An Alternative Derivation of the Method of Stationary Phase for Multivariate Signals

The method of stationary phase (msp) is a commonly established technique to asymptotically determine integrals (such as Fourier integrals) with strongly oscillating integrands. Basically, the method states that an integral over a strongly oscillating integrand only delivers contributions at those (&...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 50; no. 7; pp. 2710 - 2719
Main Author Loffeld, O.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The method of stationary phase (msp) is a commonly established technique to asymptotically determine integrals (such as Fourier integrals) with strongly oscillating integrands. Basically, the method states that an integral over a strongly oscillating integrand only delivers contributions at those ("stationary") points or regions, where the integrand does not change, i.e., where the phase derivative of its oscillation vanishes. In the engineering literature, various approaches for the derivation exist for univariate (1-D) signals, which, however, find their limitations for multivariate (multidimensional) signals, which cannot be factorized. On the other hand, from the field of applied mathematics, there are derivations, formulating and solving the problem in a rigorous and sophisticated way. This paper tries to close what the author interprets as a gap between these two worlds, aiming to substitute intuitive insights by some basic Dirac impulse modeling concepts, which are familiar to signal processing engineers. We first start with the general multivariate (multidimensional) case, introducing vectorial time and frequency representations. Here, we replace 1-D Taylor-series-based quadratic phase signals by multivariate signals with phase histories, being given by more general quadratic forms. The exponential, containing the quadratic form, is then related to an n -variate Dirac impulse, which provides the sifting property needed to establish the basic msp property that the integration over the entire integration range yields only one value of the integrand, evaluated in the point of stationary phase. This sifting capacity in connection with (time limiting) window functions in the integrand migrates time limitations of the signals to frequency limitations of the spectra-a multiplicative time window is transformed in a multiplicative frequency window of the same form, rather than into a convolution of the Fourier transforms. In this respect, this paper provides a closed-form comprehensive treatment of the subject.
AbstractList The method of stationary phase (msp) is a commonly established technique to asymptotically determine integrals (such as Fourier integrals) with strongly oscillating integrands. Basically, the method states that an integral over a strongly oscillating integrand only delivers contributions at those ("stationary") points or regions, where the integrand does not change, i.e., where the phase derivative of its oscillation vanishes. In the engineering literature, various approaches for the derivation exist for univariate (1-D) signals, which, however, find their limitations for multivariate (multidimensional) signals, which cannot be factorized. On the other hand, from the field of applied mathematics, there are derivations, formulating and solving the problem in a rigorous and sophisticated way. This paper tries to close what the author interprets as a gap between these two worlds, aiming to substitute intuitive insights by some basic Dirac impulse modeling concepts, which are familiar to signal processing engineers. We first start with the general multivariate (multidimensional) case, introducing vectorial time and frequency representations. Here, we replace 1-D Taylor-series-based quadratic phase signals by multivariate signals with phase histories, being given by more general quadratic forms. The exponential, containing the quadratic form, is then related to an n -variate Dirac impulse, which provides the sifting property needed to establish the basic msp property that the integration over the entire integration range yields only one value of the integrand, evaluated in the point of stationary phase. This sifting capacity in connection with (time limiting) window functions in the integrand migrates time limitations of the signals to frequency limitations of the spectra-a multiplicative time window is transformed in a multiplicative frequency window of the same form, rather than into a convolution of the Fourier transforms. In this respect, this paper provides a closed-form comprehensive treatment of the subject.
Author Loffeld, O.
Author_xml – sequence: 1
  givenname: O.
  surname: Loffeld
  fullname: Loffeld, O.
  email: Loffeld@zess.uni-siegen.de
  organization: Center for Sensor Syst. (ZESS), Univ. of Siegen, Siegen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26136662$$DView record in Pascal Francis
BookMark eNp9kMtOwzAQRS1UJErhAxAbb1imePzIY1kVKEitQLSsLcexqVFIKttU4u9JSGHBgtXMaO65mrmnaNS0jUHoAsgUgBTXm8XzekoJwJRCxikXR2gMQuQJSTkfoTGBIk1oXtATdBrCGyHABWRjtJk1eFZH4xsV3d7gG-PdvmvbBrcWx63BKxO3bdVP6_i9UP4TP21VMNi2Hq8-6g5U3qlo8Nq9NqoOZ-jYdsWcH-oEvdzdbub3yfJx8TCfLRNNCxETxgQIXdDKAst5ya3JmdCltaRiuc6FoCorLK84FLwUpak4pUQbqzXRvMoVm6CrwXengla19arRLsidd-_dkZKmwNI0pZ0uG3TatyF4Y6V2wy_RK1dLILIPUfYhyj5EeQixI-EP-WP-H3M5MM4Y86tPASgFwr4AF1p_wQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TVT_2022_3201155
crossref_primary_10_1109_LAWP_2023_3331573
Cites_doi 10.1109/TGRS.2006.875363
10.1016/S0031-8914(58)95919-6
10.2307/2008057
10.1109/TGRS.2011.2129573
10.1109/7.53462
10.1109/TGRS.2006.872725
10.1137/1.9780898719260
10.1137/0506042
10.1109/36.789617
10.1002/sapm19583711
10.1109/TGRS.2004.835295
10.1090/S0025-5718-1981-0628712-1
10.1109/8.320756
10.1109/IRET-MIL.1962.5008424
10.1016/0031-8914(49)90001-4
10.1109/TAP.1978.1141914
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TGRS.2011.2174245
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 2719
ExternalDocumentID 26136662
10_1109_TGRS_2011_2174245
6112210
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
IQODW
ID FETCH-LOGICAL-c295t-33515c92df1384b4fe835cbff0d38c8552a79f4d4194b5bed4220cefcc0c4d8a3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jul 21 09:13:33 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Tue Jul 01 01:33:46 EDT 2025
Tue Aug 26 17:18:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords multidimensional method of stationary phase (msp)
spectra
Fourier transformation
n-variate msp
monostatic point target reference spectrum
quadratic phase history
Chirp signals
windows
oscillations
BASIC
frequency
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-33515c92df1384b4fe835cbff0d38c8552a79f4d4194b5bed4220cefcc0c4d8a3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2011_2174245
ieee_primary_6112210
pascalfrancis_primary_26136662
crossref_primary_10_1109_TGRS_2011_2174245
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References york (ref13) 2010
mager (ref8) 1978; ap 26
ref15
ref10
ref1
ref17
ref16
ref19
papoulis (ref21) 1968
loffeld (ref3) 1996
lighthill (ref20) 2003
lega (ref14) 1999; math 583 b
james (ref9) 1986
ref24
ref23
ref25
franceschetti (ref2) 1999
van kampen (ref12) 1958; 24
papoulis (ref22) 1987
ref7
ref4
ref6
ref5
jones (ref11) 1956; 37
bleistein (ref18) 1984
References_xml – ident: ref7
  doi: 10.1109/TGRS.2006.875363
– volume: 24
  start-page: 437
  year: 1958
  ident: ref12
  article-title: The method of stationary phase and the method of Fresnel zones
  publication-title: Physica
  doi: 10.1016/S0031-8914(58)95919-6
– ident: ref17
  doi: 10.2307/2008057
– ident: ref25
  doi: 10.1109/TGRS.2011.2129573
– ident: ref23
  doi: 10.1109/7.53462
– ident: ref5
  doi: 10.1109/TGRS.2006.872725
– ident: ref19
  doi: 10.1137/1.9780898719260
– ident: ref15
  doi: 10.1137/0506042
– ident: ref4
  doi: 10.1109/36.789617
– volume: math 583 b
  year: 1999
  ident: ref14
  publication-title: Method of stationary phase
– volume: 37
  start-page: 1
  year: 1956
  ident: ref11
  article-title: Asymptotic expansion of multiple integrals and the method of stationary phase
  publication-title: J Math Phys
  doi: 10.1002/sapm19583711
– year: 1987
  ident: ref22
  publication-title: Signal Analysis
– ident: ref6
  doi: 10.1109/TGRS.2004.835295
– ident: ref16
  doi: 10.1090/S0025-5718-1981-0628712-1
– ident: ref1
  doi: 10.1109/8.320756
– year: 2003
  ident: ref20
  publication-title: Introduction to Fourier Analysis and Generalized Functions
– start-page: 143
  year: 1996
  ident: ref3
  article-title: SAR processing by inverse scaled Fourier transformation
  publication-title: Proc EUSAR
– ident: ref24
  doi: 10.1109/IRET-MIL.1962.5008424
– year: 1999
  ident: ref2
  publication-title: Synthetic Aperture Radar Processing
– year: 1986
  ident: ref9
  publication-title: Geometrical Theory of Diffraction for Electromagnetic Waves
– year: 1968
  ident: ref21
  publication-title: Systems and Transforms with Applications in Optics
– ident: ref10
  doi: 10.1016/0031-8914(49)90001-4
– volume: ap 26
  start-page: 695
  year: 1978
  ident: ref8
  article-title: An examination of the limited aperture problem of physical optics inverse scattering
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/TAP.1978.1141914
– year: 1984
  ident: ref18
  publication-title: Mathematical Methods for Wave Phenomena
– year: 2010
  ident: ref13
  article-title: Stationary phase method
  publication-title: ECE 201C Antenna Theory
SSID ssj0014517
Score 2.0364876
Snippet The method of stationary phase (msp) is a commonly established technique to asymptotically determine integrals (such as Fourier integrals) with strongly...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 2710
SubjectTerms Applied geophysics
Azimuth
Chirp
Chirp signals
Earth sciences
Earth, ocean, space
Eigenvalues and eigenfunctions
Equations
Exact sciences and technology
History
Internal geophysics
monostatic point target reference spectrum
multidimensional method of stationary phase (msp)
n-variate msp
quadratic phase history
Time frequency analysis
Title An Alternative Derivation of the Method of Stationary Phase for Multivariate Signals
URI https://ieeexplore.ieee.org/document/6112210
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sILQPtmqLZ6vsQ5-KOZP9yCWPR-sHwknpneBb2I_ZKsqd6J2gf31nN2s4Sym-JWQmLDsL85ud-c0AfEUb-Y8u817oTCIvs1rURWY1DhwBeDEwIaM7OitPzuXphbpYgf2OC4OIsfgM--Ex5vLdzC7CVdlBSeCABz7VGwrcWq5WlzGQqkjU6DKjIIKnDGaR1weT41_jtllnwN88MJeWfFAcqhJKIvU97Ypvx1ks-Zij9zB6Xl1bWnLdX8xN3z791bjxtcv_AOsJbLJhezo2YAWnm_BuqQXhJqzFElB7vwWT4ZQNb9L94AOyHyTR3teymWeEE9koTpsOb-M2ga_vHtnPS_KDjKAvi1zeB4q9Cb6y8dXv0Jn5I5wfHU6-n2Rp5kJmea3mmRAEcGzNnS9EJY30SBDNGu9zJypbKcX1oPbSyaKWRhl0kvPcorc2t9JVWnyC1elsitvASoVS6twQJNGycoVB9F4XpK-MVLntQf5shcamhuRhLsZNEwOTvG6C4ZpguCYZrgffOpXbthvH_4S3gg06wbT9Pdh7YeruO8WSgoI5vvNvvc_wlv6eSnW_wOr8boG7BEjmZi-exD-zEdyS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8QDFEfFEHD-YH74JOxR7sfvfbxosKpHDHekfDW7MesGsidgTsS-euZ3S7NaQjhrU1n0nZnk_nNzvxmAN6hjfxHl3kvdCaRl1kt6iKzGgeOALwYmJDRHR-Vo2P59USdrMGHjguDiLH4DPvhMuby3dwuw1HZXknggAc-1QPy-6po2VpdzkCqIpGjy4zCCJ5ymEVe700Pfkzadp0BgfPAXVrxQnGsSiiK1Be0Lr4daLHiZfafwvjm-9riktP-cmH69uq_1o33_YFNeJLgJhu2--MZrOFsCx6vNCHcgo1YBGovtmE6nLHhWTohvET2iSTaE1s294yQIhvHedPhbtKm8PX5X_b9F3lCRuCXRTbvJUXfBGDZ5PfP0Jv5ORzvf55-HGVp6kJmea0WmRAEcWzNnS9EJY30SCDNGu9zJypbKcX1oPbSyaKWRhl0kvPcorc2t9JVWryA9dl8hjvASoVS6twQKNGycoVB9F4XpK-MVLntQX5jhcamluRhMsZZE0OTvG6C4ZpguCYZrgfvO5U_bT-Ou4S3gw06wbT8Pdj9x9Tdc4omBYVz_OXtem_h4Wg6PmwOvxx9ewWP6E2pcPc1rC_Ol_iG4MnC7MZdeQ1dK9_b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Alternative+Derivation+of+the+Method+of+Stationary+Phase+for+Multivariate+Signals&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Loffeld%2C+O.&rft.date=2012-07-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=50&rft.issue=7&rft.spage=2710&rft.epage=2719&rft_id=info:doi/10.1109%2FTGRS.2011.2174245&rft.externalDocID=6112210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon