A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules

Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit (URT) passenger flow assignment and ticket fare clearing. Inspired by the correlation between passenger tap-in/out time and train schedules, we present a method to estimate URT passenger spatial-temporal...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 12; no. 6; p. 2574
Main Authors Yang, Taoyuan, Zhao, Peng, Yao, Xiangming
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit (URT) passenger flow assignment and ticket fare clearing. Inspired by the correlation between passenger tap-in/out time and train schedules, we present a method to estimate URT passenger spatial-temporal trajectory. First, we classify passengers into four types according to the number of their routes and transfers. Subsequently, based on the characteristic that passengers tap-out in batches at each station, the K-means algorithm is used to assign passengers to trains. Then, we acquire passenger access, egress, and transfer time distribution, which are used to give a probability estimation of passenger trajectories. Finally, in a multi-route case of the Beijing Subway, this method presents an estimation result with 91.2% of the passengers choosing the same route in two consecutive days, and the difference of route choice ratio in these two days is 3.8%. Our method has high accuracy and provides a new method for passenger microcosmic behavior research.
AbstractList Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit (URT) passenger flow assignment and ticket fare clearing. Inspired by the correlation between passenger tap-in/out time and train schedules, we present a method to estimate URT passenger spatial-temporal trajectory. First, we classify passengers into four types according to the number of their routes and transfers. Subsequently, based on the characteristic that passengers tap-out in batches at each station, the K-means algorithm is used to assign passengers to trains. Then, we acquire passenger access, egress, and transfer time distribution, which are used to give a probability estimation of passenger trajectories. Finally, in a multi-route case of the Beijing Subway, this method presents an estimation result with 91.2% of the passengers choosing the same route in two consecutive days, and the difference of route choice ratio in these two days is 3.8%. Our method has high accuracy and provides a new method for passenger microcosmic behavior research.
Author Zhao, Peng
Yao, Xiangming
Yang, Taoyuan
Author_xml – sequence: 1
  givenname: Taoyuan
  orcidid: 0000-0001-9065-1525
  surname: Yang
  fullname: Yang, Taoyuan
– sequence: 2
  givenname: Peng
  surname: Zhao
  fullname: Zhao, Peng
– sequence: 3
  givenname: Xiangming
  surname: Yao
  fullname: Yao, Xiangming
BookMark eNpNkEtLw0AUhQepYK3d-AsG3AnReTSvZamtChXFputwM3PTpKSZODNB-u9NqaB3c-7i4xzOuSaj1rRIyC1nD1Km7NH1XLBIhPHsgowFi3nAWchG__4rMnVuz4aTkqc8GpPdnL6hr4ym3tCl8_UBPNLtZ0Y_wDlsd2jppgNfQxNkeOiMhYZmFvaovLFH-l37im4OYD1dgNX0CTxQaPWJqVu6URXqvkF3Qy5LaBxOf3VCtqtltngJ1u_Pr4v5OlAiDX0gCqUxSTmPYl0i4FBLKVaqqChjQBR8pqQORcQQuJZlWLBYaJ1yiNIwERDLCbk7-3bWfPXofL43vW2HyFzIRCaJnAk-UPdnSlnjnMUy7-zQ3B5zzvLTlvnflvIHr7toNQ
CitedBy_id crossref_primary_10_1080_21680566_2022_2060370
crossref_primary_10_1155_2023_6529819
crossref_primary_10_1109_ACCESS_2024_3400814
crossref_primary_10_1109_TITS_2022_3181381
crossref_primary_10_1049_itr2_12476
crossref_primary_10_1177_03611981211058432
crossref_primary_10_1016_j_heliyon_2024_e27237
Cites_doi 10.1007/s11116-010-9290-0
10.1287/trsc.26.3.246
10.1016/j.trc.2014.05.012
10.3390/su11184989
10.1073/pnas.1412908112
10.3141/2284-07
10.1109/TITS.2016.2587864
10.1016/j.trb.2015.03.015
10.1016/j.tra.2015.04.023
10.3390/su11247069
10.1016/j.trc.2015.01.001
10.1287/trsc.1040.0109
10.1007/s11116-015-9617-y
10.1016/j.tra.2016.09.006
10.1155/2018/2710608
10.1109/TITS.2017.2679179
10.1016/0191-2615(89)90034-9
10.1016/j.trb.2018.01.002
10.1145/2346496.2346519
10.1016/j.trb.2015.08.008
10.1016/S0191-2615(03)00026-2
10.1016/j.trb.2006.10.003
10.3141/2076-02
10.1016/j.trb.2017.04.012
10.1109/TVT.2015.2409815
10.1016/j.trb.2008.02.001
10.3141/1752-14
10.1061/(ASCE)TE.1943-5436.0000812
10.1007/978-1-4615-5203-1_2
10.1016/S0191-2615(98)00040-X
10.1016/j.trb.2016.10.015
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su12062574
DatabaseName CrossRef
University Readers
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
University Readers
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10_3390_su12062574
GroupedDBID 29Q
2WC
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GROUPED_DOAJ
GX1
HCIFZ
KQ8
ML.
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
TR2
4U-
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-2bcde891167dfeae390cc0fc6bf7aee214c3d5260ea1d3f5b072dd91a69582a73
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Thu Oct 10 14:55:51 EDT 2024
Fri Aug 23 05:00:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2bcde891167dfeae390cc0fc6bf7aee214c3d5260ea1d3f5b072dd91a69582a73
ORCID 0000-0001-9065-1525
OpenAccessLink https://www.proquest.com/docview/2383883421?pq-origsite=%requestingapplication%
PQID 2383883421
PQPubID 2032327
ParticipantIDs proquest_journals_2383883421
crossref_primary_10_3390_su12062574
PublicationCentury 2000
PublicationDate 2020-03-24
PublicationDateYYYYMMDD 2020-03-24
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-24
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mai (ref_11) 2015; 75
Nassir (ref_2) 2019; 126
ref_12
Zhang (ref_27) 2015; 65
Graham (ref_32) 2017; 95
Silva (ref_15) 2015; 112
Hong (ref_30) 2016; 43
Lee (ref_3) 2015; 81
ref_18
Zhou (ref_24) 2012; 2284
Kim (ref_31) 2015; 77
ref_17
Sun (ref_25) 2016; 142
Zhao (ref_28) 2016; 18
Jansson (ref_5) 1992; 26
Kusakabe (ref_23) 2010; 37
Spiess (ref_4) 1989; 23
Bell (ref_10) 2008; 42
Lam (ref_7) 1999; 33
Zhao (ref_29) 2017; 18
Bliemer (ref_13) 2008; 2076
Sun (ref_16) 2016; 94
Katona (ref_14) 2019; 63
ref_20
Zhu (ref_22) 2017; 104
Kusakabe (ref_21) 2014; 46
Friedrich (ref_8) 2001; 1752
Sun (ref_19) 2015; 52
ref_26
Gentile (ref_1) 2005; 39
Tian (ref_9) 2007; 41
MacQueen (ref_33) 1967; Volume 1
Poon (ref_6) 2004; 38
References_xml – volume: 37
  start-page: 731
  year: 2010
  ident: ref_23
  article-title: Estimation method for railway passengers’ train choice behavior with smart card transaction data
  publication-title: Transportation
  doi: 10.1007/s11116-010-9290-0
  contributor:
    fullname: Kusakabe
– volume: 26
  start-page: 246
  year: 1992
  ident: ref_5
  article-title: A method for the route-choice problem in public transport systems
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.26.3.246
  contributor:
    fullname: Jansson
– volume: 46
  start-page: 179
  year: 2014
  ident: ref_21
  article-title: Behavioural data mining of transit smart card data: A data fusion approach
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2014.05.012
  contributor:
    fullname: Kusakabe
– ident: ref_18
  doi: 10.3390/su11184989
– volume: 112
  start-page: 5643
  year: 2015
  ident: ref_15
  article-title: Predicting traffic volumes and estimating the effects of shocks in massive transportation systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1412908112
  contributor:
    fullname: Silva
– volume: 2284
  start-page: 57
  year: 2012
  ident: ref_24
  article-title: Model of passenger flow assignment for urban rail transit based on entry and exit time constraints
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2284-07
  contributor:
    fullname: Zhou
– volume: 18
  start-page: 790
  year: 2016
  ident: ref_28
  article-title: Estimation of passenger route choice pattern using smart card data for complex metro systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2587864
  contributor:
    fullname: Zhao
– volume: 75
  start-page: 100
  year: 2015
  ident: ref_11
  article-title: A nested recursive logit model for route choice analysis
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2015.03.015
  contributor:
    fullname: Mai
– volume: 77
  start-page: 292
  year: 2015
  ident: ref_31
  article-title: Does crowding affect the path choice of metro passengers?
  publication-title: Transp. Res. Part A Policy Pract.
  doi: 10.1016/j.tra.2015.04.023
  contributor:
    fullname: Kim
– ident: ref_17
  doi: 10.3390/su11247069
– volume: 52
  start-page: 116
  year: 2015
  ident: ref_19
  article-title: An integrated Bayesian approach for passenger flow assignment in metro networks
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2015.01.001
  contributor:
    fullname: Sun
– volume: 39
  start-page: 289
  year: 2005
  ident: ref_1
  article-title: Route choice on transit networks with online information at stops
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1040.0109
  contributor:
    fullname: Gentile
– volume: 63
  start-page: 243
  year: 2019
  ident: ref_14
  article-title: Parallel Ant Colony Algorithm for Shortest Path Problem
  publication-title: Period. Polytech. Civ. Eng.
  contributor:
    fullname: Katona
– volume: 43
  start-page: 749
  year: 2016
  ident: ref_30
  article-title: Precise estimation of connections of metro passengers from Smart Card data
  publication-title: Transportation
  doi: 10.1007/s11116-015-9617-y
  contributor:
    fullname: Hong
– volume: 94
  start-page: 62
  year: 2016
  ident: ref_16
  article-title: Estimating the influence of common disruptions on urban rail transit networks
  publication-title: Transp. Res. Part A Policy Pract.
  doi: 10.1016/j.tra.2016.09.006
  contributor:
    fullname: Sun
– ident: ref_20
  doi: 10.1155/2018/2710608
– volume: 18
  start-page: 3135
  year: 2017
  ident: ref_29
  article-title: Spatio-temporal analysis of passenger travel patterns in massive smart card data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2679179
  contributor:
    fullname: Zhao
– volume: 23
  start-page: 83
  year: 1989
  ident: ref_4
  article-title: Optimal strategies: A new assignment model for transit networks
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/0191-2615(89)90034-9
  contributor:
    fullname: Spiess
– volume: 126
  start-page: 528
  year: 2019
  ident: ref_2
  article-title: A strategy-based recursive path choice model for public transit smart card data
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2018.01.002
  contributor:
    fullname: Nassir
– ident: ref_26
  doi: 10.1145/2346496.2346519
– volume: 81
  start-page: 1
  year: 2015
  ident: ref_3
  article-title: Inferring the route-use patterns of metro passengers based only on travel-time data within a Bayesian framework using a reversible-jump Markov chain Monte Carlo (MCMC) simulation
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2015.08.008
  contributor:
    fullname: Lee
– volume: 38
  start-page: 343
  year: 2004
  ident: ref_6
  article-title: A dynamic schedule-based model for congested transit networks
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/S0191-2615(03)00026-2
  contributor:
    fullname: Poon
– volume: 41
  start-page: 616
  year: 2007
  ident: ref_9
  article-title: Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2006.10.003
  contributor:
    fullname: Tian
– volume: 2076
  start-page: 10
  year: 2008
  ident: ref_13
  article-title: Impact of route choice set on route choice probabilities
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2076-02
  contributor:
    fullname: Bliemer
– volume: 104
  start-page: 522
  year: 2017
  ident: ref_22
  article-title: A probabilistic Passenger-to-Train Assignment Model based on automated data
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2017.04.012
  contributor:
    fullname: Zhu
– volume: 65
  start-page: 1137
  year: 2015
  ident: ref_27
  article-title: Spatiotemporal segmentation of metro trips using smart card data
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2409815
  contributor:
    fullname: Zhang
– volume: 42
  start-page: 925
  year: 2008
  ident: ref_10
  article-title: A quasi-dynamic capacity constrained frequency-based transit assignment model
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2008.02.001
  contributor:
    fullname: Bell
– volume: 1752
  start-page: 100
  year: 2001
  ident: ref_8
  article-title: Timetable-based transit assignment using branch and bound techniques
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1752-14
  contributor:
    fullname: Friedrich
– volume: 142
  start-page: 04015037
  year: 2016
  ident: ref_25
  article-title: Schedule-based rail transit path-choice estimation using automatic fare collection data
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000812
  contributor:
    fullname: Sun
– volume: Volume 1
  start-page: 281
  year: 1967
  ident: ref_33
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
  contributor:
    fullname: MacQueen
– ident: ref_12
  doi: 10.1007/978-1-4615-5203-1_2
– volume: 33
  start-page: 351
  year: 1999
  ident: ref_7
  article-title: A stochastic user equilibrium assignment model for congested transit networks
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/S0191-2615(98)00040-X
  contributor:
    fullname: Lam
– volume: 95
  start-page: 105
  year: 2017
  ident: ref_32
  article-title: Crowding cost estimation with large scale smart card and vehicle location data
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2016.10.015
  contributor:
    fullname: Graham
SSID ssj0000331916
Score 2.2945056
Snippet Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit (URT) passenger flow assignment and ticket fare clearing....
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 2574
SubjectTerms Behavior
Datasets
Egress
Expected utility
Methods
Passengers
Researchers
Route choice
Route selection
Schedules
Security management
Smart cards
Statistical analysis
Sustainability
Trajectory analysis
Travel
Urban rail
Title A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules
URI https://www.proquest.com/docview/2383883421
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50PehFfOJjlYBeg82rbU6i66oIiugu7K2kSeqDtau2Hvz3TrpdFy-eGyiZ1zczSb4BOM7TXMlEa8qUk1SmmlNd2IjqRJhC5F5717B93sXXQ3kzUqO24Va11ypnMbEJ1G5iQ4_8BKFFpKmQnJ2-f9AwNSqcrrYjNBZhiWOlEHVg6bx_d__w22WJBJoYi6e8pALre9Qv4xEm_Yn8i0R_A3GDLpdrsNqmheRsqsd1WPDlBizPXg1XG7Ddn79Iw4WtS1ab8HRGbpsp0KSekD46LKagngwfBuQe8-JwZ_WThLnDaGd0MOWhGhNEqNemXf9NQiOWPL6hBZEeWgu5MLUhpnRhzUuJP3pGMBr7aguGl_1B75q20xOo5VrVlOfW-VSHcxZXeONx89ZGhY3zIjHeo7yscArLGW-YE4XKo4Q7p5mJtUq5ScQ2dMpJ6XeAOKUD8ZeKZeoQv4zmLC5kzDwzTibe7sLRTJLZ-5QkI8PiIsg7m8t7F7ozIWeto1TZXK17_3_ehxUeSt1IUC670Kk_v_wB5gN1ftgq_RAWr0bsB4Q-t-s
link.rule.ids 315,783,787,21400,27936,27937,33756,43817,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWAHsoFsYqyWoKrRbwl8QmxFBUoFSqt1Fvk2A6LSgokHPh7xmlK1QvnWIo825sZ228QOk3jVIpIKUKlFUTEihGVmYCoiOuMp045W7F99sLOUNyN5KhuuBX1tcpZTKwCtZ0Y3yM_A2jhccwFo-cfn8RPjfKnq_UIjWXU8FRVUHw1Ltu9x_5flyXgYGI0nPKScqjvQb-UBZD0R2IRiRYDcYUuN-torU4L8cVUjxtoyeWbqDl7NVxsop32_EUaLKxdsthCzxf4oZoCjcsJboPDQgrq8LA_wI-QF_s7q1_Yzx0GOyODKQ_VGANCvVXt-h_sG7H46R0sCF-BteBrXWqsc-vXvObwoxcAo7ErttHwpj246pB6egIxTMmSsNRYFyt_zmIzpx1s3pggM2GaRdo5RoXhVkI54zS1PJNpEDFrFdWhkjHTEd9BK_kkd7sIW6k88ZcMRWwBv7RiNMxESB3VVkTOtNDJTJLJx5QkI4Hiwss7mcu7hQ5mQk5qRymSuVr3_v98jJqdwUM36d727vfRKvNlb8AJEwdopfz6doeQG5TpUW0AvwwUufQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BkIALAgoqj1JL7dVi_dpdnyoKiWgLUUQTidvKa3tpq7ABdnvg3zPeOERcONuS5Xl9M-PxDMDXMi-VzLSmTDlJZa451ZVNqM6EqUTptXddt89hejmRP2_Vbax_amJZ5cImdobazWzIkZ8itIg8F5Kz0yqWRYwuBt8eHmmYIBVeWuM4jVVYy2Qqkh6sfe8PRzevGZdEoLixdN6jVGCsj7xmPMEAIJNvUemtUe6QZrANW9FFJGdznu7Aiq93YWPxg7jZhf3-8ncabozq2XyAuzNy3U2EJu2M9FF50R31ZHIzJiP0kUP96hMJM4hR5uh43pNqShCt_nWp-2cSkrLk9z1KEzlHySEXpjXE1C7s-VvjQX8QmKa-2YPJoD8-v6RxkgK1XKuW8tI6n-vw5uIqbzxe3tqksmlZZcZ7zqQVTmFo4w1zolJlknHnNDOpVjk3mdiHXj2r_UcgTunQBEylMneIZUZzllYyZZ4ZJzNvD-DLgpLFw7xhRoGBRqB3saT3ARwviFxEpWmKJYsP31_-DOvI--Lqx_DXEWzyEAEngnJ5DL326b__hG5CW55E_r8AaFa-Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+to+Estimate+URT+Passenger+Spatial-Temporal+Trajectory+with+Smart+Card+Data+and+Train+Schedules&rft.jtitle=Sustainability&rft.au=Yang%2C+Taoyuan&rft.au=Zhao%2C+Peng&rft.au=Yao%2C+Xiangming&rft.date=2020-03-24&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=12&rft.issue=6&rft.spage=2574&rft_id=info:doi/10.3390%2Fsu12062574&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su12062574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon