Deep Spatial-Spectral Subspace Clustering for Hyperspectral Image

Hyperspectral image (HSI) clustering is a challenging task due to the complex characteristics in HSI data, such as spatial-spectral structure, high-dimension, and large spectral variability. In this paper, we propose a novel deep spatial-spectral subspace clustering network (DS3 C -Net), which explo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 7; pp. 2686 - 2697
Main Authors Lei, Jianjun, Li, Xinyu, Peng, Bo, Fang, Leyuan, Ling, Nam, Huang, Qingming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hyperspectral image (HSI) clustering is a challenging task due to the complex characteristics in HSI data, such as spatial-spectral structure, high-dimension, and large spectral variability. In this paper, we propose a novel deep spatial-spectral subspace clustering network (DS3 C -Net), which explores spatial-spectral information via the multi-scale auto-encoder and collaborative constraint. Considering the structure correlations of HSI, the multi-scale auto-encoder is first designed to extract spatial-spectral features with different-scale pixel blocks which are selected as the inputs. Then, the collaborative constrained self-expressive layers are introduced between the encoder and decoder, to capture the self-expressive subspace structures. By designing a self-expressiveness similarity constraint, the proposed network is trained collaboratively, and the affinity matrices of the feature representation are learned in an end-to-end manner. Based on the affinity matrices, the spectral clustering algorithm is utilized to obtain the final HSI clustering result. Experimental results on three widely used hyperspectral image datasets demonstrate that the proposed method outperforms state-of-the-art methods.
AbstractList Hyperspectral image (HSI) clustering is a challenging task due to the complex characteristics in HSI data, such as spatial-spectral structure, high-dimension, and large spectral variability. In this paper, we propose a novel deep spatial-spectral subspace clustering network (DS3C-Net), which explores spatial-spectral information via the multi-scale auto-encoder and collaborative constraint. Considering the structure correlations of HSI, the multi-scale auto-encoder is first designed to extract spatial-spectral features with different-scale pixel blocks which are selected as the inputs. Then, the collaborative constrained self-expressive layers are introduced between the encoder and decoder, to capture the self-expressive subspace structures. By designing a self-expressiveness similarity constraint, the proposed network is trained collaboratively, and the affinity matrices of the feature representation are learned in an end-to-end manner. Based on the affinity matrices, the spectral clustering algorithm is utilized to obtain the final HSI clustering result. Experimental results on three widely used hyperspectral image datasets demonstrate that the proposed method outperforms state-of-the-art methods.
Hyperspectral image (HSI) clustering is a challenging task due to the complex characteristics in HSI data, such as spatial-spectral structure, high-dimension, and large spectral variability. In this paper, we propose a novel deep spatial-spectral subspace clustering network (DS3 C -Net), which explores spatial-spectral information via the multi-scale auto-encoder and collaborative constraint. Considering the structure correlations of HSI, the multi-scale auto-encoder is first designed to extract spatial-spectral features with different-scale pixel blocks which are selected as the inputs. Then, the collaborative constrained self-expressive layers are introduced between the encoder and decoder, to capture the self-expressive subspace structures. By designing a self-expressiveness similarity constraint, the proposed network is trained collaboratively, and the affinity matrices of the feature representation are learned in an end-to-end manner. Based on the affinity matrices, the spectral clustering algorithm is utilized to obtain the final HSI clustering result. Experimental results on three widely used hyperspectral image datasets demonstrate that the proposed method outperforms state-of-the-art methods.
Author Ling, Nam
Huang, Qingming
Li, Xinyu
Lei, Jianjun
Peng, Bo
Fang, Leyuan
Author_xml – sequence: 1
  givenname: Jianjun
  orcidid: 0000-0003-3171-7680
  surname: Lei
  fullname: Lei, Jianjun
  email: jjlei@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Xinyu
  surname: Li
  fullname: Li, Xinyu
  email: 601014361@qq.com
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0002-6616-453X
  surname: Peng
  fullname: Peng, Bo
  email: bpeng@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Leyuan
  orcidid: 0000-0003-2351-4461
  surname: Fang
  fullname: Fang, Leyuan
  email: fangleyuan@gmail.com
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 5
  givenname: Nam
  orcidid: 0000-0002-5741-7937
  surname: Ling
  fullname: Ling, Nam
  email: nling@scu.edu
  organization: Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA, USA
– sequence: 6
  givenname: Qingming
  orcidid: 0000-0001-7542-296X
  surname: Huang
  fullname: Huang, Qingming
  email: qmhuang@ucas.ac.cn
  organization: School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
BookMark eNp9kD1PwzAQhi1UJFrgD8ASiTnFdvw5VuGjlSoxpLBaTnKpUqVJsJOh_x6XFgYGprvhfe7VPTM0absWELojeE4I1o-bNPvYzCmmeJ5gKgURF2hKOFcxpZhPwo45iRUl_ArNvN9hTJhicooWTwB9lPV2qG0TZz0Ug7NNlI25720BUdqMfgBXt9uo6ly0PPTg_E9qtbdbuEGXlW083J7nNXp_ed6ky3j99rpKF-u4oJoPMc0lVQnVBZG4tIlOcsKkrqQsWVlKXVoZpioFY9xqzq3NC1VRLThQbZXOk2v0cLrbu-5zBD-YXTe6NlQaypkUjBAhQoqeUoXrvHdQmd7Ve-sOhmBzVGW-VZmjKnNWFSD1ByrqIRjp2vBm3fyP3p_QGgB-uzTFSmidfAEVAHhc
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TIP_2022_3203213
crossref_primary_10_1007_s11042_022_12151_4
crossref_primary_10_1109_TGRS_2022_3202865
crossref_primary_10_1007_s00371_023_03226_w
crossref_primary_10_1049_ipr2_12371
crossref_primary_10_1145_3596445
crossref_primary_10_1109_TCSVT_2023_3294521
crossref_primary_10_3390_app12136475
crossref_primary_10_1016_j_inffus_2023_102192
crossref_primary_10_1109_TIP_2021_3055617
crossref_primary_10_32604_cmc_2024_049360
crossref_primary_10_1007_s42979_024_03293_3
crossref_primary_10_1109_TIP_2022_3183436
crossref_primary_10_1109_TGRS_2022_3179637
crossref_primary_10_1007_s11042_021_11212_4
crossref_primary_10_1016_j_imavis_2024_105235
crossref_primary_10_1109_TCSVT_2024_3456480
crossref_primary_10_1109_TGRS_2022_3203481
crossref_primary_10_1109_TGRS_2022_3177216
crossref_primary_10_3390_app13116799
crossref_primary_10_1109_TMM_2024_3394975
crossref_primary_10_1109_TGRS_2023_3278529
crossref_primary_10_1038_s41598_024_54547_2
crossref_primary_10_1109_TGRS_2024_3370633
crossref_primary_10_1109_LGRS_2023_3246633
crossref_primary_10_1109_TCSVT_2024_3409421
crossref_primary_10_1109_TGRS_2022_3198842
crossref_primary_10_1109_TGRS_2024_3375922
crossref_primary_10_1007_s11042_021_11470_2
crossref_primary_10_1109_JBHI_2021_3082541
crossref_primary_10_3390_app12157384
crossref_primary_10_1109_LGRS_2022_3178168
crossref_primary_10_1007_s12145_023_01031_6
crossref_primary_10_1109_TCSVT_2021_3089480
crossref_primary_10_3390_rs13214418
crossref_primary_10_1109_TNSRE_2022_3173724
crossref_primary_10_1109_TGRS_2021_3127536
crossref_primary_10_1109_TIM_2023_3344142
crossref_primary_10_3390_s22155906
crossref_primary_10_1109_TCSVT_2021_3078559
crossref_primary_10_1109_JSTARS_2021_3136599
crossref_primary_10_3390_electronics13224372
crossref_primary_10_3390_rs15112832
crossref_primary_10_1109_TCSVT_2022_3211839
crossref_primary_10_1109_TCSVT_2022_3220412
crossref_primary_10_1109_TIM_2023_3271762
crossref_primary_10_1109_TCSVT_2024_3399821
crossref_primary_10_1109_TCSVT_2022_3190916
crossref_primary_10_1109_TMM_2023_3260620
crossref_primary_10_1109_JSTARS_2021_3132856
crossref_primary_10_1109_TCSVT_2023_3312979
crossref_primary_10_3390_electronics13163199
crossref_primary_10_1109_TCYB_2022_3191121
crossref_primary_10_1080_2150704X_2022_2132122
crossref_primary_10_1109_JSTARS_2023_3294623
crossref_primary_10_1109_TII_2022_3210589
crossref_primary_10_1109_TCSVT_2022_3148257
crossref_primary_10_1109_JSTARS_2025_3542766
crossref_primary_10_1109_LGRS_2021_3112603
crossref_primary_10_1109_LSP_2024_3521714
crossref_primary_10_1109_TCSVT_2023_3241172
crossref_primary_10_1109_TCSVT_2024_3439369
crossref_primary_10_1109_LSP_2021_3086692
crossref_primary_10_1109_TCSVT_2023_3268178
crossref_primary_10_1109_JSTARS_2022_3198137
crossref_primary_10_1109_TGRS_2022_3189633
crossref_primary_10_1109_TCSVT_2022_3161103
crossref_primary_10_3390_app12146962
crossref_primary_10_1109_TCSVT_2024_3388461
crossref_primary_10_1109_TCSVT_2021_3095250
crossref_primary_10_1109_TCSVT_2022_3218284
crossref_primary_10_3390_make5010008
crossref_primary_10_1109_TCYB_2024_3475034
crossref_primary_10_1109_JSTARS_2024_3374813
crossref_primary_10_1109_TCSVT_2022_3213515
crossref_primary_10_1109_TCSII_2023_3259689
crossref_primary_10_1007_s11042_022_13344_7
Cites_doi 10.1109/TSMCB.2004.831165
10.1109/TGRS.2019.2907932
10.1109/TGRS.2018.2852708
10.1109/TGRS.2016.2524557
10.1109/JPROC.2012.2197589
10.1080/01431161.2010.502155
10.1109/TPAMI.2013.57
10.1109/CVPR.2009.5206547
10.1109/TGRS.2018.2869723
10.1109/LGRS.2019.2943001
10.1016/j.patrec.2018.10.003
10.1109/TGRS.2019.2909695
10.1109/LGRS.2016.2625200
10.1109/TIP.2018.2869691
10.1109/JSTARS.2013.2240655
10.1126/science.1242072
10.1142/S0218001419550036
10.1109/TGRS.2018.2853178
10.1109/CIS.2019.00052
10.1214/12-AOS1034
10.1109/TCSVT.2018.2889514
10.1109/TCSVT.2020.2975936
10.1109/TCSVT.2020.2975566
10.1109/TGRS.2016.2517242
10.1109/WHISPERS.2018.8747108
10.1109/TGRS.2018.2868796
10.1109/TGRS.2019.2959342
10.1109/TGRS.2017.2690445
10.1609/aaai.v33i01.33014610
10.1109/IGARSS.2019.8898947
10.1109/TGRS.2017.2702061
10.2307/2346830
10.1109/TGRS.2018.2849225
10.1109/TCSVT.2019.2946723
10.1109/IGARSS.2017.8127678
10.1109/TGRS.2018.2865953
10.1109/TIP.2018.2809606
10.1109/LGRS.2017.2723763
10.1109/ICCV.2017.626
10.1109/TGRS.2009.2023666
10.1109/TGRS.2020.2968802
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3027616
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2697
ExternalDocumentID 10_1109_TCSVT_2020_3027616
9208699
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61722112; 61922029; 61620106009; U1636214
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Tianjin
  grantid: 18ZXZNGX00110; 18JCJQJC45800
  funderid: 10.13039/501100006606
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-2b728329c170da393b1479f77d4dd79da74dd8d6445a955aabc8f2965e29a89b3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 12:21:14 EDT 2025
Tue Jul 01 00:41:14 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Wed Aug 27 02:26:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2b728329c170da393b1479f77d4dd79da74dd8d6445a955aabc8f2965e29a89b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2351-4461
0000-0002-5741-7937
0000-0003-3171-7680
0000-0002-6616-453X
0000-0001-7542-296X
PQID 2547641166
PQPubID 85433
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCSVT_2020_3027616
proquest_journals_2547641166
crossref_citationtrail_10_1109_TCSVT_2020_3027616
ieee_primary_9208699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref36
ref14
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
bezdek (ref18) 2013
ref38
ref16
ji (ref46) 2014
pan (ref31) 2017
ref24
xie (ref30) 2016
chen (ref34) 2016
ref45
ref23
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
rodriguez (ref15) 2014; 344
ref27
ref29
ref8
maggioni (ref19) 2019; 20
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref22
  doi: 10.1109/TSMCB.2004.831165
– ident: ref11
  doi: 10.1109/TGRS.2019.2907932
– ident: ref39
  doi: 10.1109/TGRS.2018.2852708
– ident: ref26
  doi: 10.1109/TGRS.2016.2524557
– ident: ref2
  doi: 10.1109/JPROC.2012.2197589
– year: 2013
  ident: ref18
  publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– ident: ref20
  doi: 10.1080/01431161.2010.502155
– ident: ref25
  doi: 10.1109/TPAMI.2013.57
– ident: ref45
  doi: 10.1109/CVPR.2009.5206547
– ident: ref24
  doi: 10.1109/TGRS.2018.2869723
– ident: ref36
  doi: 10.1109/LGRS.2019.2943001
– ident: ref9
  doi: 10.1016/j.patrec.2018.10.003
– ident: ref7
  doi: 10.1109/TGRS.2019.2909695
– start-page: 2172
  year: 2016
  ident: ref34
  article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1109/LGRS.2016.2625200
– ident: ref10
  doi: 10.1109/TIP.2018.2869691
– ident: ref21
  doi: 10.1109/JSTARS.2013.2240655
– volume: 344
  start-page: 1492
  year: 2014
  ident: ref15
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: ref43
  doi: 10.1142/S0218001419550036
– ident: ref5
  doi: 10.1109/TGRS.2018.2853178
– ident: ref29
  doi: 10.1109/CIS.2019.00052
– ident: ref44
  doi: 10.1214/12-AOS1034
– ident: ref16
  doi: 10.1109/TCSVT.2018.2889514
– ident: ref8
  doi: 10.1109/TCSVT.2020.2975936
– ident: ref1
  doi: 10.1109/TCSVT.2020.2975566
– ident: ref38
  doi: 10.1109/TGRS.2016.2517242
– ident: ref28
  doi: 10.1109/WHISPERS.2018.8747108
– ident: ref40
  doi: 10.1109/TGRS.2018.2868796
– ident: ref41
  doi: 10.1109/TGRS.2019.2959342
– ident: ref3
  doi: 10.1109/TGRS.2017.2690445
– ident: ref33
  doi: 10.1609/aaai.v33i01.33014610
– volume: 20
  start-page: 1
  year: 2019
  ident: ref19
  article-title: Learning by unsupervised nonlinear diffusion
  publication-title: J Mach Learn Res
– ident: ref35
  doi: 10.1109/IGARSS.2019.8898947
– start-page: 24
  year: 2017
  ident: ref31
  article-title: Deep subspace clustering networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref37
  doi: 10.1109/TGRS.2017.2702061
– ident: ref17
  doi: 10.2307/2346830
– ident: ref47
  doi: 10.1109/TGRS.2018.2849225
– start-page: 461
  year: 2014
  ident: ref46
  article-title: Efficient dense subspace clustering
  publication-title: Proc IEEE Winter Conf Appl Comput Vis
– ident: ref6
  doi: 10.1109/TCSVT.2019.2946723
– ident: ref42
  doi: 10.1109/IGARSS.2017.8127678
– ident: ref12
  doi: 10.1109/TGRS.2018.2865953
– ident: ref13
  doi: 10.1109/TIP.2018.2809606
– ident: ref23
  doi: 10.1109/LGRS.2017.2723763
– ident: ref32
  doi: 10.1109/ICCV.2017.626
– start-page: 478
  year: 2016
  ident: ref30
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proc Int Conf Mach Learn
– ident: ref14
  doi: 10.1109/TGRS.2009.2023666
– ident: ref4
  doi: 10.1109/TGRS.2020.2968802
SSID ssj0014847
Score 2.605682
Snippet Hyperspectral image (HSI) clustering is a challenging task due to the complex characteristics in HSI data, such as spatial-spectral structure, high-dimension,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2686
SubjectTerms Affinity
Algorithms
Clustering
Clustering algorithms
Clustering methods
Coders
Collaboration
Constraints
Data mining
deep learning
deep subspace clustering
Feature extraction
Hyperspectral image clustering
Hyperspectral imaging
Kernel
multi-scale auto-encoder
self-expressiveness similarity constraint
Spectra
Subspaces
Task analysis
Title Deep Spatial-Spectral Subspace Clustering for Hyperspectral Image
URI https://ieeexplore.ieee.org/document/9208699
https://www.proquest.com/docview/2547641166
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTjDwVRCFgjKwQdrGTeJ4rApVQSoLLeoW2fFlobQVJAu_nrPzoQoQYkqGs2T5nLv3HN89gGvCCBGzFT0Jpq5PScSVComlaMk1TyMRpea8Y_oUTub-4yJYNOC2roVBRHv5DLvm1f7L1-skN0dlPcEIgAuxAztE3IparfqPgR9ZMTGCC54bUR6rCmT6ojcbPb_MiAoyYqjEwkKjbb6VhKyqyo9QbPPL-ACm1cyKayWv3TxT3eTzW9PG_079EPZLoOkMi51xBA1cHcPeVvvBFgzvEDeOESWmTegaJXpz7OGYWEJMGp3RMjdtFMjWIWjrTIiyFpWZxurhjSLRCczH97PRxC0lFdyEiSBzmeJGm0gkHu9rORAD5flcpJxrX2suyEH0jDSBpECKIJBSJVHKRBggEzISanAKzdV6hWfgIBKWQcGssz1PKaZSChCU_rVUgeRt8Ko1jpOy37iRvVjGlnf0RWz9Ehu_xKVf2nBTj9kU3Tb-tG6Zha4tyzVuQ6dyZVx-kB8x8WAe0jTD8Pz3URewy8x1FXsTtwPN7D3HS8IbmbqyG-0LbLnQDw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED7xGICBV0GUZwaYUErjJnE8MFQtqOW10KJuwY4vC1CqPoTgt_BX-G-cnbRCgNgqMSWDHSW-y9332fcAOCSMEDGb0ZNg6vrkRFypkFiKllzzNBJRavY7rm_CRtu_6ASdGXif5MIgog0-w5K5tWf5-jkZma2yE8EIgAuRh1Be4usLEbTBabNO0jxi7PysVWu4eQ8BN2EiGLpMcdOMRyQeL2tZERXl-VyknGtfay7ojegaaUIFgRRBIKVKopSJMEAmZCRUhZ47C_OEMwKWZYdNzij8yLYvI4DiuRF5znFKTlmctGq3dy0in4w4MfG-0HRT_-L2bB-XH8bferTzFfgYr0UWyPJQGg1VKXn7Vibyvy7WKiznUNqpZrq_BjPYXYelLwUWC1CtI_Yc03aZfjP31mSV9mmKsZY9maBTexyZQhE01iHw7jSIlGe5p2ZU84ls7Qa0p_INmzDXfe7iFjiIhNZQMKvOnqcUUymZQAI4WqpA8iJ4Y5nGSV5R3TT2eIwtsyqL2OpBbPQgzvWgCMeTOb2snsifowtGsJORuUyLsDtWnTg3OYOYmD4P6TXDcPv3WQew0GhdX8VXzZvLHVhkJjjHxh3vwtywP8I9QldDtW-V3IH7aSvKJ4HBLSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Spatial-Spectral+Subspace+Clustering+for+Hyperspectral+Image&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Lei%2C+Jianjun&rft.au=Li%2C+Xinyu&rft.au=Peng%2C+Bo&rft.au=Fang%2C+Leyuan&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=31&rft.issue=7&rft.spage=2686&rft.epage=2697&rft_id=info:doi/10.1109%2FTCSVT.2020.3027616&rft.externalDocID=9208699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon