A Robust GAN-Generated Face Detection Method Based on Dual-Color Spaces and an Improved Xception

In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To detect these images, some methods have been proposed. However, their detection performance will be degraded greatly when the testing samples...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 6; pp. 3527 - 3538
Main Authors Chen, Beijing, Liu, Xin, Zheng, Yuhui, Zhao, Guoying, Shi, Yun-Qing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To detect these images, some methods have been proposed. However, their detection performance will be degraded greatly when the testing samples are post-processed. In this paper, some experimental studies on detecting post-processed GAN-generated face images find that (a) both the luminance component and chrominance components play an important role, and (b) the RGB and YCbCr color spaces achieve better performance than the HSV and Lab color spaces. Therefore, to enhance the robustness, both the luminance component and chrominance components of dual-color spaces (RGB and YCbCr) are considered to utilize color information effectively. In addition, the convolutional block attention module and multilayer feature aggregation module are introduced into the Xception model to enhance its feature representation power and aggregate multilayer features, respectively. Finally, a robust dual-stream network is designed by integrating dual-color spaces RGB and YCbCr and using an improved Xception model. Experimental results demonstrate that our method outperforms some existing methods, especially in its robustness against different types of post-processing operations, such as JPEG compression, Gaussian blurring, gamma correction, and median filtering.
AbstractList In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To detect these images, some methods have been proposed. However, their detection performance will be degraded greatly when the testing samples are post-processed. In this paper, some experimental studies on detecting post-processed GAN-generated face images find that (a) both the luminance component and chrominance components play an important role, and (b) the RGB and YCbCr color spaces achieve better performance than the HSV and Lab color spaces. Therefore, to enhance the robustness, both the luminance component and chrominance components of dual-color spaces (RGB and YCbCr) are considered to utilize color information effectively. In addition, the convolutional block attention module and multilayer feature aggregation module are introduced into the Xception model to enhance its feature representation power and aggregate multilayer features, respectively. Finally, a robust dual-stream network is designed by integrating dual-color spaces RGB and YCbCr and using an improved Xception model. Experimental results demonstrate that our method outperforms some existing methods, especially in its robustness against different types of post-processing operations, such as JPEG compression, Gaussian blurring, gamma correction, and median filtering.
Author Zhao, Guoying
Chen, Beijing
Liu, Xin
Shi, Yun-Qing
Zheng, Yuhui
Author_xml – sequence: 1
  givenname: Beijing
  orcidid: 0000-0002-2506-0427
  surname: Chen
  fullname: Chen, Beijing
  email: nbutimage@126.com
  organization: Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  email: 1273723636@qq.com
  organization: Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Yuhui
  orcidid: 0000-0002-1709-3093
  surname: Zheng
  fullname: Zheng, Yuhui
  email: zheng_yuhui@nuist.edu.cn
  organization: Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Guoying
  orcidid: 0000-0003-3694-206X
  surname: Zhao
  fullname: Zhao, Guoying
  email: guoying.zhao@oulu.fi
  organization: Center for Machine Vision and Signal Analysis, University of Oulu, Oulu, Finland
– sequence: 5
  givenname: Yun-Qing
  surname: Shi
  fullname: Shi, Yun-Qing
  email: shi@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
BookMark eNp9kEFPwyAYhomZiXP6B_RC4rmTj45Cj3O6uWRq4qbxVin9GrtsZQIz8d_LnPHgwQQChOfhDe8x6bS2RULOgPUBWH65GM2fF33OOPRTgCyT-QHpghAq4ZyJTtwzAYniII7IsfdLxmCgBrJLXof00ZZbH-hkeJ9MsEWnA1Z0rA3SawxoQmNbeofhzVb0Svt4F8_XW71KRnZlHZ1vIuqpbqs46XS9cfYjQi8GNzv1hBzWeuXx9GftkafxzWJ0m8weJtPRcJYYnouQcFFXmDEAk9a5yPiAqVyhZHLABUAZIV5WAhTwMg4ENEZVdZmmlZRaZjLtkYv9uzH_fYs-FEu7dW2MLHgmuWIZzyBSfE8ZZ713WBcb16y1-yyAFbsmi-8mi12TxU-TUVJ_JNMEvftccLpZ_a-e79UGEX-zciG4EiL9AivygWs
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_jestch_2023_101589
crossref_primary_10_3390_machines12010055
crossref_primary_10_1080_23742917_2023_2192888
crossref_primary_10_1007_s00170_023_10970_9
crossref_primary_10_1080_19475705_2025_2453072
crossref_primary_10_1109_TIFS_2023_3324739
crossref_primary_10_1016_j_aei_2023_102036
crossref_primary_10_1155_2022_1154098
crossref_primary_10_1155_2022_7460330
crossref_primary_10_1155_2022_9755509
crossref_primary_10_1109_LSP_2021_3130525
crossref_primary_10_1109_TBDATA_2023_3284272
crossref_primary_10_1007_s11042_024_20470_x
crossref_primary_10_1155_2022_7259469
crossref_primary_10_1109_TCSVT_2023_3289147
crossref_primary_10_1007_s42979_024_02629_3
crossref_primary_10_1049_ipr2_13312
crossref_primary_10_3390_electronics13163161
crossref_primary_10_1007_s11042_023_17116_9
crossref_primary_10_3390_electronics11244143
crossref_primary_10_1007_s10479_022_05151_y
crossref_primary_10_1109_TDEI_2023_3275548
crossref_primary_10_1109_TMM_2023_3313503
crossref_primary_10_1109_TCSVT_2021_3133859
crossref_primary_10_1109_TMM_2024_3355651
crossref_primary_10_1038_s41598_024_78557_2
crossref_primary_10_1016_j_eswa_2023_122810
crossref_primary_10_1109_TCSVT_2023_3238517
crossref_primary_10_1007_s12145_024_01479_0
crossref_primary_10_1109_TCSVT_2024_3383833
crossref_primary_10_1109_TCSVT_2023_3301962
crossref_primary_10_1145_3580512
crossref_primary_10_1007_s11042_023_16787_8
crossref_primary_10_1016_j_ijepes_2022_108733
crossref_primary_10_1016_j_inffus_2024_102578
crossref_primary_10_1109_TCSVT_2022_3209336
crossref_primary_10_1016_j_eswa_2023_120646
crossref_primary_10_1109_TDSC_2023_3241604
crossref_primary_10_1016_j_patrec_2024_02_017
crossref_primary_10_1109_TCSVT_2023_3281475
crossref_primary_10_1109_TCSVT_2023_3269742
crossref_primary_10_1109_TCSVT_2022_3207310
crossref_primary_10_3390_s23020616
crossref_primary_10_1016_j_dsp_2023_104233
crossref_primary_10_1109_TCSVT_2022_3217950
crossref_primary_10_1007_s11760_024_03322_x
crossref_primary_10_1016_j_jksuci_2022_09_012
crossref_primary_10_1016_j_jvcir_2023_103876
crossref_primary_10_1088_1361_6501_ad480c
crossref_primary_10_3934_era_2024090
crossref_primary_10_1109_TIM_2023_3285981
crossref_primary_10_1145_3672566
crossref_primary_10_1109_TCSVT_2022_3177238
crossref_primary_10_1109_TCSVT_2023_3330390
crossref_primary_10_1109_TCDS_2023_3274450
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1016_j_knosys_2022_109905
crossref_primary_10_3390_sym14050939
Cites_doi 10.1109/JSTSP.2020.3002391
10.1109/JSTSP.2020.2994523
10.1109/CVPRW.2019.00204
10.1109/CVPRW.2003.10057
10.1109/TCSVT.2019.2953753
10.1109/ICCV.2019.00009
10.1109/CVPR.2017.195
10.1109/CVPR.2016.90
10.1109/MIPR.2018.00084
10.1109/TCSVT.2020.3044986
10.1007/978-3-030-01234-2_1
10.1007/0-387-27257-7_12
10.1109/CVPR.2018.00916
10.1007/978-3-319-24574-4_28
10.1109/TIFS.2020.3045937
10.1109/CVPR.2019.00453
10.1016/j.sigpro.2020.107616
10.1109/CVPR42600.2020.00808
10.1023/A:I0I0933404324
10.1109/ICCV.2017.244
10.1109/ICCV.2015.425
10.1109/CVPR.2016.319
10.1109/34.1000242
10.1109/ICIP.2019.8803740
10.1109/TIFS.2020.3047768
10.1109/TMM.2020.3026868
10.1109/TCSVT.2021.3057457
10.1109/WACVW.2019.00020
10.1016/j.ins.2021.05.006
10.1145/3335203.3335724
10.1109/TCSVT.2021.3074259
10.1109/CISP-BMEI48845.2019.8965991
10.1109/ICCV.2015.452
10.1109/TPAMI.2017.2705122
10.1109/CVPR.2016.308
10.1109/TCSVT.2020.3001267
10.1145/3206004.3206009
10.1109/TCSVT.2019.2897984
10.1016/j.image.2018.04.011
10.2352/issn.2470-1173.2019.5.mwsf-532
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3116679
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 3538
ExternalDocumentID 10_1109_TCSVT_2021_3116679
9552855
Genre orig-research
GrantInformation_xml – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund
  funderid: 10.13039/501100012246
– fundername: National Natural Science Foundation of China
  grantid: 62072251; U20B2065; 61972206
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20211539
  funderid: 10.13039/501100004608
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-25fde6011c3f956240898e70742511bc292bd51812b12be1ecc8dfb33d77a7673
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 05:48:06 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Tue Jul 01 00:41:16 EDT 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-25fde6011c3f956240898e70742511bc292bd51812b12be1ecc8dfb33d77a7673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3694-206X
0000-0002-2506-0427
0000-0002-1709-3093
PQID 2672806261
PQPubID 85433
PageCount 12
ParticipantIDs proquest_journals_2672806261
crossref_primary_10_1109_TCSVT_2021_3116679
ieee_primary_9552855
crossref_citationtrail_10_1109_TCSVT_2021_3116679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Chen (ref23) 2021
ref52
ref11
ref10
ref16
ref19
ref18
Do (ref21)
ref51
Berthelot (ref6) 2017
ref46
ref45
ref48
ref47
ref42
Goodfellow (ref1)
ref41
ref44
Junbo (ref5)
ref49
ref8
ref9
McCloskey (ref17) 2018
ref40
Ioffe (ref50) 2015
ref35
ref34
ref37
King (ref53)
ref36
ref31
ref30
ref33
ref32
ref39
ref38
Lin (ref43) 2013
Gulrajani (ref4)
ref24
ref26
ref25
ref20
ref22
Karras (ref7)
ref28
ref27
ref29
Arjovsky (ref3)
Kingma (ref54) 2014
Radford (ref2) 2015
References_xml – start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref7
  article-title: Progressive growing of GANs for improved quality, stability, and variation
– year: 2018
  ident: ref17
  article-title: Detecting GAN-generated imagery using color cues
  publication-title: arXiv:1812.08247
– ident: ref16
  doi: 10.1109/JSTSP.2020.3002391
– year: 2014
  ident: ref54
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref32
  doi: 10.1109/JSTSP.2020.2994523
– ident: ref40
  doi: 10.1109/CVPRW.2019.00204
– ident: ref47
  doi: 10.1109/CVPRW.2003.10057
– ident: ref12
  doi: 10.1109/TCSVT.2019.2953753
– ident: ref36
  doi: 10.1109/ICCV.2019.00009
– year: 2021
  ident: ref23
  article-title: Distinguishing between natural and GAN-generated face images by combining global and local features
  publication-title: Chin. J. Electron.
– ident: ref35
  doi: 10.1109/CVPR.2017.195
– ident: ref31
  doi: 10.1109/CVPR.2016.90
– ident: ref37
  doi: 10.1109/MIPR.2018.00084
– ident: ref29
  doi: 10.1109/TCSVT.2020.3044986
– ident: ref38
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref46
  doi: 10.1007/0-387-27257-7_12
– ident: ref11
  doi: 10.1109/CVPR.2018.00916
– year: 2015
  ident: ref2
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
– ident: ref52
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref25
  doi: 10.1109/TIFS.2020.3045937
– ident: ref8
  doi: 10.1109/CVPR.2019.00453
– ident: ref53
  publication-title: Dlib C++ Library
– year: 2013
  ident: ref43
  article-title: Network in network
  publication-title: arXiv:1312.4400
– ident: ref18
  doi: 10.1016/j.sigpro.2020.107616
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00808
– ident: ref41
  doi: 10.1023/A:I0I0933404324
– ident: ref10
  doi: 10.1109/ICCV.2017.244
– ident: ref49
  doi: 10.1109/ICCV.2015.425
– start-page: 214
  volume-title: Proc. 34th Int. Conf. Mach. Learn. (PMLR)
  ident: ref3
  article-title: Wasserstein generative adversarial networks
– ident: ref51
  doi: 10.1109/CVPR.2016.319
– ident: ref48
  doi: 10.1109/34.1000242
– ident: ref26
  doi: 10.1109/ICIP.2019.8803740
– ident: ref33
  doi: 10.1109/TIFS.2020.3047768
– start-page: 1
  volume-title: Proc. Int. Symp. Inf. Technol. Converg. (ISITC)
  ident: ref21
  article-title: Forensics face detection from GANs using convolutional neural network
– year: 2017
  ident: ref6
  article-title: BEGAN: Boundary equilibrium generative adversarial networks
  publication-title: arXiv:1703.10717
– ident: ref39
  doi: 10.1109/TMM.2020.3026868
– ident: ref22
  doi: 10.1109/TCSVT.2021.3057457
– ident: ref15
  doi: 10.1109/WACVW.2019.00020
– ident: ref27
  doi: 10.1016/j.ins.2021.05.006
– ident: ref14
  doi: 10.1145/3335203.3335724
– ident: ref34
  doi: 10.1109/TCSVT.2021.3074259
– ident: ref28
  doi: 10.1109/CISP-BMEI48845.2019.8965991
– year: 2015
  ident: ref50
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv:1502.03167
– ident: ref45
  doi: 10.1109/ICCV.2015.452
– ident: ref44
  doi: 10.1109/TPAMI.2017.2705122
– start-page: 2672
  volume-title: Proc. 28th Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref1
  article-title: Generative adversarial nets
– ident: ref42
  doi: 10.1109/CVPR.2016.308
– ident: ref13
  doi: 10.1109/TCSVT.2020.3001267
– ident: ref24
  doi: 10.1145/3206004.3206009
– volume-title: Proc. 5th Int. Conf. Learn. Represent. (ICLR)
  ident: ref5
  article-title: Energy-based generative adversarial networks
– ident: ref9
  doi: 10.1109/TCSVT.2019.2897984
– ident: ref20
  doi: 10.1016/j.image.2018.04.011
– start-page: 5767
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref4
  article-title: Improved training of wasserstein GANs
– ident: ref19
  doi: 10.2352/issn.2470-1173.2019.5.mwsf-532
SSID ssj0014847
Score 2.6167495
Snippet In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3527
SubjectTerms Blurring
Color
color space
Convolution
Convolutional neural networks
Face detection
Face recognition
Faces
Feature extraction
Generated face
generative adversarial network
Generative adversarial networks
Image color analysis
Image compression
Modules
Multilayers
Performance degradation
Robustness
Xception
Title A Robust GAN-Generated Face Detection Method Based on Dual-Color Spaces and an Improved Xception
URI https://ieeexplore.ieee.org/document/9552855
https://www.proquest.com/docview/2672806261
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTuMwFL0CVsyC92g6POQFO3CpndhOlqVQEFJZQEHdZfzKZlCKINnw9Vw7aYUYNEJKpES6TiwdJz7Hvg-AYy-FkHmWUqdtSVNmUpqnA0czrjXSDSWlDcHJk1t5_ZDezMRsBU6XsTDe--h85vvhMu7lu7ltwlLZWS4Ez4RYhVUUbm2s1nLHIM1iMTGkCwxfxMQiQGaQn01H949TlIKcoUJlUga3rQ-TUKyq8s-vOM4v402YLHrWupX87Te16du3T0kbv9v1LdjoiCYZtiNjG1Z8tQM_PqQf3IU_Q3I3N81rTa6Gt7RNQI0ElIy19eTC19FLqyKTWGSanON85wjeXzT6iY7wp_lC7p-DRxfRlcOTtAsUaDTrfGX24GF8OR1d067iArU8FzXlonQeJRqzSYnCKaQ_yzOvgn5GYmbQiBsnAikweHiG-GeuNEnilNJKquQnrFXzyv8CknKbWGbzTCGBUAkKK50YmXh8ltFOlT1gCwgK26UjD1UxnoooSwZ5EWErAmxFB1sPTpZtnttkHP-13g04LC07CHpwsEC66L7X14LLUKYLxR37_XWrfVjnIfAhrr8cwFr90vhDpCO1OYrj8B0oRdje
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Pb9MwFH8a4wAcGDAQZQN8gBNyVzuxnRw4dC2lY2sPrEO9ZfGfXJjSaU2E4LPwVfbdeHaSagLEbRJSIiWSHcl-L36_n_3-ALxxUgiZJjG1uSlozHRM03hgacLzHOGGktL44OTZXE7P4k9LsdyCn5tYGOdccD5zff8YzvLtytR-q-wgFYInonOhPHbfvyFBW78_GqM033I--bAYTWlbQ4AanoqKclFYh6SDmahAKuATeqWJU54RItTQ2IhrK7yZ03g5hiNKbKGjyCqVK6ki_O4duIs4Q_AmOmxzRhEnoXwZAhSGQ2OiC8kZpAeL0emXBZJPzpATMym9o9gNsxfquPyx-AeLNtmB624uGkeWr_260n3z47c0kf_rZD2Chy2UJsNG9x_DliufwIMbCRZ34XxIPq90va7Ix-GcNim2EWKTSW4cGbsq-KGVZBbKaJNDtOiW4Pu4zi_oCM3CFTm99D5rJC8t3qTZgsFGy9Yb6Cmc3coQn8F2uSrdcyAxN5FhJk0UQiQVIXXMIy0jh9_SuVVFD1gn8sy0Cdd93Y-LLBCvQZoFNcm8mmStmvTg3abPZZNu5J-td73cNy1bkfdgv9OsrF2R1hmXvhAZ0lf24u-9XsO96WJ2kp0czY_34D73YR5ht2kftqur2r1E8FXpV-EfIHB-23r0C4rsNGI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+GAN-Generated+Face+Detection+Method+Based+on+Dual-Color+Spaces+and+an+Improved+Xception&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Beijing&rft.au=Liu%2C+Xin&rft.au=Zheng%2C+Yuhui&rft.au=Zhao%2C+Guoying&rft.date=2022-06-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=6&rft.spage=3527&rft.epage=3538&rft_id=info:doi/10.1109%2FTCSVT.2021.3116679&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2021_3116679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon