Weakly Supervised Pedestrian Segmentation for Person Re-Identification

Person re-identification (RelD) is an important problem in intelligent surveillance and public security. Among all the solutions to this problem, existing mask-based methods first use a well-pretrained segmentation model to generate a foreground mask, in order to exclude the background from ReID. Th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 3; p. 1
Main Authors Jin, Ziqi, Xie, Jinheng, Wu, Bizhu, Shen, Linlin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2022.3210476

Cover

Loading…
Abstract Person re-identification (RelD) is an important problem in intelligent surveillance and public security. Among all the solutions to this problem, existing mask-based methods first use a well-pretrained segmentation model to generate a foreground mask, in order to exclude the background from ReID. Then they perform the RelD task directly on the segmented pedestrian image. However, such a process requires extra datasets with pixel-level semantic labels. In this paper, we propose a Weakly Supervised Pedestrian Segmentation (WSPS) framework to produce the foreground mask directly from the RelD datasets. In contrast, our WSPS only requires image-level subject ID labels. To better utilize the pedestrian mask, we also propose the Image Synthesis Augmentation (ISA) technique to further augment the dataset. Experiments show that the features learned from our proposed framework are robust and discriminative. Compared with the baseline, the mAP of our framework is about 4.4%, 11.7%, and 4.0% higher on three widely used datasets including Market-1501, CUHK03, and MSMT17. The code will be available soon.
AbstractList Person re-identification (RelD) is an important problem in intelligent surveillance and public security. Among all the solutions to this problem, existing mask-based methods first use a well-pretrained segmentation model to generate a foreground mask, in order to exclude the background from ReID. Then they perform the RelD task directly on the segmented pedestrian image. However, such a process requires extra datasets with pixel-level semantic labels. In this paper, we propose a Weakly Supervised Pedestrian Segmentation (WSPS) framework to produce the foreground mask directly from the RelD datasets. In contrast, our WSPS only requires image-level subject ID labels. To better utilize the pedestrian mask, we also propose the Image Synthesis Augmentation (ISA) technique to further augment the dataset. Experiments show that the features learned from our proposed framework are robust and discriminative. Compared with the baseline, the mAP of our framework is about 4.4%, 11.7%, and 4.0% higher on three widely used datasets including Market-1501, CUHK03, and MSMT17. The code will be available soon.
Author Jin, Ziqi
Wu, Bizhu
Shen, Linlin
Xie, Jinheng
Author_xml – sequence: 1
  givenname: Ziqi
  surname: Jin
  fullname: Jin, Ziqi
  organization: School of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Jinheng
  surname: Xie
  fullname: Xie, Jinheng
  organization: School of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Bizhu
  surname: Wu
  fullname: Wu, Bizhu
  organization: School of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Linlin
  orcidid: 0000-0003-1420-0815
  surname: Shen
  fullname: Shen, Linlin
  organization: School of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen, China
BookMark eNp9UMtOwzAQtBBItIUfgEskzinrRxLniCoKlSqBaIGj5cZr5NImxU6R-ve4TcWBA6cdaWZ2Z6dPTuumRkKuKAwphfJ2Ppq9zYcMGBtyRkEU-Qnp0SyTKWOQnUYMGU0lo9k56YewBKBCiqJHxu-oP1e7ZLbdoP92AU3yjAZD652ukxl-rLFudeuaOrGNj5wPEb5gOjGRcNZVB_KCnFm9Cnh5nAPyOr6fjx7T6dPDZHQ3TStWZm3KEPSCguQ5X5RVYcEgN2BZqbmQkkVayhjLMKOlBMFzwfUCNeUF19Zawwfkptu78c3XNsZUy2br63hSsUKKnOdM5lHFOlXlmxA8WrXxbq39TlFQ-77UoS-170sd-4om-cdUue7z1mu3-t963VkdIv7eKkvIci74D4bseqw
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3442310
crossref_primary_10_1109_TCSVT_2023_3339167
crossref_primary_10_1109_TCSVT_2024_3454171
crossref_primary_10_1109_TCSVT_2023_3341877
Cites_doi 10.1109/CVPR.2018.00051
10.1109/TPAMI.2018.2820063
10.1109/CVPR.2018.00129
10.1109/CVPR.2018.00607
10.1109/ICPR48806.2021.9412481
10.1145/1015706.1015720
10.1007/978-3-030-58598-3_17
10.1109/ICME.2019.00127
10.1109/TCSVT.2021.3099943
10.1109/TCSVT.2020.3014167
10.1007/978-3-030-01264-9_25
10.1109/ICCV.2019.00380
10.1109/CVPR.2019.00048
10.1109/CVPRW50498.2020.00307
10.1007/978-3-030-58574-7_29
10.1109/ICIP42928.2021.9506058
10.1109/ICCV.2015.133
10.1109/CVPR.2017.660
10.1109/ICCVW.2017.304
10.1109/ICCV48922.2021.00986
10.1109/TCSVT.2018.2873599
10.1109/CVPR.2018.00839
10.1609/aaai.v34i07.6705
10.1109/CVPR.2017.18
10.1109/ICCV.2017.244
10.1109/ICCV.2017.410
10.1109/TCSVT.2020.3047095
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2019.00231
10.24963/ijcai.2021/136
10.1109/ICCV.2019.00032
10.1109/TCSVT.2021.3118060
10.1109/CVPR.2018.00141
10.1109/CVPR.2014.27
10.1016/j.eswa.2022.116636
10.1109/CVPR.2017.389
10.1109/TCSVT.2020.3037179
10.1109/ICCV.2017.405
10.1109/ICPR48806.2021.9412598
10.1109/CVPRW.2019.00190
10.1109/CVPR.2019.00954
10.1109/TCSVT.2021.3088446
10.1109/TPAMI.2009.167
10.1109/CVPR.2017.241
10.1007/978-3-030-01225-0_29
10.1109/TPAMI.2020.3048039
10.1109/TIP.2018.2874715
10.1109/CVPR42600.2020.01229
10.1007/978-3-030-58604-1_22
10.1007/978-3-319-49409-8_35
10.1016/j.imavis.2021.104330
10.1007/s11263-021-01440-4
10.1109/CVPR.2018.00117
10.1007/s11263-021-01474-8
10.1109/CVPR.2016.90
10.1007/978-3-030-58610-2_9
10.1109/CVPR.2018.00016
10.1109/ICCV.2017.322
10.1109/CVPR.2017.316
10.1109/ICME.2019.00092
10.1109/TCSVT.2018.2866260
10.1007/978-3-030-01225-0_30
10.1109/TCSVT.2019.2962073
10.1109/CVPR.2016.319
10.1109/CVPR46437.2021.01037
10.1109/ICCV.2019.00063
10.1109/ICIP42928.2021.9506733
10.1109/TCSVT.2022.3197844
10.1109/ICIP.2019.8803465
10.1016/j.neunet.2020.01.012
10.1109/CVPR.2017.687
10.1109/ICCV.2019.00069
10.1609/aaai.v34i07.7000
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3210476
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2022_3210476
9905634
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 91959108
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-2e0ab108363b9c7f0de3d0f29a348822e088847d2da88043643abea1373afffd3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 10:17:08 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Tue Jul 01 00:41:19 EDT 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2e0ab108363b9c7f0de3d0f29a348822e088847d2da88043643abea1373afffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1420-0815
0000-0001-5678-4500
0000-0002-6783-6561
0000-0002-7233-5251
PQID 2784636286
PQPubID 85433
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2022_3210476
crossref_primary_10_1109_TCSVT_2022_3210476
proquest_journals_2784636286
ieee_primary_9905634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
Hou (ref34); 31
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Simonyan (ref65)
Sharma (ref21) 2021
ref80
ref35
ref79
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
Long (ref40); 1
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref28
ref27
ref29
Everingham (ref38) 2021
ref60
ref62
ref61
Krähenbühl (ref67); 24
References_xml – volume: 31
  start-page: 549
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Self-erasing network for integral object attention
– volume: 24
  start-page: 109
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref67
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
– ident: ref72
  doi: 10.1109/CVPR.2018.00051
– ident: ref27
  doi: 10.1109/TPAMI.2018.2820063
– ident: ref28
  doi: 10.1109/CVPR.2018.00129
– ident: ref14
  doi: 10.1109/CVPR.2018.00607
– ident: ref22
  doi: 10.1109/ICPR48806.2021.9412481
– ident: ref57
  doi: 10.1145/1015706.1015720
– ident: ref9
  doi: 10.1007/978-3-030-58598-3_17
– ident: ref15
  doi: 10.1109/ICME.2019.00127
– ident: ref47
  doi: 10.1109/TCSVT.2021.3099943
– volume-title: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
  year: 2021
  ident: ref38
– ident: ref18
  doi: 10.1109/TCSVT.2020.3014167
– ident: ref19
  doi: 10.1007/978-3-030-01264-9_25
– ident: ref24
  doi: 10.1109/ICCV.2019.00380
– ident: ref11
  doi: 10.1109/CVPR.2019.00048
– ident: ref49
  doi: 10.1109/CVPRW50498.2020.00307
– ident: ref59
  doi: 10.1007/978-3-030-58574-7_29
– ident: ref30
  doi: 10.1109/ICIP42928.2021.9506058
– ident: ref29
  doi: 10.1109/ICCV.2015.133
– ident: ref51
  doi: 10.1109/CVPR.2017.660
– ident: ref74
  doi: 10.1109/ICCVW.2017.304
– ident: ref69
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref73
  doi: 10.1109/TCSVT.2018.2873599
– ident: ref77
  doi: 10.1109/CVPR.2018.00839
– ident: ref37
  doi: 10.1609/aaai.v34i07.6705
– ident: ref43
  doi: 10.1109/CVPR.2017.18
– ident: ref48
  doi: 10.1109/ICCV.2017.244
– ident: ref78
  doi: 10.1109/ICCV.2017.410
– ident: ref45
  doi: 10.1109/TCSVT.2020.3047095
– ident: ref64
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref35
  doi: 10.1109/CVPR.2019.00231
– ident: ref31
  doi: 10.24963/ijcai.2021/136
– ident: ref7
  doi: 10.1109/ICCV.2019.00032
– ident: ref46
  doi: 10.1109/TCSVT.2021.3118060
– ident: ref60
  doi: 10.1109/CVPR.2018.00141
– ident: ref61
  doi: 10.1109/CVPR.2014.27
– ident: ref58
  doi: 10.1016/j.eswa.2022.116636
– ident: ref62
  doi: 10.1109/CVPR.2017.389
– ident: ref17
  doi: 10.1109/TCSVT.2020.3037179
– ident: ref26
  doi: 10.1109/ICCV.2017.405
– ident: ref76
  doi: 10.1109/ICPR48806.2021.9412598
– ident: ref80
  doi: 10.1109/CVPRW.2019.00190
– ident: ref10
  doi: 10.1109/CVPR.2019.00954
– year: 2021
  ident: ref21
  article-title: Person re-identification with a locally aware transformer
  publication-title: arXiv:2106.03720
– ident: ref55
  doi: 10.1109/TCSVT.2021.3088446
– ident: ref63
  doi: 10.1109/TPAMI.2009.167
– ident: ref42
  doi: 10.1109/CVPR.2017.241
– ident: ref68
  doi: 10.1007/978-3-030-01225-0_29
– ident: ref53
  doi: 10.1109/TPAMI.2020.3048039
– ident: ref25
  doi: 10.1109/TIP.2018.2874715
– ident: ref36
  doi: 10.1109/CVPR42600.2020.01229
– ident: ref71
  doi: 10.1007/978-3-030-58604-1_22
– ident: ref41
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref20
  doi: 10.1016/j.imavis.2021.104330
– ident: ref1
  doi: 10.1007/s11263-021-01440-4
– ident: ref5
  doi: 10.1109/CVPR.2018.00117
– ident: ref3
  doi: 10.1007/s11263-021-01474-8
– ident: ref66
  doi: 10.1109/CVPR.2016.90
– ident: ref12
  doi: 10.1007/978-3-030-58610-2_9
– ident: ref44
  doi: 10.1109/CVPR.2018.00016
– ident: ref50
  doi: 10.1109/ICCV.2017.322
– ident: ref39
  doi: 10.1109/CVPR.2017.316
– volume: 1
  start-page: 97
  volume-title: Proc. 32nd Int. Conf. Mach. Learn. (ICML)
  ident: ref40
  article-title: Learning transferable features with deep adaptation networks
– ident: ref6
  doi: 10.1109/ICME.2019.00092
– ident: ref16
  doi: 10.1109/TCSVT.2018.2866260
– ident: ref75
  doi: 10.1007/978-3-030-01225-0_30
– ident: ref54
  doi: 10.1109/TCSVT.2019.2962073
– ident: ref32
  doi: 10.1109/CVPR.2016.319
– ident: ref70
  doi: 10.1109/CVPR46437.2021.01037
– ident: ref13
  doi: 10.1109/ICCV.2019.00063
– ident: ref23
  doi: 10.1109/ICIP42928.2021.9506733
– ident: ref56
  doi: 10.1109/TCSVT.2022.3197844
– ident: ref4
  doi: 10.1109/ICIP.2019.8803465
– ident: ref2
  doi: 10.1016/j.neunet.2020.01.012
– ident: ref8
  doi: 10.1109/CVPR.2017.389
– ident: ref33
  doi: 10.1109/CVPR.2017.687
– ident: ref52
  doi: 10.1109/ICCV.2019.00069
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref65
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref79
  doi: 10.1609/aaai.v34i07.7000
SSID ssj0014847
Score 2.4300346
Snippet Person re-identification (RelD) is an important problem in intelligent surveillance and public security. Among all the solutions to this problem, existing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Datasets
Feature extraction
Image contrast
Image segmentation
Labels
Legged locomotion
Lips
mask-based augmentation
Re-Identification
Semantics
Task analysis
Training
weakly supervised segmentation
Title Weakly Supervised Pedestrian Segmentation for Person Re-Identification
URI https://ieeexplore.ieee.org/document/9905634
https://www.proquest.com/docview/2784636286
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJz34QiOKZg_edGG37bL0aIiEmGCIgHLbdNtZD-BCBA766227jxA1xtsm26ZNpzPzTdtvBuCacOV3JPddKWLlMu0B3E6AgatCGsZcMcWp4TsPHtv9CXuYBtMK3JZcGES0j8-waT7tXb5ayI05Kmtpyxm0KduBHR24ZVyt8saAdWwxMQ0X9GjajxUEGY-3xt3R81iHgoQ0DWOFmfwiW07IVlX5YYqtf-kdwKCYWfasZNbcrOOm_PyWtPG_Uz-E_RxoOnfZzjiCCqbHsLeVfrAGvRcUs_mHM9osjcVYoXKGqNBW8kidEb6-5cSk1NHQ1hlacO48oZuxe5P8uO8EJr37cbfv5nUVXEl4sHYJeiL2TVpqGnMZJp5CqryEcEG1OhP9W4fFLFRECa3djGrQImIUPg2pSJJE0VOoposUz8DhhAjJqcElkkmWdHS4xTHhgkmqhCJ18IuFjmSedNzUvphHNvjweGSFExnhRLlw6nBT9llmKTf-bF0zq122zBe6Do1CnlGulavIXLK2qSHjnv_e6wJ2TTn57I1ZA6rr9w1eatCxjq_sbvsCQwjSpQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQIAMbpCS209QjqqjKowjR8tgix74wtKQVbQb49dhOGlWAEFuk2LLl8919Z_u7AzghXPlNyX1Xili5THsAtxlg4KqQhjFXTHFq-M7du0bnkV2_BC8LcFZyYRDRPj7Duvm0d_lqJDNzVHauLWfQoGwRlrTfD_ycrVXeGbCmLSemAYMeT3uyGUXG4-f9Vu-pr4NBQuqGs8JMhpE5N2TrqvwwxtbDtNehO5tb_rBkUM-mcV1-fkvb-N_Jb8BaATWdi3xvbMICpluwOpeAcBvazygGww-nl42NzZigcu5Roa3lkTo9fH0rqEmpo8Gtc2_hufOAbs7vTYoDvx14bF_2Wx23qKzgSsKDqUvQE7FvElPTmMsw8RRS5SWEC6oVmujfOjBmoSJKaP1mVMMWEaPwaUhFkiSK7kIlHaW4Bw4nREhODTKRTLKkqQMujgkXTFIlFKmCP1voSBZpx031i2Fkww-PR1Y4kRFOVAinCqdln3GedOPP1ttmtcuWxUJXoTaTZ1To5SQy16wNaui4-7_3OoblTr97G91e3d0cwIopLp-_OKtBZfqe4aGGINP4yO68L2vl1e4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+Supervised+Pedestrian+Segmentation+for+Person+Re-Identification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Jin%2C+Ziqi&rft.au=Xie%2C+Jinheng&rft.au=Wu%2C+Bizhu&rft.au=Shen%2C+Linlin&rft.date=2023-03-01&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2022.3210476&rft.externalDocID=9905634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon