From Regional to Global Brain: A Novel Hierarchical Spatial-Temporal Neural Network Model for EEG Emotion Recognition
In this paper, we propose a novel Electroencephalograph (EEG) emotion recognition method inspired by neuroscience with respect to the brain response to different emotions. The proposed method, denoted by R2G-STNN, consists of spatial and temporal neural network models with regional to global hierarc...
Saved in:
Published in | IEEE transactions on affective computing Vol. 13; no. 2; pp. 568 - 578 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a novel Electroencephalograph (EEG) emotion recognition method inspired by neuroscience with respect to the brain response to different emotions. The proposed method, denoted by R2G-STNN, consists of spatial and temporal neural network models with regional to global hierarchical feature learning process to learn discriminative spatial-temporal EEG features. To learn the spatial features, a bidirectional long short term memory (BiLSTM) network is adopted to capture the intrinsic spatial relationships of EEG electrodes within brain region and between brain regions, respectively. Considering that different brain regions play different roles in the EEG emotion recognition, a region-attention layer into the R2G-STNN model is also introduced to learn a set of weights to strengthen or weaken the contributions of brain regions. Based on the spatial feature sequences, BiLSTM is adopted to learn both regional and global spatial-temporal features and the features are fitted into a classifier layer for learning emotion-discriminative features, in which a domain discriminator working corporately with the classifier is used to decrease the domain shift between training and testing data. Finally, to evaluate the proposed method, we conduct both subject-dependent and subject-independent EEG emotion recognition experiments on SEED database, and the experimental results show that the proposed method achieves state-of-the-art performance. |
---|---|
AbstractList | In this paper, we propose a novel Electroencephalograph (EEG) emotion recognition method inspired by neuroscience with respect to the brain response to different emotions. The proposed method, denoted by R2G-STNN, consists of spatial and temporal neural network models with regional to global hierarchical feature learning process to learn discriminative spatial-temporal EEG features. To learn the spatial features, a bidirectional long short term memory (BiLSTM) network is adopted to capture the intrinsic spatial relationships of EEG electrodes within brain region and between brain regions, respectively. Considering that different brain regions play different roles in the EEG emotion recognition, a region-attention layer into the R2G-STNN model is also introduced to learn a set of weights to strengthen or weaken the contributions of brain regions. Based on the spatial feature sequences, BiLSTM is adopted to learn both regional and global spatial-temporal features and the features are fitted into a classifier layer for learning emotion-discriminative features, in which a domain discriminator working corporately with the classifier is used to decrease the domain shift between training and testing data. Finally, to evaluate the proposed method, we conduct both subject-dependent and subject-independent EEG emotion recognition experiments on SEED database, and the experimental results show that the proposed method achieves state-of-the-art performance. |
Author | Zong, Yuan Cui, Zhen Wang, Lei Li, Yang Zheng, Wenming |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-5093-2151 surname: Li fullname: Li, Yang email: yang_li@seu.edu.cn organization: Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Information Science and Engineering, Southeast University, Nanjing, Jiangsu, China – sequence: 2 givenname: Wenming orcidid: 0000-0002-7764-5179 surname: Zheng fullname: Zheng, Wenming email: wenming_zheng@seu.edu.cn organization: Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China – sequence: 3 givenname: Lei orcidid: 0000-0002-0961-0441 surname: Wang fullname: Wang, Lei email: leiw@uow.edu.au organization: School of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia – sequence: 4 givenname: Yuan orcidid: 0000-0002-0839-8792 surname: Zong fullname: Zong, Yuan email: xhzongyuan@seu.edu.cn organization: Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China – sequence: 5 givenname: Zhen orcidid: 0000-0002-8292-6389 surname: Cui fullname: Cui, Zhen email: zhen.cui@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China |
BookMark | eNp9kE9PgzAYhxszE-fcF9BLE8_M_qFAvc0FNpM5E51nUkqZnUBnAY3f3iLGGA_28v7Svs_b9jkFo9rUCoBzjGYYI361nSfJYkYQ5jPCCeGYHIEx5j73KPLZ6Fc-AdOm2SO3KKUBCcegS6yp4IPaaVOLErYGLkuTuXRjha6v4RxuzJsq4UorK6x81tKdPR5Eq0XpbVV1MNZtbFQ3lPbd2Bd4Z3KHFMbCOF7CuDKtm-4ukWZX6z6fgeNClI2aftcJeEri7WLlre-Xt4v52pOEs9ajGIeZREwFPJdBTmlBCGUkQzJgkvpFyAgPaS6iqAh8FuZS-FJklBUs4hmWkk7A5TD3YM1rp5o23ZvOuo82KQlCghHhnLiuaOiS1jSNVUUqdSv6d7ZOQplilPae0y_Pae85_fbsUPIHPVhdCfvxP3QxQFop9QNEIQ0i5NNPTqOKZQ |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_3389_fpsyg_2023_1289816 crossref_primary_10_1631_FITEE_2100489 crossref_primary_10_3389_fnhum_2024_1464431 crossref_primary_10_3390_brainsci14040364 crossref_primary_10_1098_rsos_201976 crossref_primary_10_1109_TCDS_2021_3051465 crossref_primary_10_1109_TIM_2022_3216829 crossref_primary_10_3389_fnins_2021_738167 crossref_primary_10_1109_ACCESS_2022_3214544 crossref_primary_10_11834_jig_230031 crossref_primary_10_3389_fnhum_2019_00366 crossref_primary_10_1016_j_knosys_2025_113096 crossref_primary_10_1109_TAFFC_2022_3170428 crossref_primary_10_1093_cercor_bhae477 crossref_primary_10_1109_TNSRE_2025_3529991 crossref_primary_10_1109_JBHI_2023_3265805 crossref_primary_10_1016_j_artmed_2024_102984 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1016_j_bspc_2024_106986 crossref_primary_10_1109_JBHI_2022_3198688 crossref_primary_10_3389_fnins_2024_1458815 crossref_primary_10_1109_ACCESS_2024_3454082 crossref_primary_10_1016_j_jneumeth_2024_110317 crossref_primary_10_1109_TCSS_2024_3386621 crossref_primary_10_1109_TAFFC_2022_3145623 crossref_primary_10_1109_TNSRE_2022_3173724 crossref_primary_10_1016_j_compbiomed_2022_106344 crossref_primary_10_1007_s13755_023_00226_x crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1088_2057_1976_ad43f1 crossref_primary_10_1109_TAFFC_2021_3126263 crossref_primary_10_3389_fpsyt_2021_837149 crossref_primary_10_1109_TAFFC_2023_3319397 crossref_primary_10_3389_fnbot_2024_1481746 crossref_primary_10_1109_JBHI_2024_3392564 crossref_primary_10_1109_TNSRE_2021_3111689 crossref_primary_10_1016_j_knosys_2023_110756 crossref_primary_10_3389_fnins_2023_1247082 crossref_primary_10_1007_s00521_024_10821_y crossref_primary_10_1016_j_bspc_2023_105863 crossref_primary_10_1109_TAFFC_2023_3282704 crossref_primary_10_1145_3524499 crossref_primary_10_1177_15500594241302553 crossref_primary_10_1515_jisys_2023_0290 crossref_primary_10_3389_fpsyg_2022_924793 crossref_primary_10_1049_cit2_12174 crossref_primary_10_1016_j_bspc_2022_103877 crossref_primary_10_1109_JBHI_2024_3416944 crossref_primary_10_1016_j_neucom_2024_128445 crossref_primary_10_1109_TCBB_2020_3018137 crossref_primary_10_1109_TCDS_2021_3071170 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_1109_TETCI_2023_3332549 crossref_primary_10_1109_ACCESS_2021_3054670 crossref_primary_10_3390_brainsci13091293 crossref_primary_10_1109_TAFFC_2023_3288118 crossref_primary_10_1109_ACCESS_2023_3270977 crossref_primary_10_1109_LSP_2022_3179946 crossref_primary_10_3389_fnins_2024_1507654 crossref_primary_10_1109_TAFFC_2024_3433613 crossref_primary_10_1016_j_bspc_2024_106206 crossref_primary_10_1088_1741_2552_ac9c94 crossref_primary_10_1109_TAFFC_2024_3395359 crossref_primary_10_1016_j_bspc_2023_104885 crossref_primary_10_3390_s23198246 crossref_primary_10_1007_s10586_024_04994_3 crossref_primary_10_1186_s40708_024_00245_8 crossref_primary_10_1016_j_bspc_2023_104999 crossref_primary_10_1080_21681163_2023_2299096 crossref_primary_10_1109_TNNLS_2023_3236635 crossref_primary_10_1007_s12652_023_04609_6 crossref_primary_10_1109_ACCESS_2023_3266117 crossref_primary_10_1109_TIM_2023_3284926 crossref_primary_10_1145_3666002 crossref_primary_10_3390_brainsci14040326 crossref_primary_10_1016_j_neunet_2023_12_034 crossref_primary_10_1109_TAFFC_2023_3288885 crossref_primary_10_34133_cbsystems_0088 crossref_primary_10_1016_j_cviu_2024_104229 crossref_primary_10_1109_TNSRE_2022_3230250 crossref_primary_10_3389_fnhum_2025_1517273 crossref_primary_10_3390_s23031404 crossref_primary_10_1109_ACCESS_2023_3266804 crossref_primary_10_1145_3712259 crossref_primary_10_1109_TAFFC_2021_3053275 crossref_primary_10_1016_j_bspc_2024_106092 crossref_primary_10_1109_ACCESS_2021_3055933 crossref_primary_10_1109_TAFFC_2022_3169001 crossref_primary_10_1109_TAFFC_2022_3179717 crossref_primary_10_32604_csse_2023_034183 crossref_primary_10_1016_j_jneumeth_2023_109909 crossref_primary_10_1109_JSEN_2022_3168572 crossref_primary_10_1109_TAFFC_2020_2982143 crossref_primary_10_1109_JBHI_2024_3395622 crossref_primary_10_1109_TIM_2021_3124056 crossref_primary_10_3390_app14020726 crossref_primary_10_1016_j_neunet_2024_106624 crossref_primary_10_3389_fnins_2023_1213099 crossref_primary_10_1109_ACCESS_2025_3530567 crossref_primary_10_1109_JSAC_2020_3020677 crossref_primary_10_3390_electronics13132530 crossref_primary_10_1016_j_eswa_2024_126028 crossref_primary_10_1142_S0129065722500216 crossref_primary_10_1088_1741_2552_ad3c28 crossref_primary_10_1109_JSEN_2024_3484413 crossref_primary_10_1109_TAFFC_2024_3394873 crossref_primary_10_1109_JBHI_2021_3083525 crossref_primary_10_1145_3446430 crossref_primary_10_1016_j_jksuci_2023_101648 crossref_primary_10_3390_math12081180 crossref_primary_10_1371_journal_pcbi_1012376 crossref_primary_10_1007_s10462_024_10831_1 crossref_primary_10_1016_j_neuroscience_2025_01_049 crossref_primary_10_1109_TIM_2023_3338676 crossref_primary_10_1016_j_inffus_2023_102129 crossref_primary_10_1109_TIM_2024_3352701 crossref_primary_10_1016_j_bspc_2024_107054 crossref_primary_10_1007_s11760_024_03550_1 crossref_primary_10_1109_TAFFC_2024_3385651 crossref_primary_10_1016_j_knosys_2020_106243 crossref_primary_10_1016_j_jneumeth_2024_110223 crossref_primary_10_1109_TAFFC_2021_3064940 crossref_primary_10_1109_TAFFC_2023_3305982 crossref_primary_10_1109_TIM_2022_3216409 crossref_primary_10_1088_1741_2552_ad9956 crossref_primary_10_1007_s00521_023_09344_9 |
Cites_doi | 10.1007/978-3-7908-2604-3_16 10.5555/3157382.3157527 10.1007/s11063-018-9829-1 10.1016/j.neunet.2014.06.012 10.1080/02699930802204677 10.1109/CVPR.2012.6247911 10.1037/0003-066X.55.11.1196 10.1162/neco.1997.9.8.1735 10.1109/TNN.2010.2091281 10.3390/a10020063 10.1109/TAFFC.2018.2817622 10.1145/2647868.2654916 10.1080/026999397379845a 10.1017/S0140525X11000446 10.1023/A:I0I0933404324 10.1126/science.1076358 10.1109/TAMD.2015.2431497 10.1016/j.tics.2010.11.004 10.1016/s1388-2457(00)00527-7 10.1109/ICCV.2013.368 10.1016/j.biopsycho.2004.03.002 10.1109/TKDE.2014.2373376 10.1109/TPAMI.2016.2547397 10.1007/978-981-10-7641-1_10 10.1109/TCDS.2016.2587290 10.1109/TAFFC.2018.2890636 10.1007/s12559-017-9517-x 10.7551/mitpress/1140.001.0001 10.1109/TAFFC.2018.2801289 10.1162/089976698300017467 10.1109/ASRU.2015.7404814 10.1023/A:1018628609742 10.1109/TAFFC.2014.2339834 10.3389/fnins.2018.00162 10.24963/ijcai.2018/216 10.1109/TNNLS.2016.2582924 10.1109/ICRA.2016.7487478 10.1016/j.neuroimage.2005.11.027 10.1016/j.tics.2012.09.005 10.1109/TBME.2010.2048568 10.1002/0470013192.bsa068 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2019.2922912 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 578 |
ExternalDocumentID | 10_1109_TAFFC_2019_2922912 8736804 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201706090224 funderid: 10.13039/501100004543 – fundername: National Natural Science Foundation of China grantid: 61572009; 61772276 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China grantid: 2015CB351704 – fundername: National Key R&D Program of China grantid: 2018YFB1305200 – fundername: Jiangsu Provincial Key Research and Development Program grantid: BE2016616 funderid: 10.13039/501100013058 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-3117bc05e69dc6d33f22352b0c65c34f752973da88f6457dca4cab35f589b1cc3 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Mon Jun 30 03:55:23 EDT 2025 Tue Jul 01 02:57:52 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Wed Aug 27 02:24:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-3117bc05e69dc6d33f22352b0c65c34f752973da88f6457dca4cab35f589b1cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0839-8792 0000-0002-7764-5179 0000-0002-0961-0441 0000-0002-5093-2151 0000-0002-8292-6389 |
PQID | 2672102992 |
PQPubID | 2040414 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2672102992 crossref_citationtrail_10_1109_TAFFC_2019_2922912 crossref_primary_10_1109_TAFFC_2019_2922912 ieee_primary_8736804 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Ganin (ref34) 2016; 17 ref35 ref12 ref15 ref14 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Suykens (ref30) 1999; 9 ref24 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 Collobert (ref44) 2006; 7 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Sugiyama (ref36) Kanamori (ref37) 2009; 10 Zheng (ref46) |
References_xml | – ident: ref29 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref33 doi: 10.5555/3157382.3157527 – ident: ref9 doi: 10.1007/s11063-018-9829-1 – ident: ref17 doi: 10.1016/j.neunet.2014.06.012 – ident: ref35 doi: 10.1080/02699930802204677 – volume: 17 start-page: 1 issue: 59 year: 2016 ident: ref34 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – ident: ref43 doi: 10.1109/CVPR.2012.6247911 – ident: ref23 doi: 10.1037/0003-066X.55.11.1196 – ident: ref26 doi: 10.1162/neco.1997.9.8.1735 – ident: ref40 doi: 10.1109/TNN.2010.2091281 – ident: ref2 doi: 10.3390/a10020063 – ident: ref14 doi: 10.1109/TAFFC.2018.2817622 – ident: ref45 doi: 10.1145/2647868.2654916 – start-page: 2732 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref46 article-title: Personalizing EEG-based affective models with transfer learning – ident: ref22 doi: 10.1080/026999397379845a – ident: ref24 doi: 10.1017/S0140525X11000446 – ident: ref31 doi: 10.1023/A:I0I0933404324 – ident: ref1 doi: 10.1126/science.1076358 – ident: ref7 doi: 10.1109/TAMD.2015.2431497 – ident: ref19 doi: 10.1016/j.tics.2010.11.004 – ident: ref21 doi: 10.1016/s1388-2457(00)00527-7 – ident: ref42 doi: 10.1109/ICCV.2013.368 – ident: ref47 doi: 10.1016/j.biopsycho.2004.03.002 – ident: ref41 doi: 10.1109/TKDE.2014.2373376 – ident: ref38 doi: 10.1109/TPAMI.2016.2547397 – ident: ref13 doi: 10.1007/978-981-10-7641-1_10 – ident: ref4 doi: 10.1109/TCDS.2016.2587290 – ident: ref8 doi: 10.1109/TCDS.2016.2587290 – ident: ref12 doi: 10.1109/TAFFC.2018.2890636 – ident: ref16 doi: 10.1007/s12559-017-9517-x – ident: ref3 doi: 10.7551/mitpress/1140.001.0001 – ident: ref11 doi: 10.1109/TAFFC.2018.2801289 – volume: 7 start-page: 1687 issue: Aug year: 2006 ident: ref44 article-title: Large scale transductive SVMs publication-title: J. Mach. Learn. Res. – ident: ref39 doi: 10.1162/089976698300017467 – ident: ref25 doi: 10.1109/ASRU.2015.7404814 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: ref30 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – ident: ref5 doi: 10.1109/TAFFC.2014.2339834 – ident: ref10 doi: 10.3389/fnins.2018.00162 – ident: ref15 doi: 10.24963/ijcai.2018/216 – ident: ref28 doi: 10.1109/TNNLS.2016.2582924 – volume: 10 start-page: 1391 year: 2009 ident: ref37 article-title: A least-squares approach to direct importance estimation publication-title: The J. Mach. Learn. Res. – ident: ref27 doi: 10.1109/ICRA.2016.7487478 – ident: ref18 doi: 10.1016/j.neuroimage.2005.11.027 – ident: ref20 doi: 10.1016/j.tics.2012.09.005 – start-page: 1433 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref36 article-title: Direct importance estimation with model selection and its application to covariate shift adaptation – ident: ref6 doi: 10.1109/TBME.2010.2048568 – ident: ref32 doi: 10.1002/0470013192.bsa068 |
SSID | ssj0000333627 |
Score | 2.615271 |
Snippet | In this paper, we propose a novel Electroencephalograph (EEG) emotion recognition method inspired by neuroscience with respect to the brain response to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 568 |
SubjectTerms | Biological neural networks Brain Brain modeling Classifiers Computational modeling Domains EEG emotion recognition Electrodes Electroencephalography Emotion recognition Emotions Feature extraction Machine learning Neural networks regional to global spatial-temporal network |
Title | From Regional to Global Brain: A Novel Hierarchical Spatial-Temporal Neural Network Model for EEG Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/8736804 https://www.proquest.com/docview/2672102992 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS-QwFA7qyYuuPxbHVXkHb9qxTZMm8TbK1EHQg4zgrUxe0mWxTkU7e9i_3iRtB3RFvLSlJBD4XpL3kve-j5BjoaU2WpaRFUZFjLmH1Cgi52oInXFk7pfPtrjNJvfs-oE_rJDTZS2MtTYkn9mh_wx3-abGhT8qO5MizaQn_1x1gVtbq7U8T4nT1K3Foq-LidXZdJTnlz55Sw2polQl9N3eE8RU_luBw7aSb5KbfkBtNsnjcNHoIf77wNX43RH_IBudfwmj1iC2yIqdb5PNXrsBuqm8Qxb5S_0Ed_Z3OAqEpoaW_R8uvGbEOYzgtv5rK5j88RXKQTClAq9f7Ow1mrZ8VhV4ao_wCrnk4IXVKnBuMIzHVzBuFYLgrs9Rque75D4fTy8nUSfBECFVvHErdCI0xtxmymBm0rR07gSnOkaHY8pKwb32lZlJWWaMC4MzhjOd8pJLpRPE9CdZm9dzu0cAjU1KFx9JZDErJdV0JlBr4zZR7Zw4HJCkB6fAjp_cy2RURYhTYlUEQAsPaNEBOiAnyz7PLTvHl613PELLlh04A3LQ20DRTeDXgmbCB8NK0f3Pe_0i69RXQoQkngOy1rws7KHzTxp9FAzzDTJ64sY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcoALLRTUpQXmACeUbeLYsY3EYVs2bGnZQ7WVegvrjyBE2FRtFkR_S_8K_w3bSVbiQ9wqcUmiyIkS53k847yZB_CcK6GMEmVkuZERpW4jlOaRczW4ypim7pRnW0yzySl9d8bO1uB6lQtjrQ3kMzv0h-Ffvqn10i-V7QmeZiKmHYXyyH7_5gK0y9eHb9zXfEFIPp4dTKJOQyDSRLLGmZiEKx0zm0mjM5OmpZsPGVGxdg-S0pIzL95k5kKUGWXc6DnVc5WykgmpEq1Td99bcNv5GYy02WGrFZw4TZ31530mTiz3ZqM8P_B0MTkkkhCZkF9muyDf8ofNDxNZvgE_-i5o-Sufh8tGDfXVb9Uh_9c-2oR7nQeNoxby92HNLh7ARq9OgZ2x2oJlflF_wRP7MSx2YlNjq2-A-14V4xWOcFp_tRVOPvkc7CAJU6FXaHYjMpq1Fbsq9MVLwi6w5dFLx1XoHH0cj9_iuNVAwpOehVUvHsLpjbz8I1hf1Au7DaiNTUoXAQpNY1oKosica6WMcxOUc1P1AJIeDIXuKrB7IZCqCJFYLIsAoMIDqOgANICXq2vO2_oj_2y95RGxatmBYQC7PeaKzkRdFiTjPtyXkjz--1XP4M5k9v64OD6cHu3AXeLzPgJlaRfWm4ulfeK8sUY9DYMC4cNNI-wnptxADw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Regional+to+Global+Brain%3A+A+Novel+Hierarchical+Spatial-Temporal+Neural+Network+Model+for+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Li%2C+Yang&rft.au=Zheng%2C+Wenming&rft.au=Wang%2C+Lei&rft.au=Zong%2C+Yuan&rft.date=2022-04-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=13&rft.issue=2&rft.spage=568&rft.epage=578&rft_id=info:doi/10.1109%2FTAFFC.2019.2922912&rft.externalDocID=8736804 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |