Off-the-Grid Low-Rank Matrix Recovery and Seismic Data Reconstruction
Matrix sensing problems capitalize on the knowledge that a data matrix of interest exhibits low rank properties. This low dimensional structure often arises because the data matrix is obtained by sampling a smooth function on a regular (or structured) grid. However, in many practical situations the...
Saved in:
Published in | IEEE journal of selected topics in signal processing Vol. 10; no. 4; pp. 658 - 671 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Matrix sensing problems capitalize on the knowledge that a data matrix of interest exhibits low rank properties. This low dimensional structure often arises because the data matrix is obtained by sampling a smooth function on a regular (or structured) grid. However, in many practical situations the measurements are taken on an irregular grid (that is accurately known). This results in an "unstructured data matrix" that is less fit for the low rank model in comparison to its regular counterpart and therefore subject to degraded reconstruction via rank penalization techniques. In this paper, we propose and analyze a modified low-rank matrix recovery work-flow that admits unstructured observations. By incorporating a regularization operator which accurately maps structured data to unstructured data, into the nuclear-norm minimization problem, we are able to compensate for data irregularity. Furthermore, by construction our formulation yields output that is supported on a structured grid. We establish recovery error bounds for our methodology and offer matrix sensing and matrix completion numerical experiments including applications to seismic trace interpolation to demonstrate the potential of the approach. |
---|---|
AbstractList | Matrix sensing problems capitalize on the knowledge that a data matrix of interest exhibits low rank properties. This low dimensional structure often arises because the data matrix is obtained by sampling a smooth function on a regular (or structured) grid. However, in many practical situations the measurements are taken on an irregular grid (that is accurately known). This results in an "unstructured data matrix" that is less fit for the low rank model in comparison to its regular counterpart and therefore subject to degraded reconstruction via rank penalization techniques. In this paper, we propose and analyze a modified low-rank matrix recovery work-flow that admits unstructured observations. By incorporating a regularization operator which accurately maps structured data to unstructured data, into the nuclear-norm minimization problem, we are able to compensate for data irregularity. Furthermore, by construction our formulation yields output that is supported on a structured grid. We establish recovery error bounds for our methodology and offer matrix sensing and matrix completion numerical experiments including applications to seismic trace interpolation to demonstrate the potential of the approach. |
Author | Kumar, Rajiv Lopez, Oscar Yilmaz, Ozgur Herrmann, Felix J. |
Author_xml | – sequence: 1 givenname: Oscar surname: Lopez fullname: Lopez, Oscar email: lopezo@math.ubc.ca organization: Dept. of Math., Univ. of British Columbia, Vancouver, BC, Canada – sequence: 2 givenname: Rajiv surname: Kumar fullname: Kumar, Rajiv email: rakumar@eos.ubc.ca organization: Dept. of Earth, Ocean & Atmos. Sci., Univ. of British Columbia, Vancouver, BC, Canada – sequence: 3 givenname: Ozgur surname: Yilmaz fullname: Yilmaz, Ozgur email: oyilmaz@math.ubc.ca organization: Dept. of Math., Univ. of British Columbia, Vancouver, BC, Canada – sequence: 4 givenname: Felix J. surname: Herrmann fullname: Herrmann, Felix J. email: fherrmann@eos.ubc.ca organization: Dept. of Earth, Ocean & Atmos. Sci., Univ. of British Columbia, Vancouver, BC, Canada |
BookMark | eNp9kEFPAjEQhRuDiYD-Ab1s4rnYdqfb7tEgogaDATw33W43FmEXu0Xl37sLxIMHTzPJvG_ezOuhTlmVFqFLSgaUkvTmab6YvwwYocmAcc5BshPUpSlQTEBCp-1jhoHz-Az16npJCBcJhS4aTYsChzeLx97l0aT6wjNdvkfPOnj3Hc2sqT6t30W6zKO5dfXamehOB72flHXwWxNcVZ6j00KvantxrH30ej9aDB_wZDp-HN5OsGEpD5hRlhktAOLEUsgFh1QkBTEkl8QmgiQgWJZRzYCYVDMmBHBmZMGNkDITRdxH14e9G199bG0d1LLa-rKxVFTINKYMZNyo2EFlfFXX3hZq491a-52iRLVxqX1cqo1LHeNqIPkHMi7o9rngtVv9j14dUGet_fVqbodEQPwD4el4cw |
CODEN | IJSTGY |
CitedBy_id | crossref_primary_10_1190_geo2024_0019_1 crossref_primary_10_1190_geo2022_0500_1 crossref_primary_10_1007_s43670_023_00065_7 crossref_primary_10_1109_LGRS_2019_2909776 crossref_primary_10_1111_1365_2478_13279 crossref_primary_10_1109_TSP_2017_2764865 crossref_primary_10_1190_geo2023_0024_1 crossref_primary_10_1190_geo2024_0098_1 crossref_primary_10_1109_ACCESS_2020_3046638 crossref_primary_10_1109_TGRS_2023_3237464 crossref_primary_10_1109_LGRS_2021_3073560 crossref_primary_10_1190_geo2018_0109_1 crossref_primary_10_1190_geo2020_0644_1 crossref_primary_10_1109_TSP_2016_2600507 crossref_primary_10_1109_TGRS_2023_3339119 crossref_primary_10_1190_geo2019_0357_1 crossref_primary_10_1080_01431161_2021_1897188 crossref_primary_10_1109_TCI_2017_2693966 crossref_primary_10_1109_TGRS_2020_2976664 |
Cites_doi | 10.1190/segam2014-1583.1 10.1137/130919210 10.1109/JPROC.2009.2035722 10.1190/geo2012-0465.1 10.1007/s10208-009-9045-5 10.1002/cpa.20064 10.1137/080714488 10.1190/segam2012-1335.1 10.1137/070697835 10.1007/978-0-8176-4948-7 10.1109/ICASSP.2012.6288473 10.3997/2214-4609.201413448 10.1137/S003614450343200X 10.1137/120888478 10.1017/CBO9780511794308.006 10.3934/ipi.2013.7.1379 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M |
DOI | 10.1109/JSTSP.2016.2555482 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0484 |
EndPage | 671 |
ExternalDocumentID | 4058498731 10_1109_JSTSP_2016_2555482 7454674 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSERC Discovery grantid: 22R82411 – fundername: NSERC Accelerator Award grantid: 22R68054 – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) – fundername: Collaborative Research and Development grantid: DNOISE II (375142-08) |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG 7SP 8FD H8D L7M |
ID | FETCH-LOGICAL-c295t-212bca74436e14d754976f0c0d80e6706472bb1a240c9a2277452c8f5c788b7f3 |
IEDL.DBID | RIE |
ISSN | 1932-4553 |
IngestDate | Mon Jun 30 10:30:33 EDT 2025 Tue Jul 01 02:54:54 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Tue Aug 26 16:42:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | data regularization seismic trace interpolation matrix completion nonuniform discrete Fourier transform Matrix sensing nuclear-norm relaxation seismic data |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-212bca74436e14d754976f0c0d80e6706472bb1a240c9a2277452c8f5c788b7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9932-9310 |
PQID | 1789312483 |
PQPubID | 75721 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_JSTSP_2016_2555482 crossref_citationtrail_10_1109_JSTSP_2016_2555482 proquest_journals_1789312483 ieee_primary_7454674 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of selected topics in signal processing |
PublicationTitleAbbrev | JSTSP |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 candes (ref12) 0 ref14 lin (ref17) 0 ref20 foucart (ref15) 2013 ref11 ref10 rivlin (ref16) 1969 ref2 ref1 ref19 ref18 ref8 ref7 ref4 ref3 ref6 ref5 keiner (ref9) 2008; 36 |
References_xml | – volume: 36 start-page: 19:1 year: 2008 ident: ref9 article-title: Using NFFT 3-A software library for various nonequispaced fast Fourier transforms publication-title: ACM Trans Math Softw – ident: ref8 doi: 10.1190/segam2014-1583.1 – ident: ref1 doi: 10.1137/130919210 – ident: ref6 doi: 10.1109/JPROC.2009.2035722 – ident: ref10 doi: 10.1190/geo2012-0465.1 – ident: ref5 doi: 10.1007/s10208-009-9045-5 – ident: ref3 doi: 10.1002/cpa.20064 – ident: ref7 doi: 10.1137/080714488 – ident: ref4 doi: 10.1190/segam2012-1335.1 – ident: ref2 doi: 10.1137/070697835 – year: 2013 ident: ref15 publication-title: A Mathematical Introduction to Compressive Sensing doi: 10.1007/978-0-8176-4948-7 – ident: ref20 doi: 10.1109/ICASSP.2012.6288473 – start-page: 1043 year: 0 ident: ref12 article-title: Compressed sensing and robust recovery of low rank matrices publication-title: Proc 42nd Asilomar Conf Signals Syst Comput – year: 0 ident: ref17 article-title: Designing simultaneous acquisitions with compressive sensing publication-title: Proc EAGE Annu Conf – ident: ref14 doi: 10.3997/2214-4609.201413448 – year: 1969 ident: ref16 publication-title: An Introduction to the Approximation of Functions – ident: ref11 doi: 10.1137/S003614450343200X – ident: ref13 doi: 10.1137/120888478 – ident: ref18 doi: 10.1017/CBO9780511794308.006 – ident: ref19 doi: 10.3934/ipi.2013.7.1379 |
SSID | ssj0057614 |
Score | 2.2696452 |
Snippet | Matrix sensing problems capitalize on the knowledge that a data matrix of interest exhibits low rank properties. This low dimensional structure often arises... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 658 |
SubjectTerms | Bar codes Compressed sensing data regularization Discrete Fourier transforms Interpolation matrix completion Matrix sensing Noise measurement non-uniform discrete Fourier transform nuclearnorm relaxation Periodic structures Robustness seismic data seismic trace interpolation Sensors |
Title | Off-the-Grid Low-Rank Matrix Recovery and Seismic Data Reconstruction |
URI | https://ieeexplore.ieee.org/document/7454674 https://www.proquest.com/docview/1789312483 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XADbK1adO0RwSDCTFAjEm7VWmaSNOgQ2wTj1-P08d4CqFeKjWpIttJPif2Z4ADZSfmnjEkkicMHRRbkDgOBTGus6ae63JpDvR7V3534F0M2bACR4tcGKVUFnymWuY1u8tPJnJujsra3GOmOEYVqui45bla5aqLsNkpbpAp8RhzywQZO2yjifdvTBSX30IAjRCdftmEsqoqP5bibH85W4VeObI8rGTcms_ilnz7Rtr436GvwUoBNK3j3DLWoaLSDVj-RD9Yh8611gQBIDl_GiXW5eSZ3Ip0bPUMa_-LZRxTtPNXS6SJ1Vej6cNIWqdiJrIvH8SzmzA469yddElRVoFIGrIZQdXEUnDPc33leAlHD5H72pZ2EtjK5yb7lMaxI3Cvl6GgFAEiozLQTKLUY67dLailk1Rtg-X60qEJPjJAP0YHYaADW0pDCcSY5kEDnFLOkSw4x03pi_so8z3sMMp0ExndRIVuGnC46POYM2782bpuhL1oWci5Ac1SnVExKaeRwxGcIZ4J3J3fe-3Ckvl3HgnWhBoKUu0h5pjF-5mxvQP2r89h |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHtoIoFMiBG7gkThwnR8RWoAVEQeIWOY4tVYUU0VYsX884S1mFUC6RbCvWzMTzxrMBbCs7MX7GkEieMDRQbEHiOBTEmM6aeq7LpbnQb1_4zVvv7I7dTcDuOBdGKZUFn6mGec18-UlfjsxV2R73mGmOMQlTqPeZk2drlecuAmen8CFTgsNumSJjh3so5J0rE8flNxBCI0inX9RQ1lflx2GcaZjjeWiXe8sDS3qN0TBuyLdvZRv_u_kFmCugprWfy8YiTKh0CWY_FSCswtGl1gQhIDl56iZWq_9MrkXas9qmbv-LZUxTlPRXS6SJ1VHdwUNXWodiKLKRj9Kzy3B7fHRz0CRFYwUiaciGBJkTS8E9z_WV4yUcbUTua1vaSWArn5v8UxrHjkBtL0NBKUJERmWgmUSDOebaXYFK2k_VKliuLx2a4CMDtGR0EAY6sKU0RYEY0zyogVPSOZJF1XHT_OI-yqwPO4wy3kSGN1HBmxrsjNc85jU3_pxdNcQezyzoXIN6yc6o-C0HkcMRniGiCdy131dtwXTzpt2KWqcX5-swY76Tx4XVoYJEVRuIQIbxZiZ47_av0qo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Off-the-Grid+Low-Rank+Matrix+Recovery+and+Seismic+Data+Reconstruction&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Lopez%2C+Oscar&rft.au=Kumar%2C+Rajiv&rft.au=Yilmaz%2C+Ozgur&rft.au=Herrmann%2C+Felix+J&rft.date=2016-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=10&rft.issue=4&rft.spage=658&rft_id=info:doi/10.1109%2FJSTSP.2016.2555482&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4058498731 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |