Data Augmentation Using Random Image Cropping and Patching for Deep CNNs

Deep convolutional neural networks (CNNs) have achieved remarkable results in image processing tasks. However, their high expression ability risks overfitting. Consequently, data augmentation techniques have been proposed to prevent overfitting while enriching datasets. Recent CNN architectures with...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 30; no. 9; pp. 2917 - 2931
Main Authors Takahashi, Ryo, Matsubara, Takashi, Uehara, Kuniaki
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep convolutional neural networks (CNNs) have achieved remarkable results in image processing tasks. However, their high expression ability risks overfitting. Consequently, data augmentation techniques have been proposed to prevent overfitting while enriching datasets. Recent CNN architectures with more parameters are rendering traditional data augmentation techniques insufficient. In this study, we propose a new data augmentation technique called random image cropping and patching ( RICAP ) which randomly crops four images and patches them to create a new training image. Moreover, RICAP mixes the class labels of the four images, resulting in an advantage of the soft labels. We evaluated RICAP with current state-of-the-art CNNs (e.g., the shake-shake regularization model) by comparison with competitive data augmentation techniques such as cutout and mixup. RICAP achieves a new state-of-the-art test error of 2.19% on CIFAR-10. We also confirmed that deep CNNs with RICAP achieve better results on classification tasks using CIFAR-100 and ImageNet, an image-caption retrieval task using Microsoft COCO, and other computer vision tasks.
AbstractList Deep convolutional neural networks (CNNs) have achieved remarkable results in image processing tasks. However, their high expression ability risks overfitting. Consequently, data augmentation techniques have been proposed to prevent overfitting while enriching datasets. Recent CNN architectures with more parameters are rendering traditional data augmentation techniques insufficient. In this study, we propose a new data augmentation technique called random image cropping and patching ( RICAP ) which randomly crops four images and patches them to create a new training image. Moreover, RICAP mixes the class labels of the four images, resulting in an advantage of the soft labels. We evaluated RICAP with current state-of-the-art CNNs (e.g., the shake-shake regularization model) by comparison with competitive data augmentation techniques such as cutout and mixup. RICAP achieves a new state-of-the-art test error of 2.19% on CIFAR-10. We also confirmed that deep CNNs with RICAP achieve better results on classification tasks using CIFAR-100 and ImageNet, an image-caption retrieval task using Microsoft COCO, and other computer vision tasks.
Author Uehara, Kuniaki
Matsubara, Takashi
Takahashi, Ryo
Author_xml – sequence: 1
  givenname: Ryo
  orcidid: 0000-0003-0723-0119
  surname: Takahashi
  fullname: Takahashi, Ryo
  email: takahashi@ai.cs.kobe-u.ac.jp
  organization: Graduate School of System Informatics, Kobe University, Kobe, Japan
– sequence: 2
  givenname: Takashi
  orcidid: 0000-0003-0642-4800
  surname: Matsubara
  fullname: Matsubara, Takashi
  email: matsubara@phoenix.kobe-u.ac.jp
  organization: Graduate School of System Informatics, Kobe University, Kobe, Japan
– sequence: 3
  givenname: Kuniaki
  orcidid: 0000-0002-7160-3752
  surname: Uehara
  fullname: Uehara, Kuniaki
  email: uehara@kobe-u.ac.jp
  organization: Graduate School of System Informatics, Kobe University, Kobe, Japan
BookMark eNp9kDFPwzAQhS1UJNrCH4AlEnPK2YkTe6xSoJUqQNCyWk56LqnaONjpwL8nIRUDA9PdPb13d_pGZFDZCgm5pjChFOTdKnt7X00YUDlhMuKUiTMypJyLkDHgg7YHTkPBKL8gI-93ADQWcTok85ludDA9bg9YNbopbRWsfVltg1ddbewhWBz0FoPM2bru1FYMXnRTfHSDsS6YIdZB9vTkL8m50XuPV6c6JuuH-1U2D5fPj4tsugwLJnkTUsaBJ7wwRd6-l7AIeUSFFDJJZGzSTUpBszxPEFIECswkKPN8k2gjRWRQRmNy2--tnf08om_Uzh5d1Z5ULI4pgIgBWhfrXYWz3js0qnblQbsvRUF1xNQPMdURUydibUj8CRVlz6Rxutz_H73poyUi_t4SqeScRdE3N3p5Tw
CODEN ITCTEM
CitedBy_id crossref_primary_10_1145_3641856
crossref_primary_10_1016_j_compind_2024_104231
crossref_primary_10_3390_rs16010182
crossref_primary_10_1016_j_cja_2021_11_021
crossref_primary_10_1109_TMM_2022_3222624
crossref_primary_10_1109_ACCESS_2020_3038493
crossref_primary_10_1007_s11263_020_01383_2
crossref_primary_10_1016_j_procs_2023_01_151
crossref_primary_10_3390_met11040549
crossref_primary_10_3390_electronics13081516
crossref_primary_10_1109_TGRS_2023_3257039
crossref_primary_10_1016_j_knosys_2024_112040
crossref_primary_10_32604_csse_2022_024695
crossref_primary_10_1007_s40964_024_00603_2
crossref_primary_10_3390_agronomy14030618
crossref_primary_10_1109_TITS_2022_3206709
crossref_primary_10_1016_j_eja_2023_127076
crossref_primary_10_1109_TCSVT_2021_3076523
crossref_primary_10_1186_s12859_024_05787_6
crossref_primary_10_1109_TGRS_2024_3510948
crossref_primary_10_1016_j_apacoust_2023_109489
crossref_primary_10_1016_j_patcog_2024_111117
crossref_primary_10_1109_TCSVT_2023_3283282
crossref_primary_10_48084_etasr_5852
crossref_primary_10_1109_TITS_2024_3509140
crossref_primary_10_1016_j_compbiomed_2024_108555
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_32604_cmc_2024_048443
crossref_primary_10_3390_rs15030827
crossref_primary_10_1080_24725854_2022_2080306
crossref_primary_10_1177_03611981241263574
crossref_primary_10_1007_s10278_024_01128_4
crossref_primary_10_1007_s00521_023_08421_3
crossref_primary_10_1016_j_inpa_2021_09_003
crossref_primary_10_1016_j_jds_2024_06_001
crossref_primary_10_1541_ieejeiss_142_586
crossref_primary_10_1109_ACCESS_2022_3204683
crossref_primary_10_3390_agriengineering5010018
crossref_primary_10_3390_math10173091
crossref_primary_10_1002_stvr_1910
crossref_primary_10_1364_OSAC_414109
crossref_primary_10_1587_elex_16_20190004
crossref_primary_10_1016_j_cmpb_2022_106716
crossref_primary_10_1109_ACCESS_2021_3059314
crossref_primary_10_1007_s11042_023_14566_z
crossref_primary_10_1109_TGRS_2021_3080580
crossref_primary_10_1016_j_cities_2024_105019
crossref_primary_10_1109_TCSVT_2023_3331499
crossref_primary_10_3390_electronics13142732
crossref_primary_10_1109_TCSVT_2020_3045978
crossref_primary_10_1016_j_engappai_2024_107999
crossref_primary_10_1071_CP23351
crossref_primary_10_1109_TCSVT_2022_3218891
crossref_primary_10_1177_14759217221089571
crossref_primary_10_3390_jimaging9010001
crossref_primary_10_1016_j_patcog_2022_108637
crossref_primary_10_1109_TMC_2024_3459944
crossref_primary_10_3390_electronics12183781
crossref_primary_10_3390_rs17020346
crossref_primary_10_1109_TNNLS_2022_3152245
crossref_primary_10_1007_s00521_023_08742_3
crossref_primary_10_1109_ACCESS_2023_3320638
crossref_primary_10_1007_s11063_023_11304_2
crossref_primary_10_1109_TCSS_2023_3264804
crossref_primary_10_4108_eetiot_4578
crossref_primary_10_1109_TCSVT_2023_3260082
crossref_primary_10_1109_TCSVT_2022_3219339
crossref_primary_10_1109_ACCESS_2024_3352431
crossref_primary_10_1016_j_array_2022_100258
crossref_primary_10_3390_computers13020038
crossref_primary_10_1109_ACCESS_2020_3039356
crossref_primary_10_1088_2040_8986_acb36d
crossref_primary_10_1109_TBME_2022_3189617
crossref_primary_10_1109_LGRS_2025_3527712
crossref_primary_10_1109_TCSS_2023_3252028
crossref_primary_10_3390_electronics12030612
crossref_primary_10_3390_s21248501
crossref_primary_10_1080_10447318_2023_2247570
crossref_primary_10_3390_data9020021
crossref_primary_10_1109_ACCESS_2022_3154061
crossref_primary_10_1109_ACCESS_2023_3328243
crossref_primary_10_1109_TCSVT_2022_3161427
crossref_primary_10_1080_01431161_2021_1907866
crossref_primary_10_1007_s11517_024_03127_7
crossref_primary_10_1007_s11042_024_18278_w
crossref_primary_10_1016_j_ijmedinf_2024_105666
crossref_primary_10_1093_gji_ggac117
crossref_primary_10_3390_agriculture14111964
crossref_primary_10_1016_j_compag_2025_110151
crossref_primary_10_1002_int_22537
crossref_primary_10_1177_14727978241292932
crossref_primary_10_2139_ssrn_4057058
crossref_primary_10_1587_transinf_2022DLP0066
crossref_primary_10_1109_TMI_2021_3136682
crossref_primary_10_1007_s00521_022_08111_6
crossref_primary_10_1109_ACCESS_2024_3485479
crossref_primary_10_1016_j_autcon_2023_105066
crossref_primary_10_1016_j_isprsjprs_2021_02_015
crossref_primary_10_1109_TMM_2023_3234399
crossref_primary_10_1109_TCSVT_2021_3090902
crossref_primary_10_1016_j_cmpb_2022_106775
crossref_primary_10_1109_JSEN_2024_3443885
crossref_primary_10_3390_e25010118
crossref_primary_10_1007_s00371_023_02930_x
crossref_primary_10_1109_ACCESS_2024_3510923
crossref_primary_10_1109_TCSVT_2023_3250031
crossref_primary_10_1016_j_ijfatigue_2024_108724
crossref_primary_10_1109_ACCESS_2025_3526684
crossref_primary_10_1109_ACCESS_2021_3114799
crossref_primary_10_1109_ACCESS_2022_3224141
crossref_primary_10_3390_s22218127
crossref_primary_10_1109_TIP_2024_3364500
crossref_primary_10_1109_JSEN_2021_3127686
crossref_primary_10_26599_BDMA_2024_9020049
crossref_primary_10_1016_j_eswa_2025_126776
crossref_primary_10_1002_adom_202200178
crossref_primary_10_2139_ssrn_4181525
crossref_primary_10_3390_sym13091597
crossref_primary_10_3390_app13031711
crossref_primary_10_1111_1754_9485_13261
crossref_primary_10_21541_apjess_1060763
crossref_primary_10_1109_TETC_2021_3087174
crossref_primary_10_1109_ACCESS_2022_3174199
crossref_primary_10_1109_JIOT_2024_3457908
crossref_primary_10_3934_mbe_2023311
crossref_primary_10_3390_bioengineering10121424
crossref_primary_10_1109_ACCESS_2020_3048083
crossref_primary_10_1142_S0218126622501596
crossref_primary_10_1121_10_0007291
crossref_primary_10_1088_1361_6560_ac7bcd
crossref_primary_10_1136_bjo_2023_323308
crossref_primary_10_17780_ksujes_1113669
crossref_primary_10_1016_j_jmsy_2024_02_011
crossref_primary_10_3390_bioengineering10101192
crossref_primary_10_1109_ACCESS_2021_3070391
crossref_primary_10_7717_peerj_cs_571
crossref_primary_10_3390_rs13132602
crossref_primary_10_1007_s11042_022_12651_3
crossref_primary_10_1016_j_neucom_2021_02_080
crossref_primary_10_3390_agronomy13071846
crossref_primary_10_1007_s10489_022_03463_x
crossref_primary_10_1021_acsomega_3c05350
crossref_primary_10_1109_TMM_2021_3117064
crossref_primary_10_1109_TCSVT_2024_3484530
crossref_primary_10_3390_su152015051
crossref_primary_10_1088_2632_2153_abd615
crossref_primary_10_1002_ecj_12368
crossref_primary_10_1109_TGRS_2022_3211517
crossref_primary_10_3390_diagnostics10060358
crossref_primary_10_3390_s22228932
crossref_primary_10_1016_j_jaim_2024_100987
crossref_primary_10_1109_TMM_2022_3193559
crossref_primary_10_1527_tjsai_37_6_B_M43
crossref_primary_10_1007_s11063_022_11022_1
crossref_primary_10_1007_s10044_024_01258_z
crossref_primary_10_1109_TCSVT_2024_3402097
crossref_primary_10_1186_s12903_024_03898_3
crossref_primary_10_3390_make6010033
crossref_primary_10_1007_s10921_021_00842_1
crossref_primary_10_2493_jjspe_89_105
crossref_primary_10_1107_S1600577523009852
crossref_primary_10_1016_j_jappgeo_2023_104947
crossref_primary_10_1007_s00530_022_01013_6
crossref_primary_10_1007_s11760_023_02859_7
crossref_primary_10_1108_EC_10_2022_0639
crossref_primary_10_3934_mbe_2021080
crossref_primary_10_1016_j_media_2023_102808
crossref_primary_10_1016_j_wasman_2023_04_044
crossref_primary_10_3389_fbioe_2021_761548
crossref_primary_10_1186_s12859_023_05398_7
crossref_primary_10_3389_fnbot_2022_1100697
crossref_primary_10_3902_jnns_25_175
crossref_primary_10_3390_rs15051212
crossref_primary_10_3847_1538_4357_adb7ce
crossref_primary_10_1016_j_apgeochem_2021_105135
Cites_doi 10.1109/ICCV.2017.97
10.1109/CVPR.2017.668
10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.319
10.1109/CVPR.2016.308
10.1162/neco.1989.1.4.541
10.1109/CVPR.2016.91
10.1109/CVPR.2017.634
10.1109/CVPR.2017.243
10.1109/ICCV.2015.133
10.1016/j.neunet.2019.03.013
10.1016/0893-6080(91)90033-2
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2019.2935128
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2931
ExternalDocumentID 10_1109_TCSVT_2019_2935128
8795523
Genre orig-research
GrantInformation_xml – fundername: Strategic Information and Communications R&D Promotion Programme of Ministry of Internal Affairs and Communications, Japan (MIC/SCOPE)
  grantid: 172107101
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-1250565cfcb155623e53189896694f7d710a2bb6e07e0102f6e9bbd6af983fe93
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 05:40:09 EDT 2025
Tue Jul 01 00:41:13 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Aug 27 02:31:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-1250565cfcb155623e53189896694f7d710a2bb6e07e0102f6e9bbd6af983fe93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0723-0119
0000-0003-0642-4800
0000-0002-7160-3752
PQID 2441008400
PQPubID 85433
PageCount 15
ParticipantIDs ieee_primary_8795523
crossref_primary_10_1109_TCSVT_2019_2935128
proquest_journals_2441008400
crossref_citationtrail_10_1109_TCSVT_2019_2935128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References krizhevsky (ref12) 2012
devries (ref20) 2017
ref14
sermanet (ref3) 2014
goodfellow (ref29) 2015
ref11
he (ref15) 2016; 9908
ref1
ref17
ref19
ref18
cire?an (ref7) 2012
zheng (ref43) 2017; 14
hinton (ref32) 2014
zoph (ref31) 2017
kiros (ref40) 2014
zeiler (ref2) 2014
zhang (ref22) 2018
lee (ref33) 2015; 2
faghri (ref41) 2018
romero (ref34) 2015
springenberg (ref35) 2015
kingma (ref42) 2014
gastaldi (ref39) 2017
sun (ref44) 2018
redmon (ref47) 2018
ref46
ref45
ref23
simonyan (ref10) 2015
ref25
nair (ref37) 2010
he (ref38) 2016
takahashi (ref27) 2018
zhong (ref21) 2017
ref28
russakovsky (ref24) 2014
hinton (ref13) 2012
zintgraf (ref5) 2017
cubuk (ref30) 2018
ref9
zagoruyko (ref16) 2016
ref4
ioffe (ref36) 2015
ciresan (ref6) 2011
krizhevsky (ref8) 2009
lin (ref26) 2014
References_xml – ident: ref4
  doi: 10.1109/ICCV.2017.97
– start-page: 786
  year: 2018
  ident: ref27
  article-title: RICAP: Random image cropping and patching data augmentation for deep CNNs
  publication-title: Proc Asian Conf Mach Learn
– volume: 14
  start-page: 13:1
  year: 2017
  ident: ref43
  article-title: Person re-identification: Past, present and future
  publication-title: ACM Trans Multimedia Comput Commun Appl
– ident: ref18
  doi: 10.1109/CVPR.2017.668
– start-page: 3642
  year: 2012
  ident: ref7
  article-title: Multi-column deep neural networks for image classification
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPR)
– start-page: 740
  year: 2014
  ident: ref26
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref9
  doi: 10.1109/CVPR.2015.7298594
– year: 2017
  ident: ref21
  article-title: Random erasing data augmentation
  publication-title: arXiv 1708 04896
– ident: ref25
  doi: 10.1109/CVPR.2016.319
– start-page: 1
  year: 2009
  ident: ref8
  article-title: Learning multiple layers of features from tiny images
– ident: ref23
  doi: 10.1109/CVPR.2016.308
– start-page: 1
  year: 2014
  ident: ref3
  article-title: OverFeat: Integrated recognition, localization and detection using convolutional networks
  publication-title: Proc Int Conf Learn Represent
– volume: 2
  start-page: 562
  year: 2015
  ident: ref33
  article-title: Deeply-supervised nets
  publication-title: Proc 14th Int Conf Artif Intell Statist (AISTATS)
– start-page: 87.1
  year: 2016
  ident: ref16
  article-title: Wide residual networks
  publication-title: Proc Brit Mach Vis Conf (BMVC)
– ident: ref1
  doi: 10.1162/neco.1989.1.4.541
– ident: ref46
  doi: 10.1109/CVPR.2016.91
– start-page: 1097
  year: 2012
  ident: ref12
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– start-page: 448
  year: 2015
  ident: ref36
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc 32nd Int Conf Mach Learn (ICML)
– volume: 9908
  start-page: 630
  year: 2016
  ident: ref15
  article-title: Identity mappings in deep residual networks
  publication-title: Vision Computer
– start-page: 818
  year: 2014
  ident: ref2
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– year: 2018
  ident: ref47
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv 1804 02767
– start-page: 480
  year: 2018
  ident: ref44
  article-title: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– start-page: 1
  year: 2015
  ident: ref10
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 1
  year: 2015
  ident: ref34
  article-title: FitNets: Hints for thin deep nets
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 1
  year: 2017
  ident: ref5
  article-title: Visualizing deep neural network decisions: Prediction difference analysis
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref19
  doi: 10.1109/CVPR.2017.634
– start-page: 1
  year: 2015
  ident: ref35
  article-title: Striving for simplicity: The all convolutional net
  publication-title: Proc Int Conf Learn Represent (ICLR)
– year: 2012
  ident: ref13
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: arXiv 1207 0580
– ident: ref17
  doi: 10.1109/CVPR.2017.243
– ident: ref45
  doi: 10.1109/ICCV.2015.133
– year: 2017
  ident: ref20
  article-title: Improved regularization of convolutional neural networks with cutout
  publication-title: arXiv 1708 04552
– start-page: 807
  year: 2010
  ident: ref37
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– start-page: 1
  year: 2017
  ident: ref31
  article-title: Neural architecture search with reinforcement learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 1
  year: 2018
  ident: ref41
  article-title: VSE++: Improving visual-semantic embeddings with hard negatives
  publication-title: Proc Brit Mach Vis Conf (BMVC)
– year: 2018
  ident: ref30
  article-title: AutoAugment: Learning augmentation policies from data
  publication-title: arXiv 1805 09501
– start-page: 1
  year: 2015
  ident: ref29
  article-title: Explaining and harnessing adversarial examples
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 1
  year: 2018
  ident: ref22
  article-title: mixup: Beyond empirical risk minimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– year: 2014
  ident: ref42
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– start-page: 1
  year: 2014
  ident: ref32
  article-title: Distilling the knowledge in a neural network
  publication-title: Proc Workshop Adv Neural Inf Process Syst (NIPS)
– start-page: 1
  year: 2014
  ident: ref40
  article-title: Unifying visual-semantic embeddings with multimodal neural language models
  publication-title: Proc Workshop Adv Neural Inf Process Syst (NIPS)
– ident: ref14
  doi: 10.1016/j.neunet.2019.03.013
– ident: ref28
  doi: 10.1016/0893-6080(91)90033-2
– start-page: 1
  year: 2017
  ident: ref39
  article-title: Shake-shake regularization
  publication-title: Proc ICLR Workshop
– ident: ref11
  doi: 10.1109/CVPR.2016.90
– year: 2014
  ident: ref24
  article-title: ImageNet large scale visual recognition challenge
  publication-title: arXiv 1409 0575
– start-page: 1026
  year: 2016
  ident: ref38
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proc IEEE Int Conf Comput Vis (ICCV)
– start-page: 1237
  year: 2011
  ident: ref6
  article-title: Flexible, high performance convolutional neural networks for image classification
  publication-title: Proc Int Joint Conf Artif Intell (IJCAI)
SSID ssj0014847
Score 2.6750655
Snippet Deep convolutional neural networks (CNNs) have achieved remarkable results in image processing tasks. However, their high expression ability risks overfitting....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2917
SubjectTerms Artificial neural networks
Computer vision
convolutional neural network
Convolutional neural networks
Data augmentation
Image classification
Image color analysis
Image processing
image-caption retrieval
Jitter
Labels
Patching
Principal component analysis
Regularization
Task analysis
Training
Title Data Augmentation Using Random Image Cropping and Patching for Deep CNNs
URI https://ieeexplore.ieee.org/document/8795523
https://www.proquest.com/docview/2441008400
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzjwGojxUg7coHu0aWiO02AaSJsQbIhblaTODrAOQXfh1-Nk3cRLiFtVJVEUJ_bnxP4McBpJI4XFmE4a2oATZA-UUTwQIbeJTUzItUsU7g9Eb8RvHuPHFThf5sIgog8-w7r79G_52dTM3FVZwxXGJsdpFVbJcZvnai1fDHjii4kRXGgFCdmxRYJMUzaGnfuHoYviknUybmThki9GyFdV-aGKvX3pbkJ_MbN5WMlTfVbounn_Rtr436lvwUYJNFl7vjO2YQXzHVj_RD9Yhd6lKhRrz8aTMgEpZz6CgN2pPJtO2PWElA3rvE4dh8OY0U92S5rb3VkxwrrsEvGFdQaDt10Yda-GnV5QVlYITCjjImh54BMbazThCUJASEfRFZIUQnJ7kRHsUKHWApsX6EjnrECpdSaUlUlkUUZ7UMmnOe4D0zbiwvJI0VBOBkmWcatigShjJA1Wg9ZiqVNT0o676hfPqXc_mjL14kmdeNJSPDU4W_Z5mZNu_Nm66tZ72bJc6hocLSSalufyLSUw49iMSHEd_N7rENZC51H7KLIjqBSvMzwm2FHoE7_fPgAsNdHF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT-MwEB4hOCwcgOUhymt9gBNKaVPHxAcOqAW1PCoEBXELtjPmsNsU0VQIfgt_hf_G2E0rWFZ7Q-IWRXakZL7MN7ZnvgHYqkkjhcWI_jS0AaeQPVBG8UCE3MY2NiHXrlD4rC2aV_z4JrqZgJdxLQwi-uQzLLtLf5af9szAbZXtusbYtHAqUihP8OmRFmj9_VaDrLkdhkeHnXozKHoIBCaUUR5UPcVHxhpNzElcjwQ61zJRCMntXkoEq0KtBVb20MmrWYFS61QoK-OaRSe1RA5-iuKMKBxWh43PKHjs25dRgFINYmLOUUlORe526pfXHZc3JstEp8Sp8Qfa831cPjl_z2hHc_A6-hbDRJbf5UGuy-b5L5nI7_qx5mG2CKXZwRD7P2ECswWYeSewuAjNhsoVOxjcdYsSq4z5HAl2obK012WtLrlTVn_oOZWKO0Y32Tlxk9uVYxTNswbiPau32_0luPqSV1mGyayX4QowbWtcWF5T9Chn8zhNuVWRQJQRko8uQXVk2sQUwuquv8efxC-wKjLxcEgcHJICDiXYGc-5H8qK_Hf0orPveGRh2hKsjxCUFJ6nn1C45vSayDWv_nvWL_jR7JydJqet9skaTIdu_8DnzK3DZP4wwA0KsnK96bHO4Par8fIGRkctjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Augmentation+Using+Random+Image+Cropping+and+Patching+for+Deep+CNNs&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Takahashi%2C+Ryo&rft.au=Matsubara%2C+Takashi&rft.au=Uehara%2C+Kuniaki&rft.date=2020-09-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=30&rft.issue=9&rft.spage=2917&rft.epage=2931&rft_id=info:doi/10.1109%2FTCSVT.2019.2935128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2019_2935128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon