A Robust GAN-Generated Face Detection Method Based on Dual-Color Spaces and an Improved Xception
In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To detect these images, some methods have been proposed. However, their detection performance will be degraded greatly when the testing samples...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 6; pp. 3527 - 3538 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To detect these images, some methods have been proposed. However, their detection performance will be degraded greatly when the testing samples are post-processed. In this paper, some experimental studies on detecting post-processed GAN-generated face images find that (a) both the luminance component and chrominance components play an important role, and (b) the RGB and YCbCr color spaces achieve better performance than the HSV and Lab color spaces. Therefore, to enhance the robustness, both the luminance component and chrominance components of dual-color spaces (RGB and YCbCr) are considered to utilize color information effectively. In addition, the convolutional block attention module and multilayer feature aggregation module are introduced into the Xception model to enhance its feature representation power and aggregate multilayer features, respectively. Finally, a robust dual-stream network is designed by integrating dual-color spaces RGB and YCbCr and using an improved Xception model. Experimental results demonstrate that our method outperforms some existing methods, especially in its robustness against different types of post-processing operations, such as JPEG compression, Gaussian blurring, gamma correction, and median filtering. |
---|---|
AbstractList | In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To detect these images, some methods have been proposed. However, their detection performance will be degraded greatly when the testing samples are post-processed. In this paper, some experimental studies on detecting post-processed GAN-generated face images find that (a) both the luminance component and chrominance components play an important role, and (b) the RGB and YCbCr color spaces achieve better performance than the HSV and Lab color spaces. Therefore, to enhance the robustness, both the luminance component and chrominance components of dual-color spaces (RGB and YCbCr) are considered to utilize color information effectively. In addition, the convolutional block attention module and multilayer feature aggregation module are introduced into the Xception model to enhance its feature representation power and aggregate multilayer features, respectively. Finally, a robust dual-stream network is designed by integrating dual-color spaces RGB and YCbCr and using an improved Xception model. Experimental results demonstrate that our method outperforms some existing methods, especially in its robustness against different types of post-processing operations, such as JPEG compression, Gaussian blurring, gamma correction, and median filtering. |
Author | Zhao, Guoying Chen, Beijing Liu, Xin Shi, Yun-Qing Zheng, Yuhui |
Author_xml | – sequence: 1 givenname: Beijing orcidid: 0000-0002-2506-0427 surname: Chen fullname: Chen, Beijing email: nbutimage@126.com organization: Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Xin surname: Liu fullname: Liu, Xin email: 1273723636@qq.com organization: Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 3 givenname: Yuhui orcidid: 0000-0002-1709-3093 surname: Zheng fullname: Zheng, Yuhui email: zheng_yuhui@nuist.edu.cn organization: Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 4 givenname: Guoying orcidid: 0000-0003-3694-206X surname: Zhao fullname: Zhao, Guoying email: guoying.zhao@oulu.fi organization: Center for Machine Vision and Signal Analysis, University of Oulu, Oulu, Finland – sequence: 5 givenname: Yun-Qing surname: Shi fullname: Shi, Yun-Qing email: shi@njit.edu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA |
BookMark | eNp9kEFPwyAYhomZiXP6B_RC4rmTj45Cj3O6uWRq4qbxVin9GrtsZQIz8d_LnPHgwQQChOfhDe8x6bS2RULOgPUBWH65GM2fF33OOPRTgCyT-QHpghAq4ZyJTtwzAYniII7IsfdLxmCgBrJLXof00ZZbH-hkeJ9MsEWnA1Z0rA3SawxoQmNbeofhzVb0Svt4F8_XW71KRnZlHZ1vIuqpbqs46XS9cfYjQi8GNzv1hBzWeuXx9GftkafxzWJ0m8weJtPRcJYYnouQcFFXmDEAk9a5yPiAqVyhZHLABUAZIV5WAhTwMg4ENEZVdZmmlZRaZjLtkYv9uzH_fYs-FEu7dW2MLHgmuWIZzyBSfE8ZZ713WBcb16y1-yyAFbsmi-8mi12TxU-TUVJ_JNMEvftccLpZ_a-e79UGEX-zciG4EiL9AivygWs |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1016_j_jestch_2023_101589 crossref_primary_10_3390_machines12010055 crossref_primary_10_1080_23742917_2023_2192888 crossref_primary_10_1007_s00170_023_10970_9 crossref_primary_10_1080_19475705_2025_2453072 crossref_primary_10_1109_TIFS_2023_3324739 crossref_primary_10_1016_j_aei_2023_102036 crossref_primary_10_1155_2022_1154098 crossref_primary_10_1155_2022_7460330 crossref_primary_10_1155_2022_9755509 crossref_primary_10_1109_LSP_2021_3130525 crossref_primary_10_1109_TBDATA_2023_3284272 crossref_primary_10_1007_s11042_024_20470_x crossref_primary_10_1155_2022_7259469 crossref_primary_10_1109_TCSVT_2023_3289147 crossref_primary_10_1007_s42979_024_02629_3 crossref_primary_10_1049_ipr2_13312 crossref_primary_10_3390_electronics13163161 crossref_primary_10_1007_s11042_023_17116_9 crossref_primary_10_3390_electronics11244143 crossref_primary_10_1007_s10479_022_05151_y crossref_primary_10_1109_TDEI_2023_3275548 crossref_primary_10_1109_TMM_2023_3313503 crossref_primary_10_1109_TCSVT_2021_3133859 crossref_primary_10_1109_TMM_2024_3355651 crossref_primary_10_1038_s41598_024_78557_2 crossref_primary_10_1016_j_eswa_2023_122810 crossref_primary_10_1109_TCSVT_2023_3238517 crossref_primary_10_1007_s12145_024_01479_0 crossref_primary_10_1109_TCSVT_2024_3383833 crossref_primary_10_1109_TCSVT_2023_3301962 crossref_primary_10_1145_3580512 crossref_primary_10_1007_s11042_023_16787_8 crossref_primary_10_1016_j_ijepes_2022_108733 crossref_primary_10_1016_j_inffus_2024_102578 crossref_primary_10_1109_TCSVT_2022_3209336 crossref_primary_10_1016_j_eswa_2023_120646 crossref_primary_10_1109_TDSC_2023_3241604 crossref_primary_10_1016_j_patrec_2024_02_017 crossref_primary_10_1109_TCSVT_2023_3281475 crossref_primary_10_1109_TCSVT_2023_3269742 crossref_primary_10_1109_TCSVT_2022_3207310 crossref_primary_10_3390_s23020616 crossref_primary_10_1016_j_dsp_2023_104233 crossref_primary_10_1109_TCSVT_2022_3217950 crossref_primary_10_1007_s11760_024_03322_x crossref_primary_10_1016_j_jksuci_2022_09_012 crossref_primary_10_1016_j_jvcir_2023_103876 crossref_primary_10_1088_1361_6501_ad480c crossref_primary_10_3934_era_2024090 crossref_primary_10_1109_TIM_2023_3285981 crossref_primary_10_1145_3672566 crossref_primary_10_1109_TCSVT_2022_3177238 crossref_primary_10_1109_TCSVT_2023_3330390 crossref_primary_10_1109_TCDS_2023_3274450 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1016_j_knosys_2022_109905 crossref_primary_10_3390_sym14050939 |
Cites_doi | 10.1109/JSTSP.2020.3002391 10.1109/JSTSP.2020.2994523 10.1109/CVPRW.2019.00204 10.1109/CVPRW.2003.10057 10.1109/TCSVT.2019.2953753 10.1109/ICCV.2019.00009 10.1109/CVPR.2017.195 10.1109/CVPR.2016.90 10.1109/MIPR.2018.00084 10.1109/TCSVT.2020.3044986 10.1007/978-3-030-01234-2_1 10.1007/0-387-27257-7_12 10.1109/CVPR.2018.00916 10.1007/978-3-319-24574-4_28 10.1109/TIFS.2020.3045937 10.1109/CVPR.2019.00453 10.1016/j.sigpro.2020.107616 10.1109/CVPR42600.2020.00808 10.1023/A:I0I0933404324 10.1109/ICCV.2017.244 10.1109/ICCV.2015.425 10.1109/CVPR.2016.319 10.1109/34.1000242 10.1109/ICIP.2019.8803740 10.1109/TIFS.2020.3047768 10.1109/TMM.2020.3026868 10.1109/TCSVT.2021.3057457 10.1109/WACVW.2019.00020 10.1016/j.ins.2021.05.006 10.1145/3335203.3335724 10.1109/TCSVT.2021.3074259 10.1109/CISP-BMEI48845.2019.8965991 10.1109/ICCV.2015.452 10.1109/TPAMI.2017.2705122 10.1109/CVPR.2016.308 10.1109/TCSVT.2020.3001267 10.1145/3206004.3206009 10.1109/TCSVT.2019.2897984 10.1016/j.image.2018.04.011 10.2352/issn.2470-1173.2019.5.mwsf-532 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2021.3116679 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 3538 |
ExternalDocumentID | 10_1109_TCSVT_2021_3116679 9552855 |
Genre | orig-research |
GrantInformation_xml | – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund funderid: 10.13039/501100012246 – fundername: National Natural Science Foundation of China grantid: 62072251; U20B2065; 61972206 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20211539 funderid: 10.13039/501100004608 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-25fde6011c3f956240898e70742511bc292bd51812b12be1ecc8dfb33d77a7673 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 05:48:06 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 00:41:16 EDT 2025 Wed Aug 27 02:24:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-25fde6011c3f956240898e70742511bc292bd51812b12be1ecc8dfb33d77a7673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3694-206X 0000-0002-2506-0427 0000-0002-1709-3093 |
PQID | 2672806261 |
PQPubID | 85433 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2672806261 crossref_primary_10_1109_TCSVT_2021_3116679 ieee_primary_9552855 crossref_citationtrail_10_1109_TCSVT_2021_3116679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 Chen (ref23) 2021 ref52 ref11 ref10 ref16 ref19 ref18 Do (ref21) ref51 Berthelot (ref6) 2017 ref46 ref45 ref48 ref47 ref42 Goodfellow (ref1) ref41 ref44 Junbo (ref5) ref49 ref8 ref9 McCloskey (ref17) 2018 ref40 Ioffe (ref50) 2015 ref35 ref34 ref37 King (ref53) ref36 ref31 ref30 ref33 ref32 ref39 ref38 Lin (ref43) 2013 Gulrajani (ref4) ref24 ref26 ref25 ref20 ref22 Karras (ref7) ref28 ref27 ref29 Arjovsky (ref3) Kingma (ref54) 2014 Radford (ref2) 2015 |
References_xml | – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref7 article-title: Progressive growing of GANs for improved quality, stability, and variation – year: 2018 ident: ref17 article-title: Detecting GAN-generated imagery using color cues publication-title: arXiv:1812.08247 – ident: ref16 doi: 10.1109/JSTSP.2020.3002391 – year: 2014 ident: ref54 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref32 doi: 10.1109/JSTSP.2020.2994523 – ident: ref40 doi: 10.1109/CVPRW.2019.00204 – ident: ref47 doi: 10.1109/CVPRW.2003.10057 – ident: ref12 doi: 10.1109/TCSVT.2019.2953753 – ident: ref36 doi: 10.1109/ICCV.2019.00009 – year: 2021 ident: ref23 article-title: Distinguishing between natural and GAN-generated face images by combining global and local features publication-title: Chin. J. Electron. – ident: ref35 doi: 10.1109/CVPR.2017.195 – ident: ref31 doi: 10.1109/CVPR.2016.90 – ident: ref37 doi: 10.1109/MIPR.2018.00084 – ident: ref29 doi: 10.1109/TCSVT.2020.3044986 – ident: ref38 doi: 10.1007/978-3-030-01234-2_1 – ident: ref46 doi: 10.1007/0-387-27257-7_12 – ident: ref11 doi: 10.1109/CVPR.2018.00916 – year: 2015 ident: ref2 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv:1511.06434 – ident: ref52 doi: 10.1007/978-3-319-24574-4_28 – ident: ref25 doi: 10.1109/TIFS.2020.3045937 – ident: ref8 doi: 10.1109/CVPR.2019.00453 – ident: ref53 publication-title: Dlib C++ Library – year: 2013 ident: ref43 article-title: Network in network publication-title: arXiv:1312.4400 – ident: ref18 doi: 10.1016/j.sigpro.2020.107616 – ident: ref30 doi: 10.1109/CVPR42600.2020.00808 – ident: ref41 doi: 10.1023/A:I0I0933404324 – ident: ref10 doi: 10.1109/ICCV.2017.244 – ident: ref49 doi: 10.1109/ICCV.2015.425 – start-page: 214 volume-title: Proc. 34th Int. Conf. Mach. Learn. (PMLR) ident: ref3 article-title: Wasserstein generative adversarial networks – ident: ref51 doi: 10.1109/CVPR.2016.319 – ident: ref48 doi: 10.1109/34.1000242 – ident: ref26 doi: 10.1109/ICIP.2019.8803740 – ident: ref33 doi: 10.1109/TIFS.2020.3047768 – start-page: 1 volume-title: Proc. Int. Symp. Inf. Technol. Converg. (ISITC) ident: ref21 article-title: Forensics face detection from GANs using convolutional neural network – year: 2017 ident: ref6 article-title: BEGAN: Boundary equilibrium generative adversarial networks publication-title: arXiv:1703.10717 – ident: ref39 doi: 10.1109/TMM.2020.3026868 – ident: ref22 doi: 10.1109/TCSVT.2021.3057457 – ident: ref15 doi: 10.1109/WACVW.2019.00020 – ident: ref27 doi: 10.1016/j.ins.2021.05.006 – ident: ref14 doi: 10.1145/3335203.3335724 – ident: ref34 doi: 10.1109/TCSVT.2021.3074259 – ident: ref28 doi: 10.1109/CISP-BMEI48845.2019.8965991 – year: 2015 ident: ref50 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv:1502.03167 – ident: ref45 doi: 10.1109/ICCV.2015.452 – ident: ref44 doi: 10.1109/TPAMI.2017.2705122 – start-page: 2672 volume-title: Proc. 28th Conf. Neural Inf. Process. Syst. (NIPS) ident: ref1 article-title: Generative adversarial nets – ident: ref42 doi: 10.1109/CVPR.2016.308 – ident: ref13 doi: 10.1109/TCSVT.2020.3001267 – ident: ref24 doi: 10.1145/3206004.3206009 – volume-title: Proc. 5th Int. Conf. Learn. Represent. (ICLR) ident: ref5 article-title: Energy-based generative adversarial networks – ident: ref9 doi: 10.1109/TCSVT.2019.2897984 – ident: ref20 doi: 10.1016/j.image.2018.04.011 – start-page: 5767 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref4 article-title: Improved training of wasserstein GANs – ident: ref19 doi: 10.2352/issn.2470-1173.2019.5.mwsf-532 |
SSID | ssj0014847 |
Score | 2.6167495 |
Snippet | In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3527 |
SubjectTerms | Blurring Color color space Convolution Convolutional neural networks Face detection Face recognition Faces Feature extraction Generated face generative adversarial network Generative adversarial networks Image color analysis Image compression Modules Multilayers Performance degradation Robustness Xception |
Title | A Robust GAN-Generated Face Detection Method Based on Dual-Color Spaces and an Improved Xception |
URI | https://ieeexplore.ieee.org/document/9552855 https://www.proquest.com/docview/2672806261 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTuMwFL0CVsyC92g6POQFO3CpndhOlqVQEFJZQEHdZfzKZlCKINnw9Vw7aYUYNEJKpES6TiwdJz7Hvg-AYy-FkHmWUqdtSVNmUpqnA0czrjXSDSWlDcHJk1t5_ZDezMRsBU6XsTDe--h85vvhMu7lu7ltwlLZWS4Ez4RYhVUUbm2s1nLHIM1iMTGkCwxfxMQiQGaQn01H949TlIKcoUJlUga3rQ-TUKyq8s-vOM4v402YLHrWupX87Te16du3T0kbv9v1LdjoiCYZtiNjG1Z8tQM_PqQf3IU_Q3I3N81rTa6Gt7RNQI0ElIy19eTC19FLqyKTWGSanON85wjeXzT6iY7wp_lC7p-DRxfRlcOTtAsUaDTrfGX24GF8OR1d067iArU8FzXlonQeJRqzSYnCKaQ_yzOvgn5GYmbQiBsnAikweHiG-GeuNEnilNJKquQnrFXzyv8CknKbWGbzTCGBUAkKK50YmXh8ltFOlT1gCwgK26UjD1UxnoooSwZ5EWErAmxFB1sPTpZtnttkHP-13g04LC07CHpwsEC66L7X14LLUKYLxR37_XWrfVjnIfAhrr8cwFr90vhDpCO1OYrj8B0oRdje |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Pb9MwFH8a4wAcGDAQZQN8gBNyVzuxnRw4dC2lY2sPrEO9ZfGfXJjSaU2E4LPwVfbdeHaSagLEbRJSIiWSHcl-L36_n_3-ALxxUgiZJjG1uSlozHRM03hgacLzHOGGktL44OTZXE7P4k9LsdyCn5tYGOdccD5zff8YzvLtytR-q-wgFYInonOhPHbfvyFBW78_GqM033I--bAYTWlbQ4AanoqKclFYh6SDmahAKuATeqWJU54RItTQ2IhrK7yZ03g5hiNKbKGjyCqVK6ki_O4duIs4Q_AmOmxzRhEnoXwZAhSGQ2OiC8kZpAeL0emXBZJPzpATMym9o9gNsxfquPyx-AeLNtmB624uGkeWr_260n3z47c0kf_rZD2Chy2UJsNG9x_DliufwIMbCRZ34XxIPq90va7Ix-GcNim2EWKTSW4cGbsq-KGVZBbKaJNDtOiW4Pu4zi_oCM3CFTm99D5rJC8t3qTZgsFGy9Yb6Cmc3coQn8F2uSrdcyAxN5FhJk0UQiQVIXXMIy0jh9_SuVVFD1gn8sy0Cdd93Y-LLBCvQZoFNcm8mmStmvTg3abPZZNu5J-td73cNy1bkfdgv9OsrF2R1hmXvhAZ0lf24u-9XsO96WJ2kp0czY_34D73YR5ht2kftqur2r1E8FXpV-EfIHB-23r0C4rsNGI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+GAN-Generated+Face+Detection+Method+Based+on+Dual-Color+Spaces+and+an+Improved+Xception&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Beijing&rft.au=Liu%2C+Xin&rft.au=Zheng%2C+Yuhui&rft.au=Zhao%2C+Guoying&rft.date=2022-06-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=6&rft.spage=3527&rft.epage=3538&rft_id=info:doi/10.1109%2FTCSVT.2021.3116679&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2021_3116679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |