A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules
Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit (URT) passenger flow assignment and ticket fare clearing. Inspired by the correlation between passenger tap-in/out time and train schedules, we present a method to estimate URT passenger spatial-temporal...
Saved in:
Published in | Sustainability Vol. 12; no. 6; p. 2574 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
24.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit (URT) passenger flow assignment and ticket fare clearing. Inspired by the correlation between passenger tap-in/out time and train schedules, we present a method to estimate URT passenger spatial-temporal trajectory. First, we classify passengers into four types according to the number of their routes and transfers. Subsequently, based on the characteristic that passengers tap-out in batches at each station, the K-means algorithm is used to assign passengers to trains. Then, we acquire passenger access, egress, and transfer time distribution, which are used to give a probability estimation of passenger trajectories. Finally, in a multi-route case of the Beijing Subway, this method presents an estimation result with 91.2% of the passengers choosing the same route in two consecutive days, and the difference of route choice ratio in these two days is 3.8%. Our method has high accuracy and provides a new method for passenger microcosmic behavior research. |
---|---|
AbstractList | Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit (URT) passenger flow assignment and ticket fare clearing. Inspired by the correlation between passenger tap-in/out time and train schedules, we present a method to estimate URT passenger spatial-temporal trajectory. First, we classify passengers into four types according to the number of their routes and transfers. Subsequently, based on the characteristic that passengers tap-out in batches at each station, the K-means algorithm is used to assign passengers to trains. Then, we acquire passenger access, egress, and transfer time distribution, which are used to give a probability estimation of passenger trajectories. Finally, in a multi-route case of the Beijing Subway, this method presents an estimation result with 91.2% of the passengers choosing the same route in two consecutive days, and the difference of route choice ratio in these two days is 3.8%. Our method has high accuracy and provides a new method for passenger microcosmic behavior research. |
Author | Zhao, Peng Yao, Xiangming Yang, Taoyuan |
Author_xml | – sequence: 1 givenname: Taoyuan orcidid: 0000-0001-9065-1525 surname: Yang fullname: Yang, Taoyuan – sequence: 2 givenname: Peng surname: Zhao fullname: Zhao, Peng – sequence: 3 givenname: Xiangming surname: Yao fullname: Yao, Xiangming |
BookMark | eNpNkEtLw0AUhQepYK3d-AsG3AnReTSvZamtChXFputwM3PTpKSZODNB-u9NqaB3c-7i4xzOuSaj1rRIyC1nD1Km7NH1XLBIhPHsgowFi3nAWchG__4rMnVuz4aTkqc8GpPdnL6hr4ym3tCl8_UBPNLtZ0Y_wDlsd2jppgNfQxNkeOiMhYZmFvaovLFH-l37im4OYD1dgNX0CTxQaPWJqVu6URXqvkF3Qy5LaBxOf3VCtqtltngJ1u_Pr4v5OlAiDX0gCqUxSTmPYl0i4FBLKVaqqChjQBR8pqQORcQQuJZlWLBYaJ1yiNIwERDLCbk7-3bWfPXofL43vW2HyFzIRCaJnAk-UPdnSlnjnMUy7-zQ3B5zzvLTlvnflvIHr7toNQ |
CitedBy_id | crossref_primary_10_1080_21680566_2022_2060370 crossref_primary_10_1155_2023_6529819 crossref_primary_10_1109_ACCESS_2024_3400814 crossref_primary_10_1109_TITS_2022_3181381 crossref_primary_10_1049_itr2_12476 crossref_primary_10_1177_03611981211058432 crossref_primary_10_1016_j_heliyon_2024_e27237 |
Cites_doi | 10.1007/s11116-010-9290-0 10.1287/trsc.26.3.246 10.1016/j.trc.2014.05.012 10.3390/su11184989 10.1073/pnas.1412908112 10.3141/2284-07 10.1109/TITS.2016.2587864 10.1016/j.trb.2015.03.015 10.1016/j.tra.2015.04.023 10.3390/su11247069 10.1016/j.trc.2015.01.001 10.1287/trsc.1040.0109 10.1007/s11116-015-9617-y 10.1016/j.tra.2016.09.006 10.1155/2018/2710608 10.1109/TITS.2017.2679179 10.1016/0191-2615(89)90034-9 10.1016/j.trb.2018.01.002 10.1145/2346496.2346519 10.1016/j.trb.2015.08.008 10.1016/S0191-2615(03)00026-2 10.1016/j.trb.2006.10.003 10.3141/2076-02 10.1016/j.trb.2017.04.012 10.1109/TVT.2015.2409815 10.1016/j.trb.2008.02.001 10.3141/1752-14 10.1061/(ASCE)TE.1943-5436.0000812 10.1007/978-1-4615-5203-1_2 10.1016/S0191-2615(98)00040-X 10.1016/j.trb.2016.10.015 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/su12062574 |
DatabaseName | CrossRef University Readers ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central University Readers ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 2071-1050 |
ExternalDocumentID | 10_3390_su12062574 |
GroupedDBID | 29Q 2WC 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION E3Z ECGQY ESTFP FRS GROUPED_DOAJ GX1 HCIFZ KQ8 ML. MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY TR2 4U- ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c295t-2bcde891167dfeae390cc0fc6bf7aee214c3d5260ea1d3f5b072dd91a69582a73 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Thu Oct 10 14:55:51 EDT 2024 Fri Aug 23 05:00:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-2bcde891167dfeae390cc0fc6bf7aee214c3d5260ea1d3f5b072dd91a69582a73 |
ORCID | 0000-0001-9065-1525 |
OpenAccessLink | https://www.proquest.com/docview/2383883421?pq-origsite=%requestingapplication% |
PQID | 2383883421 |
PQPubID | 2032327 |
ParticipantIDs | proquest_journals_2383883421 crossref_primary_10_3390_su12062574 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-24 |
PublicationDateYYYYMMDD | 2020-03-24 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mai (ref_11) 2015; 75 Nassir (ref_2) 2019; 126 ref_12 Zhang (ref_27) 2015; 65 Graham (ref_32) 2017; 95 Silva (ref_15) 2015; 112 Hong (ref_30) 2016; 43 Lee (ref_3) 2015; 81 ref_18 Zhou (ref_24) 2012; 2284 Kim (ref_31) 2015; 77 ref_17 Sun (ref_25) 2016; 142 Zhao (ref_28) 2016; 18 Jansson (ref_5) 1992; 26 Kusakabe (ref_23) 2010; 37 Spiess (ref_4) 1989; 23 Bell (ref_10) 2008; 42 Lam (ref_7) 1999; 33 Zhao (ref_29) 2017; 18 Bliemer (ref_13) 2008; 2076 Sun (ref_16) 2016; 94 Katona (ref_14) 2019; 63 ref_20 Zhu (ref_22) 2017; 104 Kusakabe (ref_21) 2014; 46 Friedrich (ref_8) 2001; 1752 Sun (ref_19) 2015; 52 ref_26 Gentile (ref_1) 2005; 39 Tian (ref_9) 2007; 41 MacQueen (ref_33) 1967; Volume 1 Poon (ref_6) 2004; 38 |
References_xml | – volume: 37 start-page: 731 year: 2010 ident: ref_23 article-title: Estimation method for railway passengers’ train choice behavior with smart card transaction data publication-title: Transportation doi: 10.1007/s11116-010-9290-0 contributor: fullname: Kusakabe – volume: 26 start-page: 246 year: 1992 ident: ref_5 article-title: A method for the route-choice problem in public transport systems publication-title: Transp. Sci. doi: 10.1287/trsc.26.3.246 contributor: fullname: Jansson – volume: 46 start-page: 179 year: 2014 ident: ref_21 article-title: Behavioural data mining of transit smart card data: A data fusion approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2014.05.012 contributor: fullname: Kusakabe – ident: ref_18 doi: 10.3390/su11184989 – volume: 112 start-page: 5643 year: 2015 ident: ref_15 article-title: Predicting traffic volumes and estimating the effects of shocks in massive transportation systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1412908112 contributor: fullname: Silva – volume: 2284 start-page: 57 year: 2012 ident: ref_24 article-title: Model of passenger flow assignment for urban rail transit based on entry and exit time constraints publication-title: Transp. Res. Rec. doi: 10.3141/2284-07 contributor: fullname: Zhou – volume: 18 start-page: 790 year: 2016 ident: ref_28 article-title: Estimation of passenger route choice pattern using smart card data for complex metro systems publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2587864 contributor: fullname: Zhao – volume: 75 start-page: 100 year: 2015 ident: ref_11 article-title: A nested recursive logit model for route choice analysis publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2015.03.015 contributor: fullname: Mai – volume: 77 start-page: 292 year: 2015 ident: ref_31 article-title: Does crowding affect the path choice of metro passengers? publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2015.04.023 contributor: fullname: Kim – ident: ref_17 doi: 10.3390/su11247069 – volume: 52 start-page: 116 year: 2015 ident: ref_19 article-title: An integrated Bayesian approach for passenger flow assignment in metro networks publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2015.01.001 contributor: fullname: Sun – volume: 39 start-page: 289 year: 2005 ident: ref_1 article-title: Route choice on transit networks with online information at stops publication-title: Transp. Sci. doi: 10.1287/trsc.1040.0109 contributor: fullname: Gentile – volume: 63 start-page: 243 year: 2019 ident: ref_14 article-title: Parallel Ant Colony Algorithm for Shortest Path Problem publication-title: Period. Polytech. Civ. Eng. contributor: fullname: Katona – volume: 43 start-page: 749 year: 2016 ident: ref_30 article-title: Precise estimation of connections of metro passengers from Smart Card data publication-title: Transportation doi: 10.1007/s11116-015-9617-y contributor: fullname: Hong – volume: 94 start-page: 62 year: 2016 ident: ref_16 article-title: Estimating the influence of common disruptions on urban rail transit networks publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2016.09.006 contributor: fullname: Sun – ident: ref_20 doi: 10.1155/2018/2710608 – volume: 18 start-page: 3135 year: 2017 ident: ref_29 article-title: Spatio-temporal analysis of passenger travel patterns in massive smart card data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2679179 contributor: fullname: Zhao – volume: 23 start-page: 83 year: 1989 ident: ref_4 article-title: Optimal strategies: A new assignment model for transit networks publication-title: Transp. Res. Part B Methodol. doi: 10.1016/0191-2615(89)90034-9 contributor: fullname: Spiess – volume: 126 start-page: 528 year: 2019 ident: ref_2 article-title: A strategy-based recursive path choice model for public transit smart card data publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2018.01.002 contributor: fullname: Nassir – ident: ref_26 doi: 10.1145/2346496.2346519 – volume: 81 start-page: 1 year: 2015 ident: ref_3 article-title: Inferring the route-use patterns of metro passengers based only on travel-time data within a Bayesian framework using a reversible-jump Markov chain Monte Carlo (MCMC) simulation publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2015.08.008 contributor: fullname: Lee – volume: 38 start-page: 343 year: 2004 ident: ref_6 article-title: A dynamic schedule-based model for congested transit networks publication-title: Transp. Res. Part B Methodol. doi: 10.1016/S0191-2615(03)00026-2 contributor: fullname: Poon – volume: 41 start-page: 616 year: 2007 ident: ref_9 article-title: Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2006.10.003 contributor: fullname: Tian – volume: 2076 start-page: 10 year: 2008 ident: ref_13 article-title: Impact of route choice set on route choice probabilities publication-title: Transp. Res. Rec. doi: 10.3141/2076-02 contributor: fullname: Bliemer – volume: 104 start-page: 522 year: 2017 ident: ref_22 article-title: A probabilistic Passenger-to-Train Assignment Model based on automated data publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2017.04.012 contributor: fullname: Zhu – volume: 65 start-page: 1137 year: 2015 ident: ref_27 article-title: Spatiotemporal segmentation of metro trips using smart card data publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2409815 contributor: fullname: Zhang – volume: 42 start-page: 925 year: 2008 ident: ref_10 article-title: A quasi-dynamic capacity constrained frequency-based transit assignment model publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2008.02.001 contributor: fullname: Bell – volume: 1752 start-page: 100 year: 2001 ident: ref_8 article-title: Timetable-based transit assignment using branch and bound techniques publication-title: Transp. Res. Rec. doi: 10.3141/1752-14 contributor: fullname: Friedrich – volume: 142 start-page: 04015037 year: 2016 ident: ref_25 article-title: Schedule-based rail transit path-choice estimation using automatic fare collection data publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000812 contributor: fullname: Sun – volume: Volume 1 start-page: 281 year: 1967 ident: ref_33 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability contributor: fullname: MacQueen – ident: ref_12 doi: 10.1007/978-1-4615-5203-1_2 – volume: 33 start-page: 351 year: 1999 ident: ref_7 article-title: A stochastic user equilibrium assignment model for congested transit networks publication-title: Transp. Res. Part B Methodol. doi: 10.1016/S0191-2615(98)00040-X contributor: fullname: Lam – volume: 95 start-page: 105 year: 2017 ident: ref_32 article-title: Crowding cost estimation with large scale smart card and vehicle location data publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2016.10.015 contributor: fullname: Graham |
SSID | ssj0000331916 |
Score | 2.2945056 |
Snippet | Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit (URT) passenger flow assignment and ticket fare clearing.... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 2574 |
SubjectTerms | Behavior Datasets Egress Expected utility Methods Passengers Researchers Route choice Route selection Schedules Security management Smart cards Statistical analysis Sustainability Trajectory analysis Travel Urban rail |
Title | A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules |
URI | https://www.proquest.com/docview/2383883421 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50PehFfOJjlYBeg82rbU6i66oIiugu7K2kSeqDtau2Hvz3TrpdFy-eGyiZ1zczSb4BOM7TXMlEa8qUk1SmmlNd2IjqRJhC5F5717B93sXXQ3kzUqO24Va11ypnMbEJ1G5iQ4_8BKFFpKmQnJ2-f9AwNSqcrrYjNBZhiWOlEHVg6bx_d__w22WJBJoYi6e8pALre9Qv4xEm_Yn8i0R_A3GDLpdrsNqmheRsqsd1WPDlBizPXg1XG7Ddn79Iw4WtS1ab8HRGbpsp0KSekD46LKagngwfBuQe8-JwZ_WThLnDaGd0MOWhGhNEqNemXf9NQiOWPL6hBZEeWgu5MLUhpnRhzUuJP3pGMBr7aguGl_1B75q20xOo5VrVlOfW-VSHcxZXeONx89ZGhY3zIjHeo7yscArLGW-YE4XKo4Q7p5mJtUq5ScQ2dMpJ6XeAOKUD8ZeKZeoQv4zmLC5kzDwzTibe7sLRTJLZ-5QkI8PiIsg7m8t7F7ozIWeto1TZXK17_3_ehxUeSt1IUC670Kk_v_wB5gN1ftgq_RAWr0bsB4Q-t-s |
link.rule.ids | 315,783,787,21400,27936,27937,33756,43817,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWAHsoFsYqyWoKrRbwl8QmxFBUoFSqt1Fvk2A6LSgokHPh7xmlK1QvnWIo825sZ228QOk3jVIpIKUKlFUTEihGVmYCoiOuMp045W7F99sLOUNyN5KhuuBX1tcpZTKwCtZ0Y3yM_A2jhccwFo-cfn8RPjfKnq_UIjWXU8FRVUHw1Ltu9x_5flyXgYGI0nPKScqjvQb-UBZD0R2IRiRYDcYUuN-torU4L8cVUjxtoyeWbqDl7NVxsop32_EUaLKxdsthCzxf4oZoCjcsJboPDQgrq8LA_wI-QF_s7q1_Yzx0GOyODKQ_VGANCvVXt-h_sG7H46R0sCF-BteBrXWqsc-vXvObwoxcAo7ErttHwpj246pB6egIxTMmSsNRYFyt_zmIzpx1s3pggM2GaRdo5RoXhVkI54zS1PJNpEDFrFdWhkjHTEd9BK_kkd7sIW6k88ZcMRWwBv7RiNMxESB3VVkTOtNDJTJLJx5QkI4Hiwss7mcu7hQ5mQk5qRymSuVr3_v98jJqdwUM36d727vfRKvNlb8AJEwdopfz6doeQG5TpUW0AvwwUufQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BkIALAgoqj1JL7dVi_dpdnyoKiWgLUUQTidvKa3tpq7ABdnvg3zPeOERcONuS5Xl9M-PxDMDXMi-VzLSmTDlJZa451ZVNqM6EqUTptXddt89hejmRP2_Vbax_amJZ5cImdobazWzIkZ8itIg8F5Kz0yqWRYwuBt8eHmmYIBVeWuM4jVVYy2Qqkh6sfe8PRzevGZdEoLixdN6jVGCsj7xmPMEAIJNvUemtUe6QZrANW9FFJGdznu7Aiq93YWPxg7jZhf3-8ncabozq2XyAuzNy3U2EJu2M9FF50R31ZHIzJiP0kUP96hMJM4hR5uh43pNqShCt_nWp-2cSkrLk9z1KEzlHySEXpjXE1C7s-VvjQX8QmKa-2YPJoD8-v6RxkgK1XKuW8tI6n-vw5uIqbzxe3tqksmlZZcZ7zqQVTmFo4w1zolJlknHnNDOpVjk3mdiHXj2r_UcgTunQBEylMneIZUZzllYyZZ4ZJzNvD-DLgpLFw7xhRoGBRqB3saT3ARwviFxEpWmKJYsP31_-DOvI--Lqx_DXEWzyEAEngnJ5DL326b__hG5CW55E_r8AaFa-Ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+to+Estimate+URT+Passenger+Spatial-Temporal+Trajectory+with+Smart+Card+Data+and+Train+Schedules&rft.jtitle=Sustainability&rft.au=Yang%2C+Taoyuan&rft.au=Zhao%2C+Peng&rft.au=Yao%2C+Xiangming&rft.date=2020-03-24&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=12&rft.issue=6&rft.spage=2574&rft_id=info:doi/10.3390%2Fsu12062574&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su12062574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |