnDGaR1weT41_jtllnwN88MJeWfFAcqhJKIvU97Ypvx1ks-Zij9zB6Xl1bWnLdX8xN3z791bjxtcv_AOsJbLJhezo2YAWnm_BuqQXhJqzFElB7vwWT4ZQNb9L94AOyHyTR3teymWeEE9koTpsOb-M2ga_vHtnPS_KDjKAvi1zeB4q9Cb6y8dXv0Jn5I5wfHU6-n2Rp5kJmea3mmRAEcGzNnS9EJY30SBDNGu9zJypbKcX1oPbSyaKWRhl0kvPcorc2t9JVWnyC1elsitvASoVS6twQJNGycoVB9F4XpK-MVLntQf5shcamhuRhLsZNEwOTvG6C4ZpguCYZrgffOpXbthvH_4S3gg06wbT9Pdh7YeruO8WSgoI5vvNvvc_wlv6eSnW_wOr8boG7BEjmZi-exD-zEdyS |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8QDFEfFEHD-YH74JOxR7sfvfbxosKpHDHekfDW7MesGsidgTsS-euZ3S7NaQjhrU1n0nZnk_nNzvxmAN6hjfxHl3kvdCaRl1kt6iKzGgeOALwYmJDRHR-Vo2P59USdrMGHjguDiLH4DPvhMuby3dwuw1HZXknggAc-1QPy-6po2VpdzkCqIpGjy4zCCJ5ymEVe700Pfkzadp0BgfPAXVrxQnGsSiiK1Be0Lr4daLHiZfafwvjm-9riktP-cmH69uq_1o33_YFNeJLgJhu2--MZrOFsCx6vNCHcgo1YBGovtmE6nLHhWTohvET2iSTaE1s294yQIhvHedPhbtKm8PX5X_b9F3lCRuCXRTbvJUXfBGDZ5PfP0Jv5ORzvf55-HGVp6kJmea0WmRAEcWzNnS9EJY30SCDNGu9zJypbKcX1oPbSyaKWRhl0kvPcorc2t9JVWryA9dl8hjvASoVS6twQKNGycoVB9F4XpK-MVLntQX5jhcamluRhMsZZE0OTvG6C4ZpguCYZrgfvO5U_bT-Ou4S3gw06wbT8Pdj9x9Tdc4omBYVz_OXtem_h4Wg6PmwOvxx9ewWP6E2pcPc1rC_Ol_iG4MnC7MZdeQ1dK9_b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Alternative+Derivation+of+the+Method+of+Stationary+Phase+for+Multivariate+Signals&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Loffeld%2C+O.&rft.date=2012-07-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=50&rft.issue=7&rft.spage=2710&rft.epage=2719&rft_id=info:doi/10.1109%2FTGRS.2011.2174245&rft.externalDocID=6112210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |