Sc-TUSV-Ext: Single-Cell Clonal Lineage Inference from Single Nucleotide Variants, Copy Number Alterations, and Structural Variants

Clonal lineage inference (“tumor phylogenetics”) has become a crucial tool for making sense of somatic evolution processes that underlie cancer development and are increasingly recognized as part of normal tissue growth and aging. The inference of clonal lineage trees from single-cell sequence data...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational biology Vol. 32; no. 8; pp. 723 - 737
Main Authors Bristy, Nishat Anjum, Fu, Xuecong, Schwartz, Russell
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc., publishers 01.08.2025
Subjects
Online AccessGet full text
ISSN1557-8666
1557-8666
DOI10.1089/cmb.2024.0613

Cover

Abstract Clonal lineage inference (“tumor phylogenetics”) has become a crucial tool for making sense of somatic evolution processes that underlie cancer development and are increasingly recognized as part of normal tissue growth and aging. The inference of clonal lineage trees from single-cell sequence data offers particular promise for revealing processes of somatic evolution in unprecedented detail. However, most such tools are based on fairly restrictive models of the types of mutation events observed in somatic evolution and of the processes by which they develop. The present work seeks to enhance the power and versatility of tools for single-cell lineage reconstruction by making more comprehensive use of the range of molecular variant types by which tumors evolve. We introduce Sc-TUSV-ext, an integer linear programming-based tumor phylogeny reconstruction method that, for the first time, integrates single nucleotide variants, copy number alterations, and structural variations into clonal lineage reconstruction from single-cell DNA sequencing data. We show on synthetic data that accounting for these variant types collectively leads to improved accuracy in clonal lineage reconstruction relative to prior methods that consider only subsets of the variant types. We further demonstrate the effectiveness of real data in resolving clonal evolution in the presence of multiple variant types, providing a path toward more comprehensive insight into how various forms of somatic mutability collectively shape tissue development.
AbstractList Clonal lineage inference (“tumor phylogenetics”) has become a crucial tool for making sense of somatic evolution processes that underlie cancer development and are increasingly recognized as part of normal tissue growth and aging. The inference of clonal lineage trees from single-cell sequence data offers particular promise for revealing processes of somatic evolution in unprecedented detail. However, most such tools are based on fairly restrictive models of the types of mutation events observed in somatic evolution and of the processes by which they develop. The present work seeks to enhance the power and versatility of tools for single-cell lineage reconstruction by making more comprehensive use of the range of molecular variant types by which tumors evolve. We introduce Sc-TUSV-ext, an integer linear programming-based tumor phylogeny reconstruction method that, for the first time, integrates single nucleotide variants, copy number alterations, and structural variations into clonal lineage reconstruction from single-cell DNA sequencing data. We show on synthetic data that accounting for these variant types collectively leads to improved accuracy in clonal lineage reconstruction relative to prior methods that consider only subsets of the variant types. We further demonstrate the effectiveness of real data in resolving clonal evolution in the presence of multiple variant types, providing a path toward more comprehensive insight into how various forms of somatic mutability collectively shape tissue development.
Clonal lineage inference ("tumor phylogenetics") has become a crucial tool for making sense of somatic evolution processes that underlie cancer development and are increasingly recognized as part of normal tissue growth and aging. The inference of clonal lineage trees from single-cell sequence data offers particular promise for revealing processes of somatic evolution in unprecedented detail. However, most such tools are based on fairly restrictive models of the types of mutation events observed in somatic evolution and of the processes by which they develop. The present work seeks to enhance the power and versatility of tools for single-cell lineage reconstruction by making more comprehensive use of the range of molecular variant types by which tumors evolve. We introduce Sc-TUSV-ext, an integer linear programming-based tumor phylogeny reconstruction method that, for the first time, integrates single nucleotide variants, copy number alterations, and structural variations into clonal lineage reconstruction from single-cell DNA sequencing data. We show on synthetic data that accounting for these variant types collectively leads to improved accuracy in clonal lineage reconstruction relative to prior methods that consider only subsets of the variant types. We further demonstrate the effectiveness of real data in resolving clonal evolution in the presence of multiple variant types, providing a path toward more comprehensive insight into how various forms of somatic mutability collectively shape tissue development.Clonal lineage inference ("tumor phylogenetics") has become a crucial tool for making sense of somatic evolution processes that underlie cancer development and are increasingly recognized as part of normal tissue growth and aging. The inference of clonal lineage trees from single-cell sequence data offers particular promise for revealing processes of somatic evolution in unprecedented detail. However, most such tools are based on fairly restrictive models of the types of mutation events observed in somatic evolution and of the processes by which they develop. The present work seeks to enhance the power and versatility of tools for single-cell lineage reconstruction by making more comprehensive use of the range of molecular variant types by which tumors evolve. We introduce Sc-TUSV-ext, an integer linear programming-based tumor phylogeny reconstruction method that, for the first time, integrates single nucleotide variants, copy number alterations, and structural variations into clonal lineage reconstruction from single-cell DNA sequencing data. We show on synthetic data that accounting for these variant types collectively leads to improved accuracy in clonal lineage reconstruction relative to prior methods that consider only subsets of the variant types. We further demonstrate the effectiveness of real data in resolving clonal evolution in the presence of multiple variant types, providing a path toward more comprehensive insight into how various forms of somatic mutability collectively shape tissue development.
Author Bristy, Nishat Anjum
Fu, Xuecong
Schwartz, Russell
Author_xml – sequence: 1
  givenname: Nishat Anjum
  orcidid: 0000-0002-8649-7390
  surname: Bristy
  fullname: Bristy, Nishat Anjum
– sequence: 2
  givenname: Xuecong
  surname: Fu
  fullname: Fu, Xuecong
– sequence: 3
  givenname: Russell
  orcidid: 0000-0002-4970-2252
  surname: Schwartz
  fullname: Schwartz, Russell
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40049606$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtPwzAQB3ALgXiPrMgjAyl-JE7NhiJeUgVDC2vkOBcU5NjFdiSY-eK4aovYmHzS_e4k3_8I7VpnAaEzSiaUTOWVHpoJIyyfEEH5DjqkRVFmUyHE7p_6AB2F8E4I5YKU--ggJySXgohD9D3X2eJl_prdfsZrPO_tm4GsAmNwZZxVBs96C-oN8KPtwIPVgDvvho3ET6M24GLfAn5Vvlc2hktcueVX6gwNeHxjIngVe2dTQ9kWz6MfdRx9Wr2dOEF7nTIBTjfvMXq5u11UD9ns-f6xupllmskiZkw3DKRUsoSibEnRUjUlilKuFc9ZQXVZMCkkbzkVwLjuGpUnzkoCsgVF-TG6WO9devcxQoj10Aed_qosuDHUnJb5lDHCi0TPN3RsBmjrpe8H5b_q7eESyNZAexeCh-6XUFKvgqlTMPUqmHoVTPJ87VdGWWt6SOeJ_0z9ABoNkTg
Cites_doi 10.1038/nature12625
10.1089/cmb.2019.0302
10.1186/1471-2105-11-42
10.1093/bioinformatics/bty589
10.1126/science.959840
10.1016/j.cels.2020.04.001
10.1093/sysbio/syu081
10.1038/nature09807
10.1146/annurev-genom-121520-081242
10.1093/bioinformatics/bty270
10.1016/j.coisb.2017.11.008
10.1186/s13059-022-02794-9
10.1038/s41467-019-10737-5
10.1093/bioinformatics/btac253
10.1038/s41467-023-40378-8
10.1186/s13059-015-0602-8
10.1038/nature13176
10.1101/gr.220707.117
10.1186/s13059-016-0987-z
10.1186/s13059-017-1311-2
10.1002/net.3230210104
10.1093/bib/bbac092
10.1186/s13059-016-0936-x
10.1038/s41586-022-05249-0
10.1038/nrg.2016.170
10.1016/0025-5564(81)90043-2
10.1186/1471-2164-16-S11-S7
10.1038/nature10166
10.1038/nrg.2015.16
10.1038/s41586-019-1913-9
10.1126/science.aab4082
10.1016/j.cell.2019.10.026
10.1089/cmb.2021.0271
10.1101/gad.16962311
10.1101/gr.234435.118
ContentType Journal Article
Copyright 2025, Mary Ann Liebert, Inc., publishers
Copyright_xml – notice: 2025, Mary Ann Liebert, Inc., publishers
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1089/cmb.2024.0613
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1557-8666
EndPage 737
ExternalDocumentID 40049606
10_1089_cmb_2024_0613
Genre Journal Article
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG010589
GroupedDBID ---
0R~
29K
4.4
53G
5GY
ABBKN
ACGFO
ADBBV
AENEX
AFOSN
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BNQNF
CS3
D-I
DIK
DU5
EBS
F5P
IAO
IHR
IM4
MV1
NQHIM
O9-
P2P
RML
RNS
TN5
TR2
UE5
AAYXX
CITATION
34G
39C
ABEFU
AI.
CAG
CGR
COF
CUY
CVF
ECM
EIF
EJD
IER
IGS
ITC
NPM
R.V
RIG
RMSOB
VH1
7X8
SCNPE
ID FETCH-LOGICAL-c295t-2cb2e99a97e57d05d1a80a113ca34251c7529693d316e23cfba499a270e9dea13
ISSN 1557-8666
IngestDate Fri Sep 05 15:00:33 EDT 2025
Fri Aug 01 03:41:21 EDT 2025
Wed Aug 06 18:59:08 EDT 2025
Thu Jul 31 06:40:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords single-cell sequencing
phylogenetics
cancer
integer linear programming
somatic variation
Language English
License https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c295t-2cb2e99a97e57d05d1a80a113ca34251c7529693d316e23cfba499a270e9dea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8649-7390
0000-0002-4970-2252
PMID 40049606
PQID 3174822035
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3174822035
pubmed_primary_40049606
crossref_primary_10_1089_cmb_2024_0613
maryannliebert_primary_10_1089_cmb_2024_0613
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational biology
PublicationTitleAlternate J Comput Biol
PublicationYear 2025
Publisher Mary Ann Liebert, Inc., publishers
Publisher_xml – name: Mary Ann Liebert, Inc., publishers
References B20
B22
B23
B24
B25
B26
B27
B28
B29
Bao L (B2) 2021
B31
B10
B32
B11
B33
B12
B34
B13
Li H (B21) 2013; 1303
Sashittal P (B30) 2023
B35
B14
B36
B15
B37
B16
B38
B17
B18
B19
Zhang L (B39) 2022
B1
B3
B4
B5
B6
B7
B8
B9
38106049 - bioRxiv. 2023 Dec 08:2023.12.07.570724. doi: 10.1101/2023.12.07.570724.
References_xml – ident: B5
  doi: 10.1038/nature12625
– ident: B20
  doi: 10.1089/cmb.2019.0302
– volume: 1303
  issue: 3997
  year: 2013
  ident: B21
  publication-title: arXiv Preprint arXiv
– ident: B33
  doi: 10.1186/1471-2105-11-42
– ident: B11
  doi: 10.1093/bioinformatics/bty589
– ident: B28
  doi: 10.1126/science.959840
– ident: B31
  doi: 10.1016/j.cels.2020.04.001
– ident: B3
  doi: 10.1093/sysbio/syu081
– ident: B27
  doi: 10.1038/nature09807
– ident: B26
  doi: 10.1146/annurev-genom-121520-081242
– ident: B10
  doi: 10.1093/bioinformatics/bty270
– ident: B37
  doi: 10.1016/j.coisb.2017.11.008
– ident: B17
  doi: 10.1186/s13059-022-02794-9
– ident: B23
  doi: 10.1038/s41467-019-10737-5
– start-page: 2023
  year: 2023
  ident: B30
  publication-title: bioRxiv
– ident: B12
  doi: 10.1093/bioinformatics/btac253
– ident: B34
  doi: 10.1038/s41467-023-40378-8
– ident: B9
  doi: 10.1186/s13059-015-0602-8
– start-page: 2022
  year: 2022
  ident: B39
  publication-title: bioRxiv
– ident: B35
  doi: 10.1038/nature13176
– ident: B18
  doi: 10.1101/gr.220707.117
– ident: B8
  doi: 10.1186/s13059-016-0987-z
– ident: B38
  doi: 10.1186/s13059-017-1311-2
– ident: B15
  doi: 10.1002/net.3230210104
– ident: B7
  doi: 10.1093/bib/bbac092
– ident: B16
  doi: 10.1186/s13059-016-0936-x
– ident: B13
  doi: 10.1038/s41586-022-05249-0
– ident: B32
  doi: 10.1038/nrg.2016.170
– ident: B29
  doi: 10.1016/0025-5564(81)90043-2
– ident: B36
  doi: 10.1186/1471-2164-16-S11-S7
– ident: B6
  doi: 10.1038/nature10166
– ident: B14
  doi: 10.1038/nrg.2015.16
– ident: B22
  doi: 10.1038/s41586-019-1913-9
– ident: B25
  doi: 10.1126/science.aab4082
– ident: B19
  doi: 10.1016/j.cell.2019.10.026
– ident: B1
  doi: 10.1089/cmb.2021.0271
– start-page: 2021
  year: 2021
  ident: B2
  publication-title: bioRxiv
– ident: B4
  doi: 10.1101/gad.16962311
– ident: B24
  doi: 10.1101/gr.234435.118
– reference: 38106049 - bioRxiv. 2023 Dec 08:2023.12.07.570724. doi: 10.1101/2023.12.07.570724.
SSID ssj0013607
Score 2.4442253
Snippet Clonal lineage inference (“tumor phylogenetics”) has become a crucial tool for making sense of somatic evolution processes that underlie cancer development and...
Clonal lineage inference ("tumor phylogenetics") has become a crucial tool for making sense of somatic evolution processes that underlie cancer development and...
SourceID proquest
pubmed
crossref
maryannliebert
SourceType Aggregation Database
Index Database
Publisher
StartPage 723
SubjectTerms Algorithms
Cell Lineage - genetics
Clonal Evolution - genetics
Computational Biology - methods
DNA Copy Number Variations
Humans
Mutation
Neoplasms - genetics
Neoplasms - pathology
Phylogeny
Polymorphism, Single Nucleotide
Preface
Single-Cell Analysis - methods
Software
Title Sc-TUSV-Ext: Single-Cell Clonal Lineage Inference from Single Nucleotide Variants, Copy Number Alterations, and Structural Variants
URI https://www.liebertpub.com/doi/abs/10.1089/cmb.2024.0613
https://www.ncbi.nlm.nih.gov/pubmed/40049606
https://www.proquest.com/docview/3174822035
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKICSQQDBsZZOREJc2JbGzcquqQTOgmQNtR71FTmKzKKQjNREMV_4Nv5L37GyFjhi4RFVip4nfF7_F730m5EUUqkwxR1gs8TPLdSV8UiwJLN-OQOOESvEMHcXjE_9w6b5deavB4Gcva6kqk0n6fWddyf9IFc6BXLFK9h8k294UTsBvkC8cQcJwvJSM56m1WM5PrYNvOsA3BzWUS2uG4bhZrkN84GpKzMo5aur6TD2JaTk6QTLjdfkpk6NT8JmFzqmYwRxxdg7XcKuQ0TTXtMv4Cm2ip6ac1XQdTa8LTNxUbxnRhBtrvqcuAAAIMzM87gBdjqbF55oXAvFU4ZVVhf76h2616ONXGAYd835fbTYyz_tRC-a1OXPtROuBdvT9mgZ7x7l6du6in1WT3Wum2sDUKddaOzDUMX8oBDtEPtX0SzKBp3AnaL10mq9Z7f9NIbZpinqBPoxi6B5j9xi7XyFXWRCYlICjd92Kla9L89t3qPlcofurrX_fsn9uYnmiKApwNzCN_mIvR1s7i9vkVi1DOjWYu0MGstgn18zGpef75MZxy_a7uUt-9HD4mvZQSA0KaY1C2qKQIgrrlrRDIW3wNKaIQWowSHsYHFNAIO0Q2Pa4R5ZvDhazQ6ve3MNKWeSVFksTJqNIRIH0gsz2MkeEtnAcngoOesRJA8wIiHjGHV8ynqpEgHMuWGDLKJPC4ffJXrEu5ENCfcEdR0mupFJukqhEyQg5N1MuwDwT7pC8bIY8PjMcLvFO0Q7JeFsgf2v-vBFXDJMyrrSJQq6rTQxGuQuWt829IXlg5NjeCpUmhg0eXfapHpPr3Rf0hOzBEMunYAmXyTMNwV-U8rU_
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sc-TUSV-Ext%3A+Single-Cell+Clonal+Lineage+Inference+from+Single+Nucleotide+Variants%2C+Copy+Number+Alterations%2C+and+Structural+Variants&rft.jtitle=Journal+of+computational+biology&rft.au=Bristy%2C+Nishat+Anjum&rft.au=Fu%2C+Xuecong&rft.au=Schwartz%2C+Russell&rft.date=2025-08-01&rft.issn=1557-8666&rft.eissn=1557-8666&rft.volume=32&rft.issue=8&rft.spage=723&rft.epage=737&rft_id=info:doi/10.1089%2Fcmb.2024.0613&rft.externalDBID=n%2Fa&rft.externalDocID=10_1089_cmb_2024_0613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-8666&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-8666&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-8666&client=summon