Steelmaking Process Optimised through a Decision Support System Aided by Self-Learning Machine Learning

This paper presents the application of a reinforcement learning (RL) algorithm, concretely Q-Learning, as the core of a decision support system (DSS) for a steelmaking subprocess, the Composition Adjustment by Sealed Argon-bubbling with Oxygen Blowing (CAS-OB) from the SSAB Raahe steel plant. Since...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 10; no. 3; p. 434
Main Authors Andreiana, Doru Stefan, Acevedo Galicia, Luis Enrique, Ollila, Seppo, Leyva Guerrero, Carlos, Ojeda Roldán, Álvaro, Dorado Navas, Fernando, del Real Torres, Alejandro
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the application of a reinforcement learning (RL) algorithm, concretely Q-Learning, as the core of a decision support system (DSS) for a steelmaking subprocess, the Composition Adjustment by Sealed Argon-bubbling with Oxygen Blowing (CAS-OB) from the SSAB Raahe steel plant. Since many CAS-OB actions are selected based on operator experience, this research aims to develop a DSS to assist the operator in taking the proper decisions during the process, especially less experienced operators. The DSS is intended to supports the operators in real-time during the process to facilitate their work and optimise the process, improving material and energy efficiency, thus increasing the operation’s sustainability. The objective is that the algorithm learns the process based only on raw data from the CAS-OB historical database, and on rewards set according to the objectives. Finally, the DSS was tested and validated by a developer engineer from the CAS-OB steelmaking plant. The results show that the algorithm successfully learns the process, recommending the same actions as those taken by the operator 69.23% of the time. The algorithm also suggests a better option in 30.76% of the remaining cases. Thanks to the DSS, the heat rejection due to wrong composition is reduced by 4%, and temperature accuracy is increased to 83.33%. These improvements resulted in an estimated reduction of 2% in CO2 emissions, 0.5% in energy consumption and 1.5% in costs. Additionally, actions taken based on the operator’s experience are incorporated into the DSS knowledge, facilitating the integration of operators with lower experience in the process.
AbstractList This paper presents the application of a reinforcement learning (RL) algorithm, concretely Q-Learning, as the core of a decision support system (DSS) for a steelmaking subprocess, the Composition Adjustment by Sealed Argon-bubbling with Oxygen Blowing (CAS-OB) from the SSAB Raahe steel plant. Since many CAS-OB actions are selected based on operator experience, this research aims to develop a DSS to assist the operator in taking the proper decisions during the process, especially less experienced operators. The DSS is intended to supports the operators in real-time during the process to facilitate their work and optimise the process, improving material and energy efficiency, thus increasing the operation’s sustainability. The objective is that the algorithm learns the process based only on raw data from the CAS-OB historical database, and on rewards set according to the objectives. Finally, the DSS was tested and validated by a developer engineer from the CAS-OB steelmaking plant. The results show that the algorithm successfully learns the process, recommending the same actions as those taken by the operator 69.23% of the time. The algorithm also suggests a better option in 30.76% of the remaining cases. Thanks to the DSS, the heat rejection due to wrong composition is reduced by 4%, and temperature accuracy is increased to 83.33%. These improvements resulted in an estimated reduction of 2% in CO2 emissions, 0.5% in energy consumption and 1.5% in costs. Additionally, actions taken based on the operator’s experience are incorporated into the DSS knowledge, facilitating the integration of operators with lower experience in the process.
Author Ollila, Seppo
Dorado Navas, Fernando
del Real Torres, Alejandro
Ojeda Roldán, Álvaro
Andreiana, Doru Stefan
Acevedo Galicia, Luis Enrique
Leyva Guerrero, Carlos
Author_xml – sequence: 1
  givenname: Doru Stefan
  orcidid: 0000-0002-7806-0316
  surname: Andreiana
  fullname: Andreiana, Doru Stefan
– sequence: 2
  givenname: Luis Enrique
  surname: Acevedo Galicia
  fullname: Acevedo Galicia, Luis Enrique
– sequence: 3
  givenname: Seppo
  surname: Ollila
  fullname: Ollila, Seppo
– sequence: 4
  givenname: Carlos
  surname: Leyva Guerrero
  fullname: Leyva Guerrero, Carlos
– sequence: 5
  givenname: Álvaro
  surname: Ojeda Roldán
  fullname: Ojeda Roldán, Álvaro
– sequence: 6
  givenname: Fernando
  surname: Dorado Navas
  fullname: Dorado Navas, Fernando
– sequence: 7
  givenname: Alejandro
  surname: del Real Torres
  fullname: del Real Torres, Alejandro
BookMark eNpNkF1LwzAYhYMoOOdu_AUB74Rqmo-2uRzzEyYTqtclTd9umWtSk_Ri_96OKXpu3sPh4bxwLtCpdRYQukrJLWOS3PU-JYQRzvgJmlBK80TmaX76z5-jWQhbMkqmrBDZBK3LCLDr1Kexa_zmnYYQ8KqPpjMBGhw33g3rDVb4HrQJxllcDn3vfMTlPkTo8Nw0I1fvcQm7NlmC8vZQ9ar0xljAv8ElOmvVLsDs507Rx-PD--I5Wa6eXhbzZaKpFDGhLaWkoFAUTUsE5YroNGOFAlUzpnmTayWg1kUmckEEl1xoTmUmaq1YLilhU3R97O29-xogxGrrBm_HlxXNOOWCZ1k-UjdHSnsXgoe26r3plN9XKakOW1Z_W7JvMUVnyA
CitedBy_id crossref_primary_10_3390_pr10112461
crossref_primary_10_3390_pr10071378
crossref_primary_10_3390_app122312377
crossref_primary_10_1007_s11663_024_03035_z
Cites_doi 10.1016/j.ifacol.2015.10.068
10.3390/sym13061057
10.1016/j.watres.2020.116576
10.1109/ACCESS.2019.2941229
10.1016/j.chemosphere.2019.06.103
10.1007/s10845-018-1433-8
10.1016/B978-0-12-821348-3.00006-9
10.1002/pamm.201900390
10.3390/su13147703
10.1007/978-3-319-63913-0
10.3390/su12208718
10.1093/imammb/dqz004
10.1016/j.ifacol.2019.11.355
10.1038/nature16961
10.3390/app10207171
10.1007/BF00992698
10.3390/pr7100739
10.1201/9781420042313
10.1007/s10994-012-5280-0
10.1049/trit.2018.1007
10.1109/JAS.2017.7510310
10.3390/s20247297
10.3390/pr9071203
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr10030434
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr10030434
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PIMPY
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-2f22082e88df0524a0c1638aeab33c4d7ca5ebc86575054945c42965bca379203
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Thu Oct 10 15:46:14 EDT 2024
Thu Sep 26 20:59:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2f22082e88df0524a0c1638aeab33c4d7ca5ebc86575054945c42965bca379203
ORCID 0000-0002-7806-0316
OpenAccessLink https://www.proquest.com/docview/2642454667?pq-origsite=%requestingapplication%
PQID 2642454667
PQPubID 2032344
ParticipantIDs proquest_journals_2642454667
crossref_primary_10_3390_pr10030434
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Watkins (ref_34) 1992; 8
Wang (ref_26) 2019; 2019
ref_36
ref_13
Wang (ref_29) 2017; 4
ref_35
ref_12
Jang (ref_32) 2019; 7
ref_31
ref_30
ref_19
ref_18
ref_17
ref_16
Backman (ref_15) 2019; 52
Maass (ref_27) 2019; 37
Silver (ref_33) 2012; 87
Oztemel (ref_11) 2018; 31
Yang (ref_20) 2020; 189
Rotevatn (ref_14) 2015; 48
Silver (ref_22) 2016; 529
Kusunoki (ref_1) 2013; 104
Ha (ref_3) 2008; 53
ref_23
Pang (ref_24) 2019; 234
ref_21
Kanninen (ref_5) 2020; 2020
ref_2
ref_28
ref_9
ref_8
Shi (ref_10) 2018; 3
ref_4
Gottschalk (ref_25) 2019; 19
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_9
– volume: 2019
  start-page: 3684
  year: 2019
  ident: ref_26
  article-title: Measuring Structural Similarities in Finite MDPs
  publication-title: IJCAI Int. Jt. Conf. Artif. Intell.
  contributor:
    fullname: Wang
– volume: 48
  start-page: 6
  year: 2015
  ident: ref_14
  article-title: A Model of the CAS-OB Process for Online Applications
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.10.068
  contributor:
    fullname: Rotevatn
– ident: ref_35
  doi: 10.3390/sym13061057
– volume: 189
  start-page: 116576
  year: 2020
  ident: ref_20
  article-title: Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural network
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116576
  contributor:
    fullname: Yang
– volume: 7
  start-page: 133653
  year: 2019
  ident: ref_32
  article-title: Q-Learning Algorithms: A Comprehensive Classification and Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941229
  contributor:
    fullname: Jang
– ident: ref_18
– volume: 234
  start-page: 893
  year: 2019
  ident: ref_24
  article-title: An influent responsive control strategy with machine learning: Q-learning based optimization method for a biological phosphorus removal system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.06.103
  contributor:
    fullname: Pang
– volume: 31
  start-page: 127
  year: 2018
  ident: ref_11
  article-title: Literature review of Industry 4.0 and related technologies
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-018-1433-8
  contributor:
    fullname: Oztemel
– ident: ref_23
– ident: ref_36
  doi: 10.1016/B978-0-12-821348-3.00006-9
– ident: ref_21
– volume: 19
  start-page: e201900390
  year: 2019
  ident: ref_25
  article-title: Differences and similarities between reinforcement learning and the classical optimal control framework
  publication-title: PAMM
  doi: 10.1002/pamm.201900390
  contributor:
    fullname: Gottschalk
– ident: ref_13
  doi: 10.3390/su13147703
– ident: ref_19
  doi: 10.1007/978-3-319-63913-0
– ident: ref_6
– ident: ref_8
– volume: 104
  start-page: 109
  year: 2013
  ident: ref_1
  article-title: Development of steelmaking processes for producing various high-quality steel grades at yawata works
  publication-title: Nippon Steel Tech. Rep.
  contributor:
    fullname: Kusunoki
– ident: ref_4
– ident: ref_16
  doi: 10.3390/su12208718
– volume: 2020
  start-page: 3
  year: 2020
  ident: ref_5
  article-title: Cost optimization system for full cycle metallurgical plants
  publication-title: Chernye Met.
  contributor:
    fullname: Kanninen
– volume: 37
  start-page: 22
  year: 2019
  ident: ref_27
  article-title: A Markov decision process approach to optimizing cancer therapy using multiple modalities
  publication-title: Math. Med. Biol.
  doi: 10.1093/imammb/dqz004
  contributor:
    fullname: Maass
– volume: 52
  start-page: 1174
  year: 2019
  ident: ref_15
  article-title: Methods and Tools of Improving Steel Manufacturing Processes: Current State and Future Methods
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.355
  contributor:
    fullname: Backman
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_22
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
  contributor:
    fullname: Silver
– ident: ref_30
  doi: 10.3390/app10207171
– volume: 8
  start-page: 279
  year: 1992
  ident: ref_34
  article-title: Technical Note: Q-Learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
  contributor:
    fullname: Watkins
– ident: ref_17
  doi: 10.3390/pr7100739
– ident: ref_2
  doi: 10.1201/9781420042313
– volume: 87
  start-page: 183
  year: 2012
  ident: ref_33
  article-title: Temporal-difference search in computer Go
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-012-5280-0
  contributor:
    fullname: Silver
– volume: 53
  start-page: 2
  year: 2008
  ident: ref_3
  article-title: Start-up and some experience of CAS-OB at POSCO
  publication-title: Arch. Metall. Mater.
  contributor:
    fullname: Ha
– volume: 3
  start-page: 235
  year: 2018
  ident: ref_10
  article-title: Adaptive PID controller based on Q-learning algorithm
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2018.1007
  contributor:
    fullname: Shi
– volume: 4
  start-page: 1
  year: 2017
  ident: ref_29
  article-title: PDP: Parallel dynamic programming
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510310
  contributor:
    fullname: Wang
– ident: ref_31
  doi: 10.3390/s20247297
– ident: ref_12
  doi: 10.3390/pr9071203
SSID ssj0000913856
Score 2.2713397
Snippet This paper presents the application of a reinforcement learning (RL) algorithm, concretely Q-Learning, as the core of a decision support system (DSS) for a...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 434
SubjectTerms Algorithms
Argon
Carbon dioxide
Composition
Decision support systems
Efficiency
Emissions
Energy consumption
Feedback
Iron and steel plants
Machine learning
Operators
Steel making
Steel production
User interface
Title Steelmaking Process Optimised through a Decision Support System Aided by Self-Learning Machine Learning
URI https://www.proquest.com/docview/2642454667
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8IwGG4ELnowghpRJE30oIeG0bXdejKoIDEBjUjCbdn6QUwQEObBi7_ddutELh73cXrf9H3erz4PAJdYUl9rwRDTCUaE69DEQU8jA16BVB7XVNiG_mDI-mPyOKET13Bbu7XKIiZmgVouhO2RtwxwY0IJY8HN8gNZ1Sg7XXUSGiVQwW1ix7SV2-7w-eW3y2JZL0PKcl5S39T3reWqnY0DfbKNRNuBOEOX3gHYd2kh7OR-rIIdNa-BvT9kgTVQdcdwDa8cV_T1IZiOUqVm75mkFHRL__DJhAHjPiWhU-GBMbx3WjrQynialBvmVOWw8ybNf8kXHKmZRo5tdQoH2Y6lgsWLIzDudV_v-shpJyCBOU0R1hgbdFdhKLVHMYk9YTOvWMWJ7wsiAxFTlYjQzl1M1sYJFQaZGE1E7Acce_4xKM8Xc3UCIGc60KYqaavs2inhOBSCG68mUsZYBnVwUdgxWuYUGZEpLay1o42166BRmDhyx2QdbZx6-v_nM7CL7b2DbPmrAcrp6lOdm2wgTZqgFPYems7x5mnw3f0Brzm3lQ
link.rule.ids 315,786,790,12792,21416,27955,27956,33406,33777,43633,43838,74390,74657
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTsJAFJ0oLtSFEdSIok6iC11MLPNqZ2WIiqiACyBh17TzICYICHXh3ztTpiIbt21X93buua85B4ArrBgxRnLETYoRFSaycTAwyIJXqHQgDJOuod_p8taAvgzZ0DfcFn6tsoiJeaBWU-l65LcWuDFllPPwbvaJnGqUm656CY1NsEUJJ-4_j5pPvz0Wx3kZMb5kJSW2ur-dzev5MJDQdRxaD8M5tjT3wZ5PCmFj6cUy2NCTCtj9QxVYAWV_CBfw2jNF3xyAUS_TevyRC0pBv_IP32wQsM7TCnoNHpjAB6-kA52Ip0244ZKoHDbelf0u_YY9PTbIc62OYCffsNSweHAIBs3H_n0LeeUEJLFgGcIGY4vtOoqUCRimSSBd3pXoJCVEUhXKhOlURm7qYnM2QZm0uMRZKhMSChyQI1CaTCf6GEDBTWhsTVLX-aVTKnAkpbA-TZVKsAqr4LKwYzxbEmTEtrBw1o5X1q6CWmHi2B-SRbxy6cn_ry_Adqvfacft5-7rKdjB7gZCvgZWA6Vs_qXPbF6Qpee5838Arzm3BQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4UE6MHI6gRRW2iBz0sjK7t1pMh4sQfoAmSeFu2_iAmCAjz4H9v23UiF6_rTu-l7_v6-vp9AFwgQQKlOPWoypCHmYp0HfSVp8ErFNJninDT0O_1aXeIH97Im5t_WrixyrIm2kItptz0yJsauBEmmNKwqdxYxEsnvp59esZByty0OjuNdbBhSLaxcYjiu99-i9G_jAgtFEoDvd6czVv2YjDAq5i0WpItzsS7YMcRRNguMloFa3JSA9t_ZANroOo25AJeOtXoqz0wGuRSjj-suRR04__wWRcEnUgpoPPjgSnsOFcdaAw9NfmGhWg5bL8L_V_2DQdyrDynuzqCPTttKWH5YR8M49vXm67nXBQ8jhjJPaQQ0jgvo0gonyCc-txwsFSmWRBwLEKeEpnxyNzAaP7GMOEaoyjJeBqEDPnBAahMphN5CCCjKlT6fNKS9gEqZijinOn8ZkKkSIR1cF7GMZkVYhmJPmSYaCfLaNdBowxx4jbMIlmm9-j_5TOwqfOePN33H4_BFjKPEexEWANU8vmXPNEUIc9Obe5_AAMFuzo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steelmaking+Process+Optimised+through+a+Decision+Support+System+Aided+by+Self-Learning+Machine+Learning&rft.jtitle=Processes&rft.au=Doru%2C+Stefan+Andreiana&rft.au=Acevedo+Galicia%2C+Luis+Enrique&rft.au=Ollila%2C+Seppo&rft.au=Carlos+Leyva+Guerrero&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=10&rft.issue=3&rft.spage=434&rft_id=info:doi/10.3390%2Fpr10030434&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon