Off-the-Grid Low-Rank Matrix Recovery and Seismic Data Reconstruction

Matrix sensing problems capitalize on the knowledge that a data matrix of interest exhibits low rank properties. This low dimensional structure often arises because the data matrix is obtained by sampling a smooth function on a regular (or structured) grid. However, in many practical situations the...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in signal processing Vol. 10; no. 4; pp. 658 - 671
Main Authors Lopez, Oscar, Kumar, Rajiv, Yilmaz, Ozgur, Herrmann, Felix J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Matrix sensing problems capitalize on the knowledge that a data matrix of interest exhibits low rank properties. This low dimensional structure often arises because the data matrix is obtained by sampling a smooth function on a regular (or structured) grid. However, in many practical situations the measurements are taken on an irregular grid (that is accurately known). This results in an "unstructured data matrix" that is less fit for the low rank model in comparison to its regular counterpart and therefore subject to degraded reconstruction via rank penalization techniques. In this paper, we propose and analyze a modified low-rank matrix recovery work-flow that admits unstructured observations. By incorporating a regularization operator which accurately maps structured data to unstructured data, into the nuclear-norm minimization problem, we are able to compensate for data irregularity. Furthermore, by construction our formulation yields output that is supported on a structured grid. We establish recovery error bounds for our methodology and offer matrix sensing and matrix completion numerical experiments including applications to seismic trace interpolation to demonstrate the potential of the approach.
AbstractList Matrix sensing problems capitalize on the knowledge that a data matrix of interest exhibits low rank properties. This low dimensional structure often arises because the data matrix is obtained by sampling a smooth function on a regular (or structured) grid. However, in many practical situations the measurements are taken on an irregular grid (that is accurately known). This results in an "unstructured data matrix" that is less fit for the low rank model in comparison to its regular counterpart and therefore subject to degraded reconstruction via rank penalization techniques. In this paper, we propose and analyze a modified low-rank matrix recovery work-flow that admits unstructured observations. By incorporating a regularization operator which accurately maps structured data to unstructured data, into the nuclear-norm minimization problem, we are able to compensate for data irregularity. Furthermore, by construction our formulation yields output that is supported on a structured grid. We establish recovery error bounds for our methodology and offer matrix sensing and matrix completion numerical experiments including applications to seismic trace interpolation to demonstrate the potential of the approach.
Author Kumar, Rajiv
Lopez, Oscar
Yilmaz, Ozgur
Herrmann, Felix J.
Author_xml – sequence: 1
  givenname: Oscar
  surname: Lopez
  fullname: Lopez, Oscar
  email: lopezo@math.ubc.ca
  organization: Dept. of Math., Univ. of British Columbia, Vancouver, BC, Canada
– sequence: 2
  givenname: Rajiv
  surname: Kumar
  fullname: Kumar, Rajiv
  email: rakumar@eos.ubc.ca
  organization: Dept. of Earth, Ocean & Atmos. Sci., Univ. of British Columbia, Vancouver, BC, Canada
– sequence: 3
  givenname: Ozgur
  surname: Yilmaz
  fullname: Yilmaz, Ozgur
  email: oyilmaz@math.ubc.ca
  organization: Dept. of Math., Univ. of British Columbia, Vancouver, BC, Canada
– sequence: 4
  givenname: Felix J.
  surname: Herrmann
  fullname: Herrmann, Felix J.
  email: fherrmann@eos.ubc.ca
  organization: Dept. of Earth, Ocean & Atmos. Sci., Univ. of British Columbia, Vancouver, BC, Canada
BookMark eNp9kEFPAjEQhRuDiYD-Ab1s4rnYdqfb7tEgogaDATw33W43FmEXu0Xl37sLxIMHTzPJvG_ezOuhTlmVFqFLSgaUkvTmab6YvwwYocmAcc5BshPUpSlQTEBCp-1jhoHz-Az16npJCBcJhS4aTYsChzeLx97l0aT6wjNdvkfPOnj3Hc2sqT6t30W6zKO5dfXamehOB72flHXwWxNcVZ6j00KvantxrH30ej9aDB_wZDp-HN5OsGEpD5hRlhktAOLEUsgFh1QkBTEkl8QmgiQgWJZRzYCYVDMmBHBmZMGNkDITRdxH14e9G199bG0d1LLa-rKxVFTINKYMZNyo2EFlfFXX3hZq491a-52iRLVxqX1cqo1LHeNqIPkHMi7o9rngtVv9j14dUGet_fVqbodEQPwD4el4cw
CODEN IJSTGY
CitedBy_id crossref_primary_10_1190_geo2024_0019_1
crossref_primary_10_1190_geo2022_0500_1
crossref_primary_10_1007_s43670_023_00065_7
crossref_primary_10_1109_LGRS_2019_2909776
crossref_primary_10_1111_1365_2478_13279
crossref_primary_10_1109_TSP_2017_2764865
crossref_primary_10_1190_geo2023_0024_1
crossref_primary_10_1190_geo2024_0098_1
crossref_primary_10_1109_ACCESS_2020_3046638
crossref_primary_10_1109_TGRS_2023_3237464
crossref_primary_10_1109_LGRS_2021_3073560
crossref_primary_10_1190_geo2018_0109_1
crossref_primary_10_1190_geo2020_0644_1
crossref_primary_10_1109_TSP_2016_2600507
crossref_primary_10_1109_TGRS_2023_3339119
crossref_primary_10_1190_geo2019_0357_1
crossref_primary_10_1080_01431161_2021_1897188
crossref_primary_10_1109_TCI_2017_2693966
crossref_primary_10_1109_TGRS_2020_2976664
Cites_doi 10.1190/segam2014-1583.1
10.1137/130919210
10.1109/JPROC.2009.2035722
10.1190/geo2012-0465.1
10.1007/s10208-009-9045-5
10.1002/cpa.20064
10.1137/080714488
10.1190/segam2012-1335.1
10.1137/070697835
10.1007/978-0-8176-4948-7
10.1109/ICASSP.2012.6288473
10.3997/2214-4609.201413448
10.1137/S003614450343200X
10.1137/120888478
10.1017/CBO9780511794308.006
10.3934/ipi.2013.7.1379
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2016.2555482
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 671
ExternalDocumentID 4058498731
10_1109_JSTSP_2016_2555482
7454674
Genre orig-research
GrantInformation_xml – fundername: NSERC Discovery
  grantid: 22R82411
– fundername: NSERC Accelerator Award
  grantid: 22R68054
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
– fundername: Collaborative Research and Development
  grantid: DNOISE II (375142-08)
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c295t-212bca74436e14d754976f0c0d80e6706472bb1a240c9a2277452c8f5c788b7f3
IEDL.DBID RIE
ISSN 1932-4553
IngestDate Mon Jun 30 10:30:33 EDT 2025
Tue Jul 01 02:54:54 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords data regularization
seismic trace interpolation
matrix completion
nonuniform discrete Fourier transform
Matrix sensing
nuclear-norm relaxation
seismic data
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-212bca74436e14d754976f0c0d80e6706472bb1a240c9a2277452c8f5c788b7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9932-9310
PQID 1789312483
PQPubID 75721
PageCount 14
ParticipantIDs crossref_primary_10_1109_JSTSP_2016_2555482
crossref_citationtrail_10_1109_JSTSP_2016_2555482
proquest_journals_1789312483
ieee_primary_7454674
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
candes (ref12) 0
ref14
lin (ref17) 0
ref20
foucart (ref15) 2013
ref11
ref10
rivlin (ref16) 1969
ref2
ref1
ref19
ref18
ref8
ref7
ref4
ref3
ref6
ref5
keiner (ref9) 2008; 36
References_xml – volume: 36
  start-page: 19:1
  year: 2008
  ident: ref9
  article-title: Using NFFT 3-A software library for various nonequispaced fast Fourier transforms
  publication-title: ACM Trans Math Softw
– ident: ref8
  doi: 10.1190/segam2014-1583.1
– ident: ref1
  doi: 10.1137/130919210
– ident: ref6
  doi: 10.1109/JPROC.2009.2035722
– ident: ref10
  doi: 10.1190/geo2012-0465.1
– ident: ref5
  doi: 10.1007/s10208-009-9045-5
– ident: ref3
  doi: 10.1002/cpa.20064
– ident: ref7
  doi: 10.1137/080714488
– ident: ref4
  doi: 10.1190/segam2012-1335.1
– ident: ref2
  doi: 10.1137/070697835
– year: 2013
  ident: ref15
  publication-title: A Mathematical Introduction to Compressive Sensing
  doi: 10.1007/978-0-8176-4948-7
– ident: ref20
  doi: 10.1109/ICASSP.2012.6288473
– start-page: 1043
  year: 0
  ident: ref12
  article-title: Compressed sensing and robust recovery of low rank matrices
  publication-title: Proc 42nd Asilomar Conf Signals Syst Comput
– year: 0
  ident: ref17
  article-title: Designing simultaneous acquisitions with compressive sensing
  publication-title: Proc EAGE Annu Conf
– ident: ref14
  doi: 10.3997/2214-4609.201413448
– year: 1969
  ident: ref16
  publication-title: An Introduction to the Approximation of Functions
– ident: ref11
  doi: 10.1137/S003614450343200X
– ident: ref13
  doi: 10.1137/120888478
– ident: ref18
  doi: 10.1017/CBO9780511794308.006
– ident: ref19
  doi: 10.3934/ipi.2013.7.1379
SSID ssj0057614
Score 2.2696452
Snippet Matrix sensing problems capitalize on the knowledge that a data matrix of interest exhibits low rank properties. This low dimensional structure often arises...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 658
SubjectTerms Bar codes
Compressed sensing
data regularization
Discrete Fourier transforms
Interpolation
matrix completion
Matrix sensing
Noise measurement
non-uniform discrete Fourier transform
nuclearnorm relaxation
Periodic structures
Robustness
seismic data
seismic trace interpolation
Sensors
Title Off-the-Grid Low-Rank Matrix Recovery and Seismic Data Reconstruction
URI https://ieeexplore.ieee.org/document/7454674
https://www.proquest.com/docview/1789312483
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XADbK1adO0RwSDCTFAjEm7VWmaSNOgQ2wTj1-P08d4CqFeKjWpIttJPif2Z4ADZSfmnjEkkicMHRRbkDgOBTGus6ae63JpDvR7V3534F0M2bACR4tcGKVUFnymWuY1u8tPJnJujsra3GOmOEYVqui45bla5aqLsNkpbpAp8RhzywQZO2yjifdvTBSX30IAjRCdftmEsqoqP5bibH85W4VeObI8rGTcms_ilnz7Rtr436GvwUoBNK3j3DLWoaLSDVj-RD9Yh8611gQBIDl_GiXW5eSZ3Ip0bPUMa_-LZRxTtPNXS6SJ1Vej6cNIWqdiJrIvH8SzmzA469yddElRVoFIGrIZQdXEUnDPc33leAlHD5H72pZ2EtjK5yb7lMaxI3Cvl6GgFAEiozLQTKLUY67dLailk1Rtg-X60qEJPjJAP0YHYaADW0pDCcSY5kEDnFLOkSw4x03pi_so8z3sMMp0ExndRIVuGnC46POYM2782bpuhL1oWci5Ac1SnVExKaeRwxGcIZ4J3J3fe-3Ckvl3HgnWhBoKUu0h5pjF-5mxvQP2r89h
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHtoIoFMiBG7gkThwnR8RWoAVEQeIWOY4tVYUU0VYsX884S1mFUC6RbCvWzMTzxrMBbCs7MX7GkEieMDRQbEHiOBTEmM6aeq7LpbnQb1_4zVvv7I7dTcDuOBdGKZUFn6mGec18-UlfjsxV2R73mGmOMQlTqPeZk2drlecuAmen8CFTgsNumSJjh3so5J0rE8flNxBCI0inX9RQ1lflx2GcaZjjeWiXe8sDS3qN0TBuyLdvZRv_u_kFmCugprWfy8YiTKh0CWY_FSCswtGl1gQhIDl56iZWq_9MrkXas9qmbv-LZUxTlPRXS6SJ1VHdwUNXWodiKLKRj9Kzy3B7fHRz0CRFYwUiaciGBJkTS8E9z_WV4yUcbUTua1vaSWArn5v8UxrHjkBtL0NBKUJERmWgmUSDOebaXYFK2k_VKliuLx2a4CMDtGR0EAY6sKU0RYEY0zyogVPSOZJF1XHT_OI-yqwPO4wy3kSGN1HBmxrsjNc85jU3_pxdNcQezyzoXIN6yc6o-C0HkcMRniGiCdy131dtwXTzpt2KWqcX5-swY76Tx4XVoYJEVRuIQIbxZiZ47_av0qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Off-the-Grid+Low-Rank+Matrix+Recovery+and+Seismic+Data+Reconstruction&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Lopez%2C+Oscar&rft.au=Kumar%2C+Rajiv&rft.au=Yilmaz%2C+Ozgur&rft.au=Herrmann%2C+Felix+J&rft.date=2016-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=10&rft.issue=4&rft.spage=658&rft_id=info:doi/10.1109%2FJSTSP.2016.2555482&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4058498731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon