Learning Generalized Spatial-Temporal Deep Feature Representation for No-Reference Video Quality Assessment

In this work, we propose a no-reference video quality assessment method, aiming to achieve high-generalization capability in cross-content, -resolution and -frame rate quality prediction. In particular, we evaluate the quality of a video by learning effective feature representations in spatial-tempo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 4; pp. 1903 - 1916
Main Authors Chen, Baoliang, Zhu, Lingyu, Li, Guo, Lu, Fangbo, Fan, Hongfei, Wang, Shiqi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we propose a no-reference video quality assessment method, aiming to achieve high-generalization capability in cross-content, -resolution and -frame rate quality prediction. In particular, we evaluate the quality of a video by learning effective feature representations in spatial-temporal domain. In the spatial domain, to tackle the resolution and content variations, we impose the Gaussian distribution constraints on the quality features. The unified distribution can significantly reduce the domain gap between different video samples, resulting in more generalized quality feature representation. Along the temporal dimension, inspired by the mechanism of visual perception, we propose a pyramid temporal aggregation module by involving the short-term and long-term memory to aggregate the frame-level quality. Experiments show that our method outperforms the state-of-the-art methods on cross-dataset settings, and achieves comparable performance on intra-dataset configurations, demonstrating the high-generalization capability of the proposed method. The codes are released at https://github.com/Baoliang93/GSTVQA
AbstractList In this work, we propose a no-reference video quality assessment method, aiming to achieve high-generalization capability in cross-content, -resolution and -frame rate quality prediction. In particular, we evaluate the quality of a video by learning effective feature representations in spatial-temporal domain. In the spatial domain, to tackle the resolution and content variations, we impose the Gaussian distribution constraints on the quality features. The unified distribution can significantly reduce the domain gap between different video samples, resulting in more generalized quality feature representation. Along the temporal dimension, inspired by the mechanism of visual perception, we propose a pyramid temporal aggregation module by involving the short-term and long-term memory to aggregate the frame-level quality. Experiments show that our method outperforms the state-of-the-art methods on cross-dataset settings, and achieves comparable performance on intra-dataset configurations, demonstrating the high-generalization capability of the proposed method. The codes are released at https://github.com/Baoliang93/GSTVQA
Author Fan, Hongfei
Wang, Shiqi
Li, Guo
Chen, Baoliang
Lu, Fangbo
Zhu, Lingyu
Author_xml – sequence: 1
  givenname: Baoliang
  orcidid: 0000-0003-4884-6956
  surname: Chen
  fullname: Chen, Baoliang
  email: blchen6-c@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Lingyu
  surname: Zhu
  fullname: Zhu, Lingyu
  email: lingyzhu@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Guo
  surname: Li
  fullname: Li, Guo
  email: liguo136009@foxmail.com
  organization: Hongfei Fan are with Kingsoft Cloud, Beijing, China
– sequence: 4
  givenname: Fangbo
  surname: Lu
  fullname: Lu, Fangbo
  organization: Hongfei Fan are with Kingsoft Cloud, Beijing, China
– sequence: 5
  givenname: Hongfei
  surname: Fan
  fullname: Fan, Hongfei
  email: fanhongfei@kingsoft.com
  organization: Hongfei Fan are with Kingsoft Cloud, Beijing, China
– sequence: 6
  givenname: Shiqi
  orcidid: 0000-0002-3583-959X
  surname: Wang
  fullname: Wang, Shiqi
  email: shiqwang@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BookMark eNp9kU1PAjEQhhuDiYD-Ab008bzYj51leyQoaEI0AnLddJdZswjt2i4H_PUWl3jw4GmayfvMZJ72SMdYg4RcczbgnKm75XixWg4EE3wgWZoCgzPS5QBpJASDTngz4FEqOFyQnvcbxnicxsMu-ZihdqYy73SKBp3eVl-4potaN5XeRkvc1TY06T1iTSeom71DOsfaoUfThJA1tLSOPttojiU6NAXSVbVGS1_3YVhzoCPv0ftdiF-S81JvPV6dap-8TR6W48do9jJ9Go9mUSEUNBEvhrnMJcdhgrEqmWCqVApSpQuNKKBMAKAUoshZAigTCaEwJXIuFY-5lH1y286tnf3co2-yjd07E1ZmIomHsYDgJ6TSNlU4673DMiuq9qLG6WqbcZYd1WY_arOj2uykNqDiD1q7aqfd4X_opoUqRPwFVAzhU5j8BuZMh0c
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TBC_2024_3511927
crossref_primary_10_1109_TCSVT_2024_3469180
crossref_primary_10_1109_ACCESS_2022_3167446
crossref_primary_10_1007_s11432_024_4133_3
crossref_primary_10_1109_TMM_2023_3312851
crossref_primary_10_1109_LSP_2021_3136487
crossref_primary_10_1109_TCSVT_2024_3418941
crossref_primary_10_1109_TBC_2024_3382949
crossref_primary_10_1109_TIP_2024_3393754
crossref_primary_10_1109_TBC_2022_3192997
crossref_primary_10_3390_s23083998
crossref_primary_10_1016_j_knosys_2024_111655
crossref_primary_10_1109_TBC_2023_3312932
crossref_primary_10_1109_TCSVT_2021_3114509
crossref_primary_10_1109_TCYB_2023_3338615
crossref_primary_10_1109_TIP_2021_3130536
crossref_primary_10_1016_j_entcom_2023_100581
crossref_primary_10_1109_TCSVT_2024_3432152
crossref_primary_10_1016_j_patcog_2024_111011
crossref_primary_10_1109_TPAMI_2023_3319332
crossref_primary_10_1007_s11042_022_13383_0
crossref_primary_10_1016_j_ins_2022_07_053
crossref_primary_10_1109_TBC_2023_3342707
crossref_primary_10_1109_TMM_2024_3414549
crossref_primary_10_1109_TIP_2023_3310344
crossref_primary_10_1016_j_asoc_2024_111377
crossref_primary_10_1109_TCSVT_2022_3207148
crossref_primary_10_1007_s11063_022_10939_x
crossref_primary_10_1109_TCSVT_2022_3177518
crossref_primary_10_1109_TCSVT_2022_3209007
crossref_primary_10_1109_TIP_2023_3343099
crossref_primary_10_1109_TCSVT_2024_3367904
crossref_primary_10_1007_s11042_023_18068_w
crossref_primary_10_3390_s23031511
crossref_primary_10_1007_s00530_024_01396_8
crossref_primary_10_1109_TCSVT_2022_3227039
crossref_primary_10_1109_TCSVT_2023_3249741
crossref_primary_10_1109_TCSVT_2023_3325427
Cites_doi 10.1109/TIP.2017.2729891
10.1109/TCSVT.2017.2710419
10.1109/ICCV.2015.293
10.1109/ICASSP40776.2020.9053273
10.1109/ICIP40778.2020.9191278
10.1109/CVPR.2012.6247954
10.1162/neco.1997.9.8.1735
10.1109/TMM.2018.2817070
10.1109/ICIP.2016.7532610
10.1109/CVPR.2014.368
10.1109/CVPR42600.2020.00372
10.1109/CVPR42600.2020.00373
10.1063/1.5010804
10.1109/TIP.2018.2831899
10.1145/3394171.3413717
10.1109/TIP.2018.2799331
10.1109/TIP.2019.2923051
10.1109/ICIP.2019.8803395
10.1109/TCSVT.2019.2952675
10.1109/CVPR42600.2020.01415
10.1109/LSP.2017.2691160
10.1109/TPAMI.2020.3045810
10.1109/TMM.2014.2373812
10.1109/TIP.2011.2147325
10.1117/1.JEI.22.4.043025
10.1109/TCSVT.2017.2707479
10.1109/TCSVT.2018.2886771
10.1109/TCSVT.2017.2683504
10.3115/v1/D14-1179
10.1109/TIP.2012.2191563
10.1109/TCSVT.2015.2412773
10.1109/TIP.2017.2760518
10.1145/3343031.3351028
10.1109/CVPR.2019.00233
10.1109/TIP.2015.2426416
10.1109/LSP.2012.2227726
10.1109/TCSVT.2015.2430711
10.1145/3240508.3240643
10.1109/TIP.2018.2869673
10.1109/TIP.2015.2502725
10.1007/978-3-319-10578-9_41
10.1007/978-3-319-46478-7_47
10.1145/2812802
10.1109/QoMEX.2017.7965673
10.1007/s10479-011-0841-3
10.1109/TIP.2014.2355716
10.1109/CVPR.2018.00566
10.1109/ICIP.2016.7532789
10.1364/AO.58.000340
10.1109/ICCV.2017.609
10.5555/3454287.3455008
10.1145/3394171.3413845
10.1109/ICCV.2019.00350
10.1609/aaai.v32i1.12258
10.1109/TIP.2016.2562513
10.2352/ISSN.2470-1173.2017.12.IQSP-221
10.1109/CVPR.2009.5206848
10.1109/CVPR.2012.6247789
10.1109/TIP.2012.2214050
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3088505
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1916
ExternalDocumentID 10_1109_TCSVT_2021_3088505
9452150
Genre orig-research
GrantInformation_xml – fundername: Applied Research Grant (ARG)
  grantid: 9667192
– fundername: Hong Kong Research Grants Council, Early Career Scheme (RGC ECS)
  grantid: 21211018
  funderid: 10.13039/501100002920
– fundername: City University of Hong Kong, Teaching Development Grants (CITYU TDG)
  grantid: 6000713
  funderid: 10.13039/100007567
– fundername: National Natural Science Foundation of China
  grantid: 62022002
  funderid: 10.13039/501100001809
– fundername: General Research Fund (GRF)
  grantid: 11203220
  funderid: 10.13039/501100002920
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-1c7b3b31e76e49f0209f99589acaee25f6555f22cb065e363565e092b13914133
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 06:17:42 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-1c7b3b31e76e49f0209f99589acaee25f6555f22cb065e363565e092b13914133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4884-6956
0000-0002-3583-959X
PQID 2647425505
PQPubID 85433
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2021_3088505
ieee_primary_9452150
proquest_journals_2647425505
crossref_primary_10_1109_TCSVT_2021_3088505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Schmidt (ref50)
ref17
Sinha (ref48) 2017
ref19
Erfani (ref39)
ref18
Simonyan (ref51) 2014
Camps (ref16)
Xie (ref40)
ref46
ref45
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
Andrew (ref44)
ref31
ref30
ref33
ref32
ref2
ref70
Tu (ref1) 2020
ref24
ref68
ref23
ref67
ref26
ref25
Group (ref66) 2000
ref69
ref20
ref64
ref63
ref22
Goodfellow (ref47) 2014
ref21
ref65
ref28
ref27
ref29
ref60
Muandet (ref38)
ref62
ref61
References_xml – ident: ref61
  doi: 10.1109/TIP.2017.2729891
– ident: ref18
  doi: 10.1109/TCSVT.2017.2710419
– ident: ref41
  doi: 10.1109/ICCV.2015.293
– ident: ref46
  doi: 10.1109/ICASSP40776.2020.9053273
– start-page: 5014
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref50
  article-title: Adversarially robust generalization requires more data
– ident: ref26
  doi: 10.1109/ICIP40778.2020.9191278
– start-page: 10
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref38
  article-title: Domain generalization via invariant feature representation
– ident: ref28
  doi: 10.1109/CVPR.2012.6247954
– ident: ref56
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref58
  doi: 10.1109/TMM.2018.2817070
– ident: ref59
  doi: 10.1109/ICIP.2016.7532610
– ident: ref17
  doi: 10.1109/CVPR.2014.368
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00372
– ident: ref7
  doi: 10.1109/CVPR42600.2020.00373
– ident: ref53
  doi: 10.1063/1.5010804
– ident: ref27
  doi: 10.1109/TIP.2018.2831899
– year: 2014
  ident: ref51
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref36
  doi: 10.1145/3394171.3413717
– ident: ref65
  doi: 10.1109/TIP.2018.2799331
– ident: ref33
  doi: 10.1109/TIP.2019.2923051
– ident: ref37
  doi: 10.1109/ICIP.2019.8803395
– ident: ref21
  doi: 10.1109/TCSVT.2019.2952675
– ident: ref6
  doi: 10.1109/CVPR42600.2020.01415
– ident: ref34
  doi: 10.1109/LSP.2017.2691160
– ident: ref52
  doi: 10.1109/TPAMI.2020.3045810
– ident: ref14
  doi: 10.1109/TMM.2014.2373812
– ident: ref15
  doi: 10.1109/TIP.2011.2147325
– ident: ref20
  doi: 10.1117/1.JEI.22.4.043025
– ident: ref10
  doi: 10.1109/TCSVT.2017.2707479
– ident: ref25
  doi: 10.1109/TCSVT.2018.2886771
– ident: ref60
  doi: 10.1109/TCSVT.2017.2683504
– year: 2017
  ident: ref48
  article-title: Certifying some distributional robustness with principled adversarial training
  publication-title: arXiv:1710.10571
– ident: ref55
  doi: 10.3115/v1/D14-1179
– ident: ref19
  doi: 10.1109/TIP.2012.2191563
– ident: ref24
  doi: 10.1109/TCSVT.2015.2412773
– ident: ref30
  doi: 10.1109/TIP.2017.2760518
– ident: ref35
  doi: 10.1145/3343031.3351028
– start-page: 585
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Controllable invariance through adversarial feature learning
– ident: ref45
  doi: 10.1109/CVPR.2019.00233
– ident: ref3
  doi: 10.1109/TIP.2015.2426416
– ident: ref67
  doi: 10.1109/LSP.2012.2227726
– ident: ref32
  doi: 10.1109/TCSVT.2015.2430711
– ident: ref5
  doi: 10.1145/3240508.3240643
– start-page: 1247
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref44
  article-title: Deep canonical correlation analysis
– start-page: 1455
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref39
  article-title: Robust domain generalisation by enforcing distribution invariance
– ident: ref11
  doi: 10.1109/TIP.2018.2869673
– ident: ref4
  doi: 10.1109/TIP.2015.2502725
– ident: ref42
  doi: 10.1007/978-3-319-10578-9_41
– ident: ref57
  doi: 10.1007/978-3-319-46478-7_47
– ident: ref62
  doi: 10.1145/2812802
– ident: ref9
  doi: 10.1109/QoMEX.2017.7965673
– ident: ref70
  doi: 10.1007/s10479-011-0841-3
– ident: ref13
  doi: 10.1109/TIP.2014.2355716
– ident: ref49
  doi: 10.1109/CVPR.2018.00566
– ident: ref31
  doi: 10.1109/ICIP.2016.7532789
– ident: ref23
  doi: 10.1364/AO.58.000340
– ident: ref43
  doi: 10.1109/ICCV.2017.609
– ident: ref63
  doi: 10.5555/3454287.3455008
– year: 2020
  ident: ref1
  article-title: UGC-VQA: Benchmarking blind video quality assessment for user generated content
  publication-title: arXiv:2005.14354
– year: 2014
  ident: ref47
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv:1412.6572
– ident: ref68
  doi: 10.1145/3394171.3413845
– start-page: 1
  volume-title: Proc. 1st Int. Conf. Med. Imag. Deep Learn.
  ident: ref16
  article-title: One-class Gaussian process regressor for quality assessment of transperineal ultrasound images
– ident: ref54
  doi: 10.1109/ICCV.2019.00350
– ident: ref8
  doi: 10.1609/aaai.v32i1.12258
– year: 2000
  ident: ref66
  article-title: Final report from the video quality experts group on the validation of objective models of video quality assessment
– ident: ref12
  doi: 10.1109/TIP.2016.2562513
– ident: ref22
  doi: 10.2352/ISSN.2470-1173.2017.12.IQSP-221
– ident: ref64
  doi: 10.1109/CVPR.2009.5206848
– ident: ref69
  doi: 10.1109/CVPR.2012.6247789
– ident: ref2
  doi: 10.1109/TIP.2012.2214050
SSID ssj0014847
Score 2.6227894
Snippet In this work, we propose a no-reference video quality assessment method, aiming to achieve high-generalization capability in cross-content, -resolution and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1903
SubjectTerms Configuration management
Datasets
deep neural networks
Domains
Feature extraction
generalization capability
Image quality
Learning
Nonlinear distortion
Normal distribution
Quality assessment
Representations
Streaming media
temporal aggregation
Training
Video quality assessment
Visual perception
Title Learning Generalized Spatial-Temporal Deep Feature Representation for No-Reference Video Quality Assessment
URI https://ieeexplore.ieee.org/document/9452150
https://www.proquest.com/docview/2647425505
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYKEwy8EeUlD2yQ0jh2Eo-IhxBSO0CoukWxc0GIKq1KMsCv5-y4UQUIsWU4W5Y-2_ddfPcdIWc8KEIMk5mnQXGPRyYJIMsQkKgIRaAkxKGpRh4Mw_tn_jAW4w65aGthAMAmn0HPfNq3_Hyqa_Or7FJydDYmQF_BwK2p1WpfDHhsm4khXfC9GK0WBTJ9eZlcP40SDAWZ3wvwUAnTqm7JCdmuKj-uYutf7jbJYLGyJq3krVdXqqc_v4k2_nfpW2TDEU161eyMbdKBcoesL8kP7pI3J676Qp349Osn5NQ0KcZN6SWNaNWE3gDMqKGK9Rzoo82cdQVLJUXKS4dTr5WrpaPXHKa0Ueb4oFet7uceeb67Ta7vPdd8wdNMisrzdaQCFfgQhcBlgaxSFlKKWGY6A2ACoRSiYEwrJDEQGJk7AX3JFFJKHz1jsE9Wy2kJB4SKSGYK3aDWMYLEQllkLMepOdeqyP2gS_wFGql2yuSmQcYktRFKX6YWwdQgmDoEu-S8HTNrdDn-tN41kLSWDo0uOV6Anrqj-54iQ4zwIsNRh7-POiJrzNRA2PSdY7JazWs4QWZSqVO7Jb8Af0nesA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4h9gAcdpeXKE8fuC0pjWMn8RHBovJoDxAQtyh2JqgCtVW3PcCvZ-y4EVoQ4pbD2LL02Z5v4plvAA5FVMUUJvPAoBaBSGwSQFEQIEkVy0grTGNbjdzrx907cfkgHxbgqKmFQUSXfIZt--ne8suRmdlfZcdKkLOxAfoP8vsyrKu1mjcDkbp2YkQYwiAlu3mJTEcdZ6e39xkFgzxsR3SspG1W984Nub4qHy5j52HOf0FvvrY6seSpPZvqtnn9T7bxu4v_DT891WQn9d5YhQUcrsHKOwHCdXjy8qqPzMtPD16xZLZNMW3LIKtlq57ZGeKYWbI4myC7cbmzvmRpyIj0sv4oaARr2f2gxBGrtTle2Emj_LkBd-d_s9Nu4NsvBIYrOQ1Ck-hIRyEmMQpVEa9UlVIyVYUpELkkMKWsODeaaAxGVuhOYkdxTaQyJN8YbcLicDTELWAyUYUmR2hMSiDxWFUFL2lqIYyuyjBqQThHIzdem9y2yHjOXYzSUblDMLcI5h7BFvxpxoxrZY4vrdctJI2lR6MFu3PQc394_-XEERO6ymjU9uejDmCpm_Wu8-uL_tUOLHNbEeGSeXZhcTqZ4R7xlKned9vzDUWI4fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Generalized+Spatial-Temporal+Deep+Feature+Representation+for+No-Reference+Video+Quality+Assessment&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Baoliang&rft.au=Zhu%2C+Lingyu&rft.au=Li%2C+Guo&rft.au=Lu%2C+Fangbo&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=4&rft.spage=1903&rft.epage=1916&rft_id=info:doi/10.1109%2FTCSVT.2021.3088505&rft.externalDocID=9452150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon