Energy-Efficient Multi-Cell Massive MIMO Subject to Minimum User-Rate Constraints

The capability of massive multiple-input multiple-output (mMIMO) systems supporting the throughput requirement of as many users as possible is investigated. The bottleneck of serving small numbers of users by a large number of transmit antennas in conventional mMIMO is unblocked by a new time-fracti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 69; no. 2; pp. 914 - 928
Main Authors Nguyen, Long Dinh, Tuan, Hoang Duong, Duong, Trung Q., Poor, H. Vincent, Hanzo, Lajos
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The capability of massive multiple-input multiple-output (mMIMO) systems supporting the throughput requirement of as many users as possible is investigated. The bottleneck of serving small numbers of users by a large number of transmit antennas in conventional mMIMO is unblocked by a new time-fraction-wise beamforming technique, which focuses signal transmission in fractions of a time slot. Based on this time-fraction-wise signal transmission, a new user service scheduling scheme for multi-cell mMIMO, whose cell-edge users suffer not only poor channel conditions but also multi-cell interference, is proposed to support a large user-population. We demonstrate that the numbers of users served by our multi-cell mMIMO within a time-slot may be as high as twice the number of its transmit antennas.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2020.3030780