From Regional to Global Brain: A Novel Hierarchical Spatial-Temporal Neural Network Model for EEG Emotion Recognition

In this paper, we propose a novel Electroencephalograph (EEG) emotion recognition method inspired by neuroscience with respect to the brain response to different emotions. The proposed method, denoted by R2G-STNN, consists of spatial and temporal neural network models with regional to global hierarc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 13; no. 2; pp. 568 - 578
Main Authors Li, Yang, Zheng, Wenming, Wang, Lei, Zong, Yuan, Cui, Zhen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel Electroencephalograph (EEG) emotion recognition method inspired by neuroscience with respect to the brain response to different emotions. The proposed method, denoted by R2G-STNN, consists of spatial and temporal neural network models with regional to global hierarchical feature learning process to learn discriminative spatial-temporal EEG features. To learn the spatial features, a bidirectional long short term memory (BiLSTM) network is adopted to capture the intrinsic spatial relationships of EEG electrodes within brain region and between brain regions, respectively. Considering that different brain regions play different roles in the EEG emotion recognition, a region-attention layer into the R2G-STNN model is also introduced to learn a set of weights to strengthen or weaken the contributions of brain regions. Based on the spatial feature sequences, BiLSTM is adopted to learn both regional and global spatial-temporal features and the features are fitted into a classifier layer for learning emotion-discriminative features, in which a domain discriminator working corporately with the classifier is used to decrease the domain shift between training and testing data. Finally, to evaluate the proposed method, we conduct both subject-dependent and subject-independent EEG emotion recognition experiments on SEED database, and the experimental results show that the proposed method achieves state-of-the-art performance.
AbstractList In this paper, we propose a novel Electroencephalograph (EEG) emotion recognition method inspired by neuroscience with respect to the brain response to different emotions. The proposed method, denoted by R2G-STNN, consists of spatial and temporal neural network models with regional to global hierarchical feature learning process to learn discriminative spatial-temporal EEG features. To learn the spatial features, a bidirectional long short term memory (BiLSTM) network is adopted to capture the intrinsic spatial relationships of EEG electrodes within brain region and between brain regions, respectively. Considering that different brain regions play different roles in the EEG emotion recognition, a region-attention layer into the R2G-STNN model is also introduced to learn a set of weights to strengthen or weaken the contributions of brain regions. Based on the spatial feature sequences, BiLSTM is adopted to learn both regional and global spatial-temporal features and the features are fitted into a classifier layer for learning emotion-discriminative features, in which a domain discriminator working corporately with the classifier is used to decrease the domain shift between training and testing data. Finally, to evaluate the proposed method, we conduct both subject-dependent and subject-independent EEG emotion recognition experiments on SEED database, and the experimental results show that the proposed method achieves state-of-the-art performance.
Author Zong, Yuan
Cui, Zhen
Wang, Lei
Li, Yang
Zheng, Wenming
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-5093-2151
  surname: Li
  fullname: Li, Yang
  email: yang_li@seu.edu.cn
  organization: Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Information Science and Engineering, Southeast University, Nanjing, Jiangsu, China
– sequence: 2
  givenname: Wenming
  orcidid: 0000-0002-7764-5179
  surname: Zheng
  fullname: Zheng, Wenming
  email: wenming_zheng@seu.edu.cn
  organization: Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-0961-0441
  surname: Wang
  fullname: Wang, Lei
  email: leiw@uow.edu.au
  organization: School of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia
– sequence: 4
  givenname: Yuan
  orcidid: 0000-0002-0839-8792
  surname: Zong
  fullname: Zong, Yuan
  email: xhzongyuan@seu.edu.cn
  organization: Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
– sequence: 5
  givenname: Zhen
  orcidid: 0000-0002-8292-6389
  surname: Cui
  fullname: Cui, Zhen
  email: zhen.cui@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
BookMark eNp9kE9PgzAYhxszE-fcF9BLE8_M_qFAvc0FNpM5E51nUkqZnUBnAY3f3iLGGA_28v7Svs_b9jkFo9rUCoBzjGYYI361nSfJYkYQ5jPCCeGYHIEx5j73KPLZ6Fc-AdOm2SO3KKUBCcegS6yp4IPaaVOLErYGLkuTuXRjha6v4RxuzJsq4UorK6x81tKdPR5Eq0XpbVV1MNZtbFQ3lPbd2Bd4Z3KHFMbCOF7CuDKtm-4ukWZX6z6fgeNClI2aftcJeEri7WLlre-Xt4v52pOEs9ajGIeZREwFPJdBTmlBCGUkQzJgkvpFyAgPaS6iqAh8FuZS-FJklBUs4hmWkk7A5TD3YM1rp5o23ZvOuo82KQlCghHhnLiuaOiS1jSNVUUqdSv6d7ZOQplilPae0y_Pae85_fbsUPIHPVhdCfvxP3QxQFop9QNEIQ0i5NNPTqOKZQ
CODEN ITACBQ
CitedBy_id crossref_primary_10_3389_fpsyg_2023_1126994
crossref_primary_10_3389_fpsyg_2023_1289816
crossref_primary_10_1631_FITEE_2100489
crossref_primary_10_3389_fnhum_2024_1464431
crossref_primary_10_3390_brainsci14040364
crossref_primary_10_1098_rsos_201976
crossref_primary_10_1109_TCDS_2021_3051465
crossref_primary_10_1109_TIM_2022_3216829
crossref_primary_10_3389_fnins_2021_738167
crossref_primary_10_1109_ACCESS_2022_3214544
crossref_primary_10_11834_jig_230031
crossref_primary_10_3389_fnhum_2019_00366
crossref_primary_10_1016_j_knosys_2025_113096
crossref_primary_10_1109_TAFFC_2022_3170428
crossref_primary_10_1093_cercor_bhae477
crossref_primary_10_1109_TNSRE_2025_3529991
crossref_primary_10_1109_JBHI_2023_3265805
crossref_primary_10_1016_j_artmed_2024_102984
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1016_j_bspc_2024_106986
crossref_primary_10_1109_JBHI_2022_3198688
crossref_primary_10_3389_fnins_2024_1458815
crossref_primary_10_1109_ACCESS_2024_3454082
crossref_primary_10_1016_j_jneumeth_2024_110317
crossref_primary_10_1109_TCSS_2024_3386621
crossref_primary_10_1109_TAFFC_2022_3145623
crossref_primary_10_1109_TNSRE_2022_3173724
crossref_primary_10_1016_j_compbiomed_2022_106344
crossref_primary_10_1007_s13755_023_00226_x
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1088_2057_1976_ad43f1
crossref_primary_10_1109_TAFFC_2021_3126263
crossref_primary_10_3389_fpsyt_2021_837149
crossref_primary_10_1109_TAFFC_2023_3319397
crossref_primary_10_3389_fnbot_2024_1481746
crossref_primary_10_1109_JBHI_2024_3392564
crossref_primary_10_1109_TNSRE_2021_3111689
crossref_primary_10_1016_j_knosys_2023_110756
crossref_primary_10_3389_fnins_2023_1247082
crossref_primary_10_1007_s00521_024_10821_y
crossref_primary_10_1016_j_bspc_2023_105863
crossref_primary_10_1109_TAFFC_2023_3282704
crossref_primary_10_1145_3524499
crossref_primary_10_1177_15500594241302553
crossref_primary_10_1515_jisys_2023_0290
crossref_primary_10_3389_fpsyg_2022_924793
crossref_primary_10_1049_cit2_12174
crossref_primary_10_1016_j_bspc_2022_103877
crossref_primary_10_1109_JBHI_2024_3416944
crossref_primary_10_1016_j_neucom_2024_128445
crossref_primary_10_1109_TCBB_2020_3018137
crossref_primary_10_1109_TCDS_2021_3071170
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_1109_TETCI_2023_3332549
crossref_primary_10_1109_ACCESS_2021_3054670
crossref_primary_10_3390_brainsci13091293
crossref_primary_10_1109_TAFFC_2023_3288118
crossref_primary_10_1109_ACCESS_2023_3270977
crossref_primary_10_1109_LSP_2022_3179946
crossref_primary_10_3389_fnins_2024_1507654
crossref_primary_10_1109_TAFFC_2024_3433613
crossref_primary_10_1016_j_bspc_2024_106206
crossref_primary_10_1088_1741_2552_ac9c94
crossref_primary_10_1109_TAFFC_2024_3395359
crossref_primary_10_1016_j_bspc_2023_104885
crossref_primary_10_3390_s23198246
crossref_primary_10_1007_s10586_024_04994_3
crossref_primary_10_1186_s40708_024_00245_8
crossref_primary_10_1016_j_bspc_2023_104999
crossref_primary_10_1080_21681163_2023_2299096
crossref_primary_10_1109_TNNLS_2023_3236635
crossref_primary_10_1007_s12652_023_04609_6
crossref_primary_10_1109_ACCESS_2023_3266117
crossref_primary_10_1109_TIM_2023_3284926
crossref_primary_10_1145_3666002
crossref_primary_10_3390_brainsci14040326
crossref_primary_10_1016_j_neunet_2023_12_034
crossref_primary_10_1109_TAFFC_2023_3288885
crossref_primary_10_34133_cbsystems_0088
crossref_primary_10_1016_j_cviu_2024_104229
crossref_primary_10_1109_TNSRE_2022_3230250
crossref_primary_10_3389_fnhum_2025_1517273
crossref_primary_10_3390_s23031404
crossref_primary_10_1109_ACCESS_2023_3266804
crossref_primary_10_1145_3712259
crossref_primary_10_1109_TAFFC_2021_3053275
crossref_primary_10_1016_j_bspc_2024_106092
crossref_primary_10_1109_ACCESS_2021_3055933
crossref_primary_10_1109_TAFFC_2022_3169001
crossref_primary_10_1109_TAFFC_2022_3179717
crossref_primary_10_32604_csse_2023_034183
crossref_primary_10_1016_j_jneumeth_2023_109909
crossref_primary_10_1109_JSEN_2022_3168572
crossref_primary_10_1109_TAFFC_2020_2982143
crossref_primary_10_1109_JBHI_2024_3395622
crossref_primary_10_1109_TIM_2021_3124056
crossref_primary_10_3390_app14020726
crossref_primary_10_1016_j_neunet_2024_106624
crossref_primary_10_3389_fnins_2023_1213099
crossref_primary_10_1109_ACCESS_2025_3530567
crossref_primary_10_1109_JSAC_2020_3020677
crossref_primary_10_3390_electronics13132530
crossref_primary_10_1016_j_eswa_2024_126028
crossref_primary_10_1142_S0129065722500216
crossref_primary_10_1088_1741_2552_ad3c28
crossref_primary_10_1109_JSEN_2024_3484413
crossref_primary_10_1109_TAFFC_2024_3394873
crossref_primary_10_1109_JBHI_2021_3083525
crossref_primary_10_1145_3446430
crossref_primary_10_1016_j_jksuci_2023_101648
crossref_primary_10_3390_math12081180
crossref_primary_10_1371_journal_pcbi_1012376
crossref_primary_10_1007_s10462_024_10831_1
crossref_primary_10_1016_j_neuroscience_2025_01_049
crossref_primary_10_1109_TIM_2023_3338676
crossref_primary_10_1016_j_inffus_2023_102129
crossref_primary_10_1109_TIM_2024_3352701
crossref_primary_10_1016_j_bspc_2024_107054
crossref_primary_10_1007_s11760_024_03550_1
crossref_primary_10_1109_TAFFC_2024_3385651
crossref_primary_10_1016_j_knosys_2020_106243
crossref_primary_10_1016_j_jneumeth_2024_110223
crossref_primary_10_1109_TAFFC_2021_3064940
crossref_primary_10_1109_TAFFC_2023_3305982
crossref_primary_10_1109_TIM_2022_3216409
crossref_primary_10_1088_1741_2552_ad9956
crossref_primary_10_1007_s00521_023_09344_9
Cites_doi 10.1007/978-3-7908-2604-3_16
10.5555/3157382.3157527
10.1007/s11063-018-9829-1
10.1016/j.neunet.2014.06.012
10.1080/02699930802204677
10.1109/CVPR.2012.6247911
10.1037/0003-066X.55.11.1196
10.1162/neco.1997.9.8.1735
10.1109/TNN.2010.2091281
10.3390/a10020063
10.1109/TAFFC.2018.2817622
10.1145/2647868.2654916
10.1080/026999397379845a
10.1017/S0140525X11000446
10.1023/A:I0I0933404324
10.1126/science.1076358
10.1109/TAMD.2015.2431497
10.1016/j.tics.2010.11.004
10.1016/s1388-2457(00)00527-7
10.1109/ICCV.2013.368
10.1016/j.biopsycho.2004.03.002
10.1109/TKDE.2014.2373376
10.1109/TPAMI.2016.2547397
10.1007/978-981-10-7641-1_10
10.1109/TCDS.2016.2587290
10.1109/TAFFC.2018.2890636
10.1007/s12559-017-9517-x
10.7551/mitpress/1140.001.0001
10.1109/TAFFC.2018.2801289
10.1162/089976698300017467
10.1109/ASRU.2015.7404814
10.1023/A:1018628609742
10.1109/TAFFC.2014.2339834
10.3389/fnins.2018.00162
10.24963/ijcai.2018/216
10.1109/TNNLS.2016.2582924
10.1109/ICRA.2016.7487478
10.1016/j.neuroimage.2005.11.027
10.1016/j.tics.2012.09.005
10.1109/TBME.2010.2048568
10.1002/0470013192.bsa068
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2019.2922912
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 578
ExternalDocumentID 10_1109_TAFFC_2019_2922912
8736804
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 201706090224
  funderid: 10.13039/501100004543
– fundername: National Natural Science Foundation of China
  grantid: 61572009; 61772276
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China
  grantid: 2015CB351704
– fundername: National Key R&D Program of China
  grantid: 2018YFB1305200
– fundername: Jiangsu Provincial Key Research and Development Program
  grantid: BE2016616
  funderid: 10.13039/501100013058
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-3117bc05e69dc6d33f22352b0c65c34f752973da88f6457dca4cab35f589b1cc3
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Mon Jun 30 03:55:23 EDT 2025
Tue Jul 01 02:57:52 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3117bc05e69dc6d33f22352b0c65c34f752973da88f6457dca4cab35f589b1cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0839-8792
0000-0002-7764-5179
0000-0002-0961-0441
0000-0002-5093-2151
0000-0002-8292-6389
PQID 2672102992
PQPubID 2040414
PageCount 11
ParticipantIDs proquest_journals_2672102992
crossref_citationtrail_10_1109_TAFFC_2019_2922912
crossref_primary_10_1109_TAFFC_2019_2922912
ieee_primary_8736804
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Ganin (ref34) 2016; 17
ref35
ref12
ref15
ref14
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Suykens (ref30) 1999; 9
ref24
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
Collobert (ref44) 2006; 7
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Sugiyama (ref36)
Kanamori (ref37) 2009; 10
Zheng (ref46)
References_xml – ident: ref29
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref33
  doi: 10.5555/3157382.3157527
– ident: ref9
  doi: 10.1007/s11063-018-9829-1
– ident: ref17
  doi: 10.1016/j.neunet.2014.06.012
– ident: ref35
  doi: 10.1080/02699930802204677
– volume: 17
  start-page: 1
  issue: 59
  year: 2016
  ident: ref34
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– ident: ref43
  doi: 10.1109/CVPR.2012.6247911
– ident: ref23
  doi: 10.1037/0003-066X.55.11.1196
– ident: ref26
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref40
  doi: 10.1109/TNN.2010.2091281
– ident: ref2
  doi: 10.3390/a10020063
– ident: ref14
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref45
  doi: 10.1145/2647868.2654916
– start-page: 2732
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref46
  article-title: Personalizing EEG-based affective models with transfer learning
– ident: ref22
  doi: 10.1080/026999397379845a
– ident: ref24
  doi: 10.1017/S0140525X11000446
– ident: ref31
  doi: 10.1023/A:I0I0933404324
– ident: ref1
  doi: 10.1126/science.1076358
– ident: ref7
  doi: 10.1109/TAMD.2015.2431497
– ident: ref19
  doi: 10.1016/j.tics.2010.11.004
– ident: ref21
  doi: 10.1016/s1388-2457(00)00527-7
– ident: ref42
  doi: 10.1109/ICCV.2013.368
– ident: ref47
  doi: 10.1016/j.biopsycho.2004.03.002
– ident: ref41
  doi: 10.1109/TKDE.2014.2373376
– ident: ref38
  doi: 10.1109/TPAMI.2016.2547397
– ident: ref13
  doi: 10.1007/978-981-10-7641-1_10
– ident: ref4
  doi: 10.1109/TCDS.2016.2587290
– ident: ref8
  doi: 10.1109/TCDS.2016.2587290
– ident: ref12
  doi: 10.1109/TAFFC.2018.2890636
– ident: ref16
  doi: 10.1007/s12559-017-9517-x
– ident: ref3
  doi: 10.7551/mitpress/1140.001.0001
– ident: ref11
  doi: 10.1109/TAFFC.2018.2801289
– volume: 7
  start-page: 1687
  issue: Aug
  year: 2006
  ident: ref44
  article-title: Large scale transductive SVMs
  publication-title: J. Mach. Learn. Res.
– ident: ref39
  doi: 10.1162/089976698300017467
– ident: ref25
  doi: 10.1109/ASRU.2015.7404814
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: ref30
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– ident: ref5
  doi: 10.1109/TAFFC.2014.2339834
– ident: ref10
  doi: 10.3389/fnins.2018.00162
– ident: ref15
  doi: 10.24963/ijcai.2018/216
– ident: ref28
  doi: 10.1109/TNNLS.2016.2582924
– volume: 10
  start-page: 1391
  year: 2009
  ident: ref37
  article-title: A least-squares approach to direct importance estimation
  publication-title: The J. Mach. Learn. Res.
– ident: ref27
  doi: 10.1109/ICRA.2016.7487478
– ident: ref18
  doi: 10.1016/j.neuroimage.2005.11.027
– ident: ref20
  doi: 10.1016/j.tics.2012.09.005
– start-page: 1433
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Direct importance estimation with model selection and its application to covariate shift adaptation
– ident: ref6
  doi: 10.1109/TBME.2010.2048568
– ident: ref32
  doi: 10.1002/0470013192.bsa068
SSID ssj0000333627
Score 2.615271
Snippet In this paper, we propose a novel Electroencephalograph (EEG) emotion recognition method inspired by neuroscience with respect to the brain response to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 568
SubjectTerms Biological neural networks
Brain
Brain modeling
Classifiers
Computational modeling
Domains
EEG emotion recognition
Electrodes
Electroencephalography
Emotion recognition
Emotions
Feature extraction
Machine learning
Neural networks
regional to global
spatial-temporal network
Title From Regional to Global Brain: A Novel Hierarchical Spatial-Temporal Neural Network Model for EEG Emotion Recognition
URI https://ieeexplore.ieee.org/document/8736804
https://www.proquest.com/docview/2672102992
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS-QwFA7qyYuuPxbHVXkHb9qxTZMm8TbK1EHQg4zgrUxe0mWxTkU7e9i_3iRtB3RFvLSlJBD4XpL3kve-j5BjoaU2WpaRFUZFjLmH1Cgi52oInXFk7pfPtrjNJvfs-oE_rJDTZS2MtTYkn9mh_wx3-abGhT8qO5MizaQn_1x1gVtbq7U8T4nT1K3Foq-LidXZdJTnlz55Sw2polQl9N3eE8RU_luBw7aSb5KbfkBtNsnjcNHoIf77wNX43RH_IBudfwmj1iC2yIqdb5PNXrsBuqm8Qxb5S_0Ed_Z3OAqEpoaW_R8uvGbEOYzgtv5rK5j88RXKQTClAq9f7Ow1mrZ8VhV4ao_wCrnk4IXVKnBuMIzHVzBuFYLgrs9Rque75D4fTy8nUSfBECFVvHErdCI0xtxmymBm0rR07gSnOkaHY8pKwb32lZlJWWaMC4MzhjOd8pJLpRPE9CdZm9dzu0cAjU1KFx9JZDErJdV0JlBr4zZR7Zw4HJCkB6fAjp_cy2RURYhTYlUEQAsPaNEBOiAnyz7PLTvHl613PELLlh04A3LQ20DRTeDXgmbCB8NK0f3Pe_0i69RXQoQkngOy1rws7KHzTxp9FAzzDTJ64sY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcoALLRTUpQXmACeUbeLYsY3EYVs2bGnZQ7WVegvrjyBE2FRtFkR_S_8K_w3bSVbiQ9wqcUmiyIkS53k847yZB_CcK6GMEmVkuZERpW4jlOaRczW4ypim7pRnW0yzySl9d8bO1uB6lQtjrQ3kMzv0h-Ffvqn10i-V7QmeZiKmHYXyyH7_5gK0y9eHb9zXfEFIPp4dTKJOQyDSRLLGmZiEKx0zm0mjM5OmpZsPGVGxdg-S0pIzL95k5kKUGWXc6DnVc5WykgmpEq1Td99bcNv5GYy02WGrFZw4TZ31530mTiz3ZqM8P_B0MTkkkhCZkF9muyDf8ofNDxNZvgE_-i5o-Sufh8tGDfXVb9Uh_9c-2oR7nQeNoxby92HNLh7ARq9OgZ2x2oJlflF_wRP7MSx2YlNjq2-A-14V4xWOcFp_tRVOPvkc7CAJU6FXaHYjMpq1Fbsq9MVLwi6w5dFLx1XoHH0cj9_iuNVAwpOehVUvHsLpjbz8I1hf1Au7DaiNTUoXAQpNY1oKosica6WMcxOUc1P1AJIeDIXuKrB7IZCqCJFYLIsAoMIDqOgANICXq2vO2_oj_2y95RGxatmBYQC7PeaKzkRdFiTjPtyXkjz--1XP4M5k9v64OD6cHu3AXeLzPgJlaRfWm4ulfeK8sUY9DYMC4cNNI-wnptxADw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Regional+to+Global+Brain%3A+A+Novel+Hierarchical+Spatial-Temporal+Neural+Network+Model+for+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Li%2C+Yang&rft.au=Zheng%2C+Wenming&rft.au=Wang%2C+Lei&rft.au=Zong%2C+Yuan&rft.date=2022-04-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=13&rft.issue=2&rft.spage=568&rft.epage=578&rft_id=info:doi/10.1109%2FTAFFC.2019.2922912&rft.externalDocID=8736804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon