Fuzzy Integral-Based CNN Classifier Fusion for 3D Skeleton Action Recognition

Action recognition based on skeleton key joints has gained popularity due to its cost effectiveness and low complexity. Existing Convolutional Neural Network (CNN) based models mostly fail to capture various aspects of the skeleton sequence. To this end, four feature representations, which capture c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 6; pp. 2206 - 2216
Main Authors Banerjee, Avinandan, Singh, Pawan Kumar, Sarkar, Ram
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Action recognition based on skeleton key joints has gained popularity due to its cost effectiveness and low complexity. Existing Convolutional Neural Network (CNN) based models mostly fail to capture various aspects of the skeleton sequence. To this end, four feature representations, which capture complementary characteristics of the sequence of key joints, are extracted with novel contribution of features estimated from angular information, and kinematics of the human actions. Single channel grayscale images are used to encode these features for classification using four CNNs, with the complementary nature verified through Kullback-Leibler (KL) and Jensen-Shannon (JS) divergences. As opposed to straightforward classifier combination generally used in existing literature, fuzzy fusion through the Choquet integral leverages the degree of uncertainty of decision scores obtained from four CNNs. Experimental results support the efficacy of fuzzy combination of CNNs to adaptively generate final decision score based upon confidence of each information source. Impressive results on the challenging UTD-MHAD, HDM05, G3D, and NTU RGB+D 60 and 120 datasets demonstrate the effectiveness of the proposed method. The source code for our method is available at https://github.com/theavicaster/fuzzy-integral-cnn-fusion-3d-har
AbstractList Action recognition based on skeleton key joints has gained popularity due to its cost effectiveness and low complexity. Existing Convolutional Neural Network (CNN) based models mostly fail to capture various aspects of the skeleton sequence. To this end, four feature representations, which capture complementary characteristics of the sequence of key joints, are extracted with novel contribution of features estimated from angular information, and kinematics of the human actions. Single channel grayscale images are used to encode these features for classification using four CNNs, with the complementary nature verified through Kullback-Leibler (KL) and Jensen-Shannon (JS) divergences. As opposed to straightforward classifier combination generally used in existing literature, fuzzy fusion through the Choquet integral leverages the degree of uncertainty of decision scores obtained from four CNNs. Experimental results support the efficacy of fuzzy combination of CNNs to adaptively generate final decision score based upon confidence of each information source. Impressive results on the challenging UTD-MHAD, HDM05, G3D, and NTU RGB+D 60 and 120 datasets demonstrate the effectiveness of the proposed method. The source code for our method is available at https://github.com/theavicaster/fuzzy-integral-cnn-fusion-3d-har
Author Singh, Pawan Kumar
Banerjee, Avinandan
Sarkar, Ram
Author_xml – sequence: 1
  givenname: Avinandan
  orcidid: 0000-0003-3536-9847
  surname: Banerjee
  fullname: Banerjee, Avinandan
  email: avinandanbanerjee99@gmail.com
  organization: Department of Information Technology, Jadavpur University, Kolkata, India
– sequence: 2
  givenname: Pawan Kumar
  orcidid: 0000-0002-9598-7981
  surname: Singh
  fullname: Singh, Pawan Kumar
  email: pawankrsingh@ieee.org
  organization: Department of Information Technology, Jadavpur University, Kolkata, India
– sequence: 3
  givenname: Ram
  orcidid: 0000-0001-8813-4086
  surname: Sarkar
  fullname: Sarkar, Ram
  email: rsarkar@ieee.org
  organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
BookMark eNp9kD9PwzAQxS1UJNrCF4AlEnOK_9SxPZZAoVIpEi2sluOeq5SQFDsZ2k9PQhEDA9O9O73f3ekNUK-sSkDokuARIVjdrNLl22pEMcUjhomiip2gPuFcxpRi3ms15iSWlPAzNAhhizEZy7Hoo6dpczjso1lZw8abIr41AdZRulhEaWFCyF0OPpo2Ia_KyFU-YnfR8h0KqNt-Yutu_AK22pR5p8_RqTNFgIufOkSv0_tV-hjPnx9m6WQeW6p4HVNHheCcqkxZJgwGm7GMuWycYcMSjsmaySyhCQBNzFpJbBKhLFDpsBDUSTZE18e9O199NhBqva0aX7YnNeUskYkkqnPJo8v6KgQPTtu8Nt2ftTd5oQnWXXj6Ozzdhad_wmtR-gfd-fzD-P3_0NURygHgF1BECCIw-wLSdnu7
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCDS_2022_3204905
crossref_primary_10_1109_TPAMI_2022_3183112
crossref_primary_10_3390_electronics13234733
crossref_primary_10_1007_s40747_025_01807_x
crossref_primary_10_1007_s11042_023_17529_6
crossref_primary_10_1007_s00530_024_01604_5
crossref_primary_10_1007_s10994_022_06141_8
crossref_primary_10_1016_j_cmpb_2022_106776
crossref_primary_10_1109_TCSVT_2022_3142771
crossref_primary_10_1109_THMS_2024_3467334
crossref_primary_10_3390_diagnostics12051173
crossref_primary_10_1016_j_bspc_2023_104873
crossref_primary_10_3389_fnbot_2024_1439188
crossref_primary_10_1016_j_eswa_2021_116287
crossref_primary_10_1109_TCE_2024_3420936
crossref_primary_10_3389_fnbot_2025_1482281
crossref_primary_10_1109_TFUZZ_2022_3206504
crossref_primary_10_1016_j_neucom_2022_07_046
crossref_primary_10_1109_TCSVT_2022_3193574
crossref_primary_10_1109_TCSVT_2022_3156588
crossref_primary_10_1016_j_measurement_2024_115682
crossref_primary_10_1109_TAI_2023_3318575
crossref_primary_10_1007_s11042_024_20475_6
crossref_primary_10_1109_TCSVT_2023_3284493
crossref_primary_10_1007_s00521_023_08814_4
crossref_primary_10_1109_TCSVT_2023_3240472
crossref_primary_10_1007_s00034_024_02815_x
crossref_primary_10_1007_s11042_021_10753_y
crossref_primary_10_3390_app12010004
crossref_primary_10_1109_TFUZZ_2024_3434589
crossref_primary_10_1007_s11760_023_02923_2
crossref_primary_10_1038_s41598_022_27192_w
crossref_primary_10_1016_j_cviu_2024_104076
crossref_primary_10_1016_j_engappai_2022_105702
crossref_primary_10_1007_s11831_021_09681_9
crossref_primary_10_3390_electronics12214466
crossref_primary_10_1109_TCSVT_2021_3100128
crossref_primary_10_1109_TCSVT_2023_3259430
crossref_primary_10_1007_s11042_021_11319_8
crossref_primary_10_1007_s40815_022_01307_x
crossref_primary_10_1007_s10489_022_04302_9
crossref_primary_10_1016_j_neucom_2025_129820
crossref_primary_10_1007_s40192_021_00210_x
crossref_primary_10_1155_2022_9416467
crossref_primary_10_1109_TCSVT_2022_3217763
crossref_primary_10_1109_TCSVT_2022_3219864
crossref_primary_10_3390_s23020734
crossref_primary_10_1109_TCSVT_2022_3178430
crossref_primary_10_3390_electronics12010117
crossref_primary_10_1016_j_asoc_2025_112797
crossref_primary_10_1109_TFUZZ_2024_3387429
crossref_primary_10_1109_ACCESS_2024_3389499
crossref_primary_10_3390_app12189229
crossref_primary_10_1109_JSEN_2021_3079366
crossref_primary_10_1016_j_asoc_2023_110732
crossref_primary_10_1007_s00521_022_07514_9
crossref_primary_10_1109_TCSVT_2024_3386553
crossref_primary_10_1109_TFUZZ_2022_3152106
crossref_primary_10_1016_j_jmsy_2022_11_009
crossref_primary_10_1109_TCSVT_2022_3222226
crossref_primary_10_1038_s41598_022_18463_7
crossref_primary_10_1016_j_jvcir_2023_103953
crossref_primary_10_1109_JBHI_2024_3411658
crossref_primary_10_1007_s11042_022_11942_z
crossref_primary_10_1016_j_eswa_2024_124917
crossref_primary_10_3390_s22020671
crossref_primary_10_1007_s13042_023_01948_w
crossref_primary_10_1145_3633785
crossref_primary_10_1145_3715917
crossref_primary_10_1109_TAI_2023_3323272
crossref_primary_10_1109_TCDS_2022_3171550
crossref_primary_10_1109_TCSVT_2022_3194350
crossref_primary_10_4103_bbrj_bbrj_56_24
crossref_primary_10_1007_s00371_022_02461_x
crossref_primary_10_1155_2022_4667640
crossref_primary_10_1016_j_eswa_2023_122314
crossref_primary_10_1109_TCSVT_2023_3250646
crossref_primary_10_1007_s10489_022_03968_5
crossref_primary_10_1109_TIM_2023_3314815
crossref_primary_10_1109_TSMC_2023_3250120
Cites_doi 10.1109/TCSVT.2018.2864148
10.1109/CVPR.2017.502
10.1109/CVPR.2016.484
10.1016/j.ins.2019.10.047
10.1109/TIE.2018.2881943
10.1109/ICIP.2015.7350781
10.1109/TPAMI.2019.2916873
10.1016/0165-0114(89)90194-2
10.1167/6.8.6
10.1016/j.patrec.2004.09.024
10.1109/TFUZZ.2016.2598362
10.1109/TCSVT.2020.3015051
10.1109/ICHI.2016.100
10.1109/CVPR.2017.137
10.1109/SIBGRAPI.2019.00011
10.1109/TCSVT.2018.2879913
10.1109/LSP.2017.2678539
10.1109/CVPRW.2012.6239175
10.1109/ACPR.2015.7486569
10.1109/CRV.2019.00015
10.1109/21.57289
10.1109/ICPR.2014.340
10.1109/TCSVT.2019.2914137
10.1109/ACCESS.2017.2778011
10.1109/CVPR.2019.00792
10.1109/TII.2019.2910876
10.1201/9781351003827-5
10.1007/s00530-020-00677-2
10.1016/B978-1-4832-1450-4.50027-4
10.1109/TIP.2018.2812099
10.1109/ICASSP40776.2020.9054392
10.1016/j.cviu.2014.12.005
10.1016/j.ymssp.2008.07.012
10.1109/CVPR42600.2020.00026
10.1145/2964284.2967191
10.1109/CVPR.2018.00127
10.1109/CVPR.2017.391
10.24963/ijcai.2018/109
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3019293
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2216
ExternalDocumentID 10_1109_TCSVT_2020_3019293
9177170
Genre orig-research
GrantInformation_xml – fundername: PURSE-II and UPE-II, Jadavpur University projects
  funderid: 10.13039/100009589
– fundername: DST, Govt. of India
  grantid: EMR/2016/007213
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-2f2775529b9c37a0ecb3b3fb4b0a36501d38b626ee26ad980a679ce28f0772f83
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 04:13:24 EDT 2025
Tue Jul 01 00:41:14 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Wed Aug 27 02:29:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2f2775529b9c37a0ecb3b3fb4b0a36501d38b626ee26ad980a679ce28f0772f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3536-9847
0000-0002-9598-7981
0000-0001-8813-4086
PQID 2536868198
PQPubID 85433
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2020_3019293
ieee_primary_9177170
crossref_primary_10_1109_TCSVT_2020_3019293
proquest_journals_2536868198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
memmesheimer (ref39) 2020
ref14
ref10
ref17
ref16
ref18
huang (ref42) 2018
müller (ref33) 2007
zhu (ref37) 2018
choi (ref3) 2007
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref6
ref5
li (ref24) 2018
li (ref19) 2017
ref35
ref34
ref36
ref31
ref30
ref32
ref2
ref1
shahroudy (ref9) 2016
ref38
huang (ref40) 2017
thakkar (ref23) 2018
ref25
ref20
ref22
sugeno (ref26) 1993
ref21
ref28
ref27
ref29
song (ref11) 2017
jiang (ref12) 2020; 30
References_xml – ident: ref18
  doi: 10.1109/TCSVT.2018.2864148
– ident: ref7
  doi: 10.1109/CVPR.2017.502
– ident: ref45
  doi: 10.1109/CVPR.2016.484
– year: 2007
  ident: ref33
  article-title: Documentation mocap database HDM05
– ident: ref21
  doi: 10.1016/j.ins.2019.10.047
– ident: ref8
  doi: 10.1109/TIE.2018.2881943
– ident: ref32
  doi: 10.1109/ICIP.2015.7350781
– ident: ref34
  doi: 10.1109/TPAMI.2019.2916873
– start-page: 585
  year: 2017
  ident: ref19
  article-title: Skeleton-based action recognition using LSTM and CNN
  publication-title: Proc IEEE Int Conf Multimedia Expo Workshops (ICMEW)
– ident: ref28
  doi: 10.1016/0165-0114(89)90194-2
– ident: ref4
  doi: 10.1167/6.8.6
– ident: ref30
  doi: 10.1016/j.patrec.2004.09.024
– ident: ref31
  doi: 10.1109/TFUZZ.2016.2598362
– ident: ref25
  doi: 10.1109/TCSVT.2020.3015051
– ident: ref1
  doi: 10.1109/ICHI.2016.100
– ident: ref41
  doi: 10.1109/CVPR.2017.137
– start-page: 8561
  year: 2018
  ident: ref24
  article-title: Spatio-temporal graph routing for skeleton-based action recognition
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref47
  doi: 10.1109/SIBGRAPI.2019.00011
– ident: ref16
  doi: 10.1109/TCSVT.2018.2879913
– ident: ref15
  doi: 10.1109/LSP.2017.2678539
– ident: ref2
  doi: 10.1109/CVPRW.2012.6239175
– ident: ref13
  doi: 10.1109/ACPR.2015.7486569
– ident: ref38
  doi: 10.1109/CRV.2019.00015
– ident: ref27
  doi: 10.1109/21.57289
– ident: ref43
  doi: 10.1109/ICPR.2014.340
– start-page: 1010
  year: 2016
  ident: ref9
  article-title: NTU RGB+D: A large scale dataset for 3D human activity analysis
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– start-page: 4263
  year: 2017
  ident: ref11
  article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data
  publication-title: Proc 31st AAAI Conf Artif Intell
– volume: 30
  start-page: 2129
  year: 2020
  ident: ref12
  article-title: Action recognition scheme based on skeleton representation with DS-LSTM network
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2019.2914137
– ident: ref6
  doi: 10.1109/ACCESS.2017.2778011
– ident: ref35
  doi: 10.1109/CVPR.2019.00792
– year: 2018
  ident: ref37
  article-title: Action machine: Rethinking action recognition in trimmed videos
  publication-title: arXiv 1812 05770
– ident: ref20
  doi: 10.1109/TII.2019.2910876
– ident: ref5
  doi: 10.1201/9781351003827-5
– ident: ref49
  doi: 10.1007/s00530-020-00677-2
– start-page: 251
  year: 1993
  ident: ref26
  article-title: Fuzzy measures and fuzzy integrals-A survey
  publication-title: Readings in Fuzzy Sets for Intelligent Systems
  doi: 10.1016/B978-1-4832-1450-4.50027-4
– start-page: 1
  year: 2017
  ident: ref40
  article-title: A Riemannian network for SPD matrix learning
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref46
  doi: 10.1109/TIP.2018.2812099
– ident: ref22
  doi: 10.1109/ICASSP40776.2020.9054392
– year: 2020
  ident: ref39
  article-title: Gimme signals: Discriminative signal encoding for multimodal activity recognition
  publication-title: arXiv 2003 06156
– ident: ref44
  doi: 10.1016/j.cviu.2014.12.005
– ident: ref29
  doi: 10.1016/j.ymssp.2008.07.012
– start-page: 112
  year: 2007
  ident: ref3
  article-title: A view-based real-time human action recognition system as an interface for human computer interaction
  publication-title: Proc Int Conf Virtual Syst MultiMedia
– ident: ref48
  doi: 10.1109/CVPR42600.2020.00026
– ident: ref14
  doi: 10.1145/2964284.2967191
– ident: ref36
  doi: 10.1109/CVPR.2018.00127
– start-page: 270
  year: 2018
  ident: ref23
  article-title: Part-based graph convolutional network for action recognition
  publication-title: Proc Brit Mach Vis Conf (BMVC)
– start-page: 1
  year: 2018
  ident: ref42
  article-title: Building deep networks on grassmann manifolds
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref10
  doi: 10.1109/CVPR.2017.391
– ident: ref17
  doi: 10.24963/ijcai.2018/109
SSID ssj0014847
Score 2.6028624
Snippet Action recognition based on skeleton key joints has gained popularity due to its cost effectiveness and low complexity. Existing Convolutional Neural Network...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2206
SubjectTerms 3D skeleton
Action recognition
Artificial neural networks
Choquet integral
Classifiers
convolutional neural network
Cost effectiveness
Data mining
Feature extraction
fuzzy fusion
Image classification
Image coding
Integrals
Joints (anatomy)
Kinematics
Recognition
Skeleton
Source code
Three-dimensional displays
Two dimensional displays
Title Fuzzy Integral-Based CNN Classifier Fusion for 3D Skeleton Action Recognition
URI https://ieeexplore.ieee.org/document/9177170
https://www.proquest.com/docview/2536868198
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLaACQZuRKEgD2yQktg57BEKVUFqByiILYovCbVKESQD_fU8O4e4hNgy2JL1nuP3fe9E6CSMMmJ4YDyZ2TCjUsLjSgeeMtLnTIvEaOvQH43j4UN4-xQ9LaGzthZGa-2Sz3TPfrpYvprL0rrKzoFaAPsAgr4MxK2q1WojBiFzw8QALgQeAzvWFMj4_HzSv3-cABUkwFAtouH0ixFyU1V-PMXOvgw20Kg5WZVWMu2VhejJxbemjf89-iZar4EmvqhuxhZa0vk2WvvUfnAHjQblYvGOb6qOETPvEiyawv3xGLtRmc8GTCYelNafhgHbYnqF76dgpgAu4gtXD4Hvmvyjeb6LHgbXk_7Qq8creJLwqPCIIUkSRYQLLmmS-VoKKqgRofAzCsAtUJQJ4DtakzhTnPlZnHCpCTM-QHLD6B5ayee53kc4UgmJGTwGKkxCZTGfCo0OidAiE0aaDgoaeaey7j1uR2DMUsdBfJ46HaVWR2mtow46bfe8VJ03_ly9Y4Xerqzl3UHdRq1p_XO-pSSiMYsBCrGD33cdolViU1ecs6WLVorXUh8B9ijEsbt0H3FX1PI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcgAOFCiIQAEf4IQ23bX3YR96aFOihDY50BT1tqztsYRaJYhmhZrfwl_hv3Xs3Y14iVslbnuwLa3n08w343kAvE6zijuVuMhU_pnRWh0pi0lknYmVRF049AH9yTQfnabvz7KzDfi-roVBxJB8hn3_Gd7y7cLUPlS2S64FeR9xm0J5hFffyEG73BsfkjTfcD58NxuMonaGQGS4ypYRd7wosowrrYwoqhiNFlo4neq4EsROEiukJlKPyPPKKhlXeaEMculi4p1OCjr3FtwmnpHxpjps_UaRyjC-jAhKEkmynF1JTqx2Z4OTjzNyPjn5xJ5DKfGL2QtzXP5Q_sGiDbfgR3cXTSLLeb9e6r5Z_dYm8n-9rAdwv6XSbL_B_kPYwPkjuPdTg8VtmAzr1eqKjZueGBfRAdlsywbTKQvDQD87IgVsWPuIISP2zsQhOzknQ0yEmO2Hig_2ocuwWswfw-mN_M8T2Jwv5vgUWGYLnktSdzYtUutZrU0dplyjrrQzrgdJJ9_StN3V_ZCPizJ4WbEqAyZKj4myxUQP3q73fGl6i_xz9bYX8nplK98e7HQwKlv1c1nyTOQyJ7Inn_191yu4M5pNjsvj8fToOdzlPlEnhJZ2YHP5tcYXxLSW-mUAPINPNw2aawXaMbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Integral-Based+CNN+Classifier+Fusion+for+3D+Skeleton+Action+Recognition&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Banerjee%2C+Avinandan&rft.au=Singh%2C+Pawan+Kumar&rft.au=Sarkar%2C+Ram&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=31&rft.issue=6&rft.spage=2206&rft.epage=2216&rft_id=info:doi/10.1109%2FTCSVT.2020.3019293&rft.externalDocID=9177170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon