Energy Principle of Corrosion Environment Accelerating Crack Propagation During Anodic Dissolution Corrosion Fatigue
A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is presented as the result of the synergistic interactions of mechanical and environmental factors, and corrosive environment accelerates crack...
Saved in:
Published in | Shanghai jiao tong da xue xue bao Vol. 18; no. 2; pp. 190 - 196 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Shanghai Jiaotong University Press
01.04.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1007-1172 1995-8188 |
DOI | 10.1007/s12204-013-1382-5 |
Cover
Abstract | A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is presented as the result of the synergistic interactions of mechanical and environmental factors, and corrosive environment accelerates crack propagation mainly in term of anodic dissolution. By studying the variation of mechanical energy and electrochemical energy of anodic dissolution during the crack propagation process, an explicit expression of crack propagation rate is derived by the conservation of energy. The comparisons with experimental data demonstrate the validity of the proposed model. Moreover, the applicable upper-limit crack length for steady crack propagation is determined and the crack propagation life is evaluated |
---|---|
AbstractList | A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is presented as the result of the synergistic interactions of mechanical and environmental factors, and corrosive environment accelerates crack propagation mainly in term of anodic dissolution. By studying the variation of mechanical energy and electrochemical energy of anodic dissolution during the crack propagation process, an explicit expression of crack propagation rate is derived by the conservation of energy. The comparisons with experimental data demonstrate the validity of the proposed model. Moreover, the applicable upper-limit crack length for steady crack propagation is determined and the crack propagation life is evaluated. A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is presented as the result of the synergistic interactions of mechanical and environmental factors, and corrosive environment accelerates crack propagation mainly in term of anodic dissolution. By studying the variation of mechanical energy and electrochemical energy of anodic dissolution during the crack propagation process, an explicit expression of crack propagation rate is derived by the conservation of energy. The comparisons with experimental data demonstrate the validity of the proposed model. Moreover, the applicable upper-limit crack length for steady crack propagation is determined and the crack propagation life is evaluated |
Author | 黄小光 许金泉 冯淼林 |
AuthorAffiliation | School of Navel Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, Shandong, China |
Author_xml | – sequence: 1 fullname: 黄小光 许金泉 冯淼林 |
BookMark | eNqFkcFP5CAUxslGk9XRP8BbvXnpLg9KC8fJOK6bTKIHPROGQhftQIXWxP9e6hg38aAnCO_7vcf3vWN04IM3CJ0B_gUYN78TEIKrEgMtgXJSsh_oCIRgJQfOD_I9i0qAhvxExyk9YFxhSsURGtfexO6luI3Oazf0pgi2WIUYQ3LBF2v_7GLwO-PHYqm16U1Uo_NdsYpKP2YqDKrLL1l6OcW5sPShdbq4dCmFfnqr_G93laXdZE7QoVV9Mqfv5wLdX63vVtfl5ubP39VyU2oiGCstq63VbWMpYUYoRnRdacCsbevWakYaKzAYK8S2hS3GdFtns1tumBCGUq7oAl3s-w4xPE0mjXLnUjbRK2_ClCQ0NQFKRFV9L62g4bzmFctS2Et1dpWisXKIbqfiiwQs55zlfhkyL0POy5Az03xitBvfchujcv2XJNmTaZjzNVE-hCn6HNuX0Pn7uH_Bd0-Z-_hjNtBQDoy-AgoUrKc |
CitedBy_id | crossref_primary_10_1016_j_engfailanal_2019_01_026 crossref_primary_10_3390_e17106995 |
Cites_doi | 10.1016/j.proeng.2010.03.141 10.1016/j.corsci.2012.06.016 10.1016/j.ijfatigue.2007.11.004 10.1016/S1359-6462(99)00067-6 10.1016/0921-5093(95)09986-7 10.1007/BF02814848 10.1016/j.ijfatigue.2009.02.033 10.1007/BF02645142 10.1016/j.ijfatigue.2008.02.012 10.1007/BF02642416 10.1016/j.jmatprotec.2010.03.004 10.1016/j.corsci.2008.08.026 10.1016/j.corsci.2009.11.031 10.1023/A:1010839522926 10.1016/S0142-1123(03)00150-6 10.7498/aps.54.2414 |
ContentType | Journal Article |
Copyright | Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2013 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s12204-013-1382-5 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering Architecture Computer Science |
DocumentTitleAlternate | Energy Principle of Corrosion Environment Accelerating Crack Propagation During Anodic Dissolution Corrosion Fatigue |
EISSN | 1995-8188 |
EndPage | 196 |
ExternalDocumentID | 10_1007_s12204_013_1382_5 45373815 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 8RM 8TC 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CCEZO CEKLB CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J OK1 P9P PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TSV TUC U2A UG4 UGNYK UNUBA UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 W92 WK8 YLTOR Z7R Z7Z Z85 ZMTXR ~A9 ~WA -SC -S~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEC H13 Q-- SJYHP U1G U5M UY8 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD ABRTQ FR3 JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c2955-f56ffcd7f325e9a52c64c105dd6dfc527f901ef99bd1b003b6818b8e599e338a3 |
IEDL.DBID | AGYKE |
ISSN | 1007-1172 |
IngestDate | Thu Sep 04 21:38:38 EDT 2025 Fri Sep 05 03:48:44 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Tue Jul 01 02:23:53 EDT 2025 Fri Feb 21 02:37:20 EST 2025 Wed Feb 14 11:02:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | corrosion fatigue anodic dissolution TG 174.34 crack propagation conservation of energy |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2955-f56ffcd7f325e9a52c64c105dd6dfc527f901ef99bd1b003b6818b8e599e338a3 |
Notes | A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is presented as the result of the synergistic interactions of mechanical and environmental factors, and corrosive environment accelerates crack propagation mainly in term of anodic dissolution. By studying the variation of mechanical energy and electrochemical energy of anodic dissolution during the crack propagation process, an explicit expression of crack propagation rate is derived by the conservation of energy. The comparisons with experimental data demonstrate the validity of the proposed model. Moreover, the applicable upper-limit crack length for steady crack propagation is determined and the crack propagation life is evaluated 31-1943/U crack propagation, corrosion fatigue, conservation of energy, anodic dissolution ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1417886845 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1762132944 proquest_miscellaneous_1417886845 crossref_primary_10_1007_s12204_013_1382_5 crossref_citationtrail_10_1007_s12204_013_1382_5 springer_journals_10_1007_s12204_013_1382_5 chongqing_primary_45373815 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130400 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 4 year: 2013 text: 20130400 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Shanghai jiao tong da xue xue bao |
PublicationTitleAbbrev | J. Shanghai Jiaotong Univ. (Sci.) |
PublicationTitleAlternate | Journal of Shanghai Jiaotong university |
PublicationYear | 2013 |
Publisher | Shanghai Jiaotong University Press |
Publisher_xml | – name: Shanghai Jiaotong University Press |
References | Bhuiyan, Mutoh, Murai (CR1) 2008; 30 Gangloff (CR16) 1985; 16 Lu, Zheng, Qin (CR18) 1991; 11 Liu, Sun, Hu (CR20) 2005; 54 Schroeder, Gilbert, Ritchie (CR6) 1999; 40 Wang (CR8) 2008; 30 Shen, Lü (CR10) 2001; 19 Han, Xing (CR21) 1997; 29 Wang (CR17) 2001 Gao, Pao, Wei (CR5) 1988; 19 Xing (CR22) 1986; 29 Chun, Pyun (CR14) 1996; 206 Ishihara, Nan, McEvily (CR3) 2008; 30 Nguyen, Repetto, Ortiz (CR19) 2001; 110 Menan, Henaff (CR11) 2009; 31 Zupanca, Grumb (CR4) 2010; 210 Meng, Zhang, Cheng (CR13) 2008; 50 Ebara (CR2) 2010; 2 Kim, Fine (CR7) 1982; 13 Engelhardt, Macdonald (CR12) 2010; 52 Zhao, Xin, He (CR9) 2012; 63 Da Fontea, Romeirob, De Freitasc (CR15) 2003; 25 Fan (CR23) 1986 B Han (1382_CR21) 1997; 29 Y G Chun (1382_CR14) 1996; 206 Y H Kim (1382_CR7) 1982; 13 J-j Liu (1382_CR20) 2005; 54 O Nguyen (1382_CR19) 2001; 110 M Gao (1382_CR5) 1988; 19 M S Bhuiyan (1382_CR1) 2008; 30 M Fontea Da (1382_CR15) 2003; 25 M-x Lu (1382_CR18) 1991; 11 R Ebara (1382_CR2) 2010; 2 WM Zhao (1382_CR9) 2012; 63 H-j Shen (1382_CR10) 2001; 19 T-you Fan (1382_CR23) 1986 S Ishihara (1382_CR3) 2008; 30 R Wang (1382_CR8) 2008; 30 F Menan (1382_CR11) 2009; 31 X S Xing (1382_CR22) 1986; 29 G R Engelhardt (1382_CR12) 2010; 52 U Zupanca (1382_CR4) 2010; 210 Rong Wang (1382_CR17) 2001 G Z Meng (1382_CR13) 2008; 50 V Schroeder (1382_CR6) 1999; 40 R P Gangloff (1382_CR16) 1985; 16 |
References_xml | – year: 2001 ident: CR17 publication-title: Corrosion fatigue of metal material [M] – volume: 2 start-page: 1297 issue: 1 year: 2010 end-page: 1306 ident: CR2 article-title: Corrosion fatigue crack initiation behavior of stainless steels [J] publication-title: Procedia Engineering doi: 10.1016/j.proeng.2010.03.141 – volume: 63 start-page: 387 year: 2012 end-page: 392 ident: CR9 article-title: Contribution of anodic dissolution to the corrosion fatigue crack propagation of X80 steel in 3.5 wt.% NaCl solution [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2012.06.016 – volume: 30 start-page: 1659 issue: 9 year: 2008 end-page: 1668 ident: CR3 article-title: On the initiation and propagation behavior of corrosion pits during corrosion fatigue process of industrial pure aluminum [J] publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2007.11.004 – volume: 40 start-page: 1057 issue: 9 year: 1999 end-page: 1061 ident: CR6 article-title: Effect of aqueous environment on fatigue-crack propagation behavior in a Zr-based bulk amorphous metal [J] publication-title: Scripta Materialia doi: 10.1016/S1359-6462(99)00067-6 – volume: 206 start-page: 49 issue: 1 year: 1996 end-page: 54 ident: CR14 article-title: Crack closure in the fatigue crack propagation of a Cu-2wt.%Be alloy in dry air and ammoniacal solution [J] publication-title: Materials Science and Engineering A doi: 10.1016/0921-5093(95)09986-7 – volume: 16 start-page: 953 issue: 5 year: 1985 end-page: 969 ident: CR16 article-title: Crack size effects on the chemical driving force for aqueous corrosion fatigue [J] publication-title: Metallurigical and Materials Transaction A doi: 10.1007/BF02814848 – volume: 31 start-page: 1684 issue: 11–12 year: 2009 end-page: 1695 ident: CR11 article-title: Influence of frequency and exposure to a saline solution on the corrosion fatigue crack propagation behavior of the aluminum alloy 2024 [J] publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2009.02.033 – volume: 29 start-page: 1051 issue: 10 year: 1986 end-page: 1062 ident: CR22 article-title: Nonequilibrium statistical theory of fatigue fracture I: The microscopic mechanism and statistical nature of fatigue crack growth [J] publication-title: Scientia Sinica. Series A: Mathematical, Physical, Astronomical and Technical Sciences – start-page: 23 year: 1986 end-page: 27 ident: CR23 article-title: The kinetic energy formula of a moving crack in nonlinear medium [J] publication-title: Journal of Beijing Institute of Technology – volume: 29 start-page: 224 issue: 2 year: 1997 end-page: 230 ident: CR21 article-title: Stability analysis of a twodimensional dislocation crack model [J] publication-title: Acta Mechanical Sinica – volume: 19 start-page: 225 issue: 2 year: 2001 end-page: 228 ident: CR10 article-title: Effect of anode dissolution on corrosive fatigue crack propagation [J] publication-title: Journal of Northwestern Polytechnical University – volume: 54 start-page: 2414 issue: 5 year: 2005 end-page: 2417 ident: CR20 article-title: The life prediction for materials under the corrosion of seawater [J] publication-title: Acta Physica Sinica – volume: 19 start-page: 1739 issue: 7 year: 1988 end-page: 1750 ident: CR5 article-title: Chemical and metallurgical aspects of environmentally assisted fatigue crack growth in 7075-T651 aluminum alloy [J] publication-title: Metallurgical and Materials Transactions A doi: 10.1007/BF02645142 – volume: 30 start-page: 1756 issue: 10–11 year: 2008 end-page: 1765 ident: CR1 article-title: Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments [J] publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2008.02.012 – volume: 13 start-page: 59 issue: 1 year: 1982 end-page: 72 ident: CR7 article-title: Fatigue crack initiation and strain-controlled fatigue of some high strength low alloy steels [J] publication-title: Metallurgical and Materials Transactions A doi: 10.1007/BF02642416 – volume: 30 start-page: 1376 issue: 8 year: 2008 end-page: 1386 ident: CR8 article-title: A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip [J] publication-title: Engineering Fracture Mechanics – volume: 25 start-page: 1209 issue: 9–11 year: 2003 end-page: 1216 ident: CR15 article-title: The effect of microstructure and environment on fatigue crack propagation in 7049 aluminium alloy at negative stress ratios [J] publication-title: International Journal of Fatigue – volume: 210 start-page: 1197 issue: 9 year: 2010 end-page: 1202 ident: CR4 article-title: Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075-T651 [J] publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2010.03.004 – volume: 11 start-page: 197 issue: 2 year: 1991 end-page: 208 ident: CR18 article-title: Progress in research of model of mechanics-chemical interaction in corrosion fatigue [J] publication-title: Journal of Chinese Society of Corrosion and Protection – volume: 50 start-page: 3116 issue: 11 year: 2008 end-page: 3122 ident: CR13 article-title: Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2008.08.026 – volume: 52 start-page: 1115 issue: 4 year: 2010 end-page: 1122 ident: CR12 article-title: Modelling the crack propagation rate for corrosion fatigue at high frequency of applied stress [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2009.11.031 – volume: 110 start-page: 351 issue: 4 year: 2001 end-page: 369 ident: CR19 article-title: A cohesive model of fatigue crack growth [J] publication-title: International Journal of Fracture doi: 10.1023/A:1010839522926 – volume: 16 start-page: 953 issue: 5 year: 1985 ident: 1382_CR16 publication-title: Metallurigical and Materials Transaction A doi: 10.1007/BF02814848 – volume: 31 start-page: 1684 issue: 11–12 year: 2009 ident: 1382_CR11 publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2009.02.033 – volume: 30 start-page: 1376 issue: 8 year: 2008 ident: 1382_CR8 publication-title: Engineering Fracture Mechanics – volume: 50 start-page: 3116 issue: 11 year: 2008 ident: 1382_CR13 publication-title: Corrosion Science doi: 10.1016/j.corsci.2008.08.026 – volume: 19 start-page: 1739 issue: 7 year: 1988 ident: 1382_CR5 publication-title: Metallurgical and Materials Transactions A doi: 10.1007/BF02645142 – volume: 13 start-page: 59 issue: 1 year: 1982 ident: 1382_CR7 publication-title: Metallurgical and Materials Transactions A doi: 10.1007/BF02642416 – volume: 30 start-page: 1756 issue: 10–11 year: 2008 ident: 1382_CR1 publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2008.02.012 – volume: 63 start-page: 387 year: 2012 ident: 1382_CR9 publication-title: Corrosion Science doi: 10.1016/j.corsci.2012.06.016 – volume: 29 start-page: 1051 issue: 10 year: 1986 ident: 1382_CR22 publication-title: Scientia Sinica. Series A: Mathematical, Physical, Astronomical and Technical Sciences – volume: 19 start-page: 225 issue: 2 year: 2001 ident: 1382_CR10 publication-title: Journal of Northwestern Polytechnical University – volume: 25 start-page: 1209 issue: 9–11 year: 2003 ident: 1382_CR15 publication-title: International Journal of Fatigue doi: 10.1016/S0142-1123(03)00150-6 – volume: 110 start-page: 351 issue: 4 year: 2001 ident: 1382_CR19 publication-title: International Journal of Fracture doi: 10.1023/A:1010839522926 – volume: 210 start-page: 1197 issue: 9 year: 2010 ident: 1382_CR4 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2010.03.004 – volume: 29 start-page: 224 issue: 2 year: 1997 ident: 1382_CR21 publication-title: Acta Mechanical Sinica – volume: 11 start-page: 197 issue: 2 year: 1991 ident: 1382_CR18 publication-title: Journal of Chinese Society of Corrosion and Protection – volume: 2 start-page: 1297 issue: 1 year: 2010 ident: 1382_CR2 publication-title: Procedia Engineering doi: 10.1016/j.proeng.2010.03.141 – volume: 30 start-page: 1659 issue: 9 year: 2008 ident: 1382_CR3 publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2007.11.004 – volume: 52 start-page: 1115 issue: 4 year: 2010 ident: 1382_CR12 publication-title: Corrosion Science doi: 10.1016/j.corsci.2009.11.031 – volume: 54 start-page: 2414 issue: 5 year: 2005 ident: 1382_CR20 publication-title: Acta Physica Sinica doi: 10.7498/aps.54.2414 – volume: 40 start-page: 1057 issue: 9 year: 1999 ident: 1382_CR6 publication-title: Scripta Materialia doi: 10.1016/S1359-6462(99)00067-6 – volume: 206 start-page: 49 issue: 1 year: 1996 ident: 1382_CR14 publication-title: Materials Science and Engineering A doi: 10.1016/0921-5093(95)09986-7 – volume-title: Corrosion fatigue of metal material [M] year: 2001 ident: 1382_CR17 – start-page: 23 volume-title: Journal of Beijing Institute of Technology year: 1986 ident: 1382_CR23 |
SSID | ssj0040339 |
Score | 1.8931483 |
Snippet | A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 190 |
SubjectTerms | Anodic dissolution Architecture Computer Science Corrosion environments Corrosion fatigue Crack propagation Cracks Electrical Engineering Energy conservation Engineering Fatigue failure Fracture mechanics Life Sciences Materials Science |
Title | Energy Principle of Corrosion Environment Accelerating Crack Propagation During Anodic Dissolution Corrosion Fatigue |
URI | http://lib.cqvip.com/qk/85391X/201302/45373815.html https://link.springer.com/article/10.1007/s12204-013-1382-5 https://www.proquest.com/docview/1417886845 https://www.proquest.com/docview/1762132944 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7R9AKVKA0gWqAyEgce2mrttXftY4RSKhCcGqmcrLVjp6hot22SC7-esWM3oYJKvUZje60ZzyMz8w3AW2W8ra2oCnQ2TMGnsiza2pcFpUYyUwtjeGhO_va9PpnwL2fiLPVxz3O1e05JRk29bnZjLFZMVBE3rxBbsC2oVHIA26PPP76OswLmZRUHiIVVeGbDcjLzX5sESIXzvptd4YF_m6a1v3krRRotz_EunOZvXhWcXBwtF-bI_r4F53jPSz2Bx8kTJaOV6OzBA9cNYWe0kVgYwm4e-kCSDhjCow0EwyHspd_n5F0CsH7_FBbj2FBILvMf-aT3BKNcvDVKAdnorSOttWj3ghR2M2KvW3uBqzCOn0WBIasmStJ2_fSnJaF2IL2Uje08ks6W7hlMjsenn06KNN2hsEwJUXhRe2-nja-YcKoVzNbcorcXRlx5K1jj0VVxXikzpUH3mBp9CyOdUMphXN1Wz2HQ9Z17AcRVRkbIbWYb7mljjOOUG864o01p-D4c3DBZX65QPDQXAdSJin0oM9e1TbjoYTzHL71GdA5M0sgkHZikccmHmyV5uzuI32RR0vh0Qz6m7Vy_nGPURRspa8nvokFjRSumOF7iYxYhnfTM_P-nHtyL-iU8ZHHMRxDFVzBYXC_da3S2FuYwPa5D2Jqw0R-6tyGR |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeoBWamkA0QdgJA5AtdXaa-_jGFUpgT5OqVRO1tqxA2q1W5rk0l_fsWM3oSqVeo3G9loznkdm5huAz5WyOtciS9DZUAkflWlS5zZNKFUlU7lQirvm5JPTfHDGf56L89DHPYnV7jEl6TX1otmNMV8xkXncvEQ8hxWOIXjagZXe919H_aiAeZr5AWJuFZ5ZsJjMfGgTB6nwu23Gf_HAf03Twt-8lyL1ludwA4bxm-cFJxf7s6na1zf34ByfeKlXsB48UdKbi84mPDNNF9Z6S4mFLmzEoQ8k6IAurC4hGHZhM_w-IV8CgPXX1zDt-4ZCchX_yCetJRjl4q1RCshSbx2ptUa756SwGRN9XesLXIVx_NgLDJk3UZK6aUd_NHG1A-GlLG1nkXQ8M2_g7LA_PBgkYbpDolklRGJFbq0eFTZjwlS1YDrnGr09N-LKasEKi66KsVWlRtTpHpWjb6FKI6rKYFxdZ2-h07SNeQfEZKr0kNtMF9zSQinDKVeccUOLVPEt2L5jsryao3hILhyoExVbkEauSx1w0d14jku5QHR2TJLIJOmYJHHJt7slcbtHiD9FUZL4dF0-pm5MO5tg1EWLssxL_hgNGiuasYrjJfaiCMmgZyb_P3X7SdQf4cVgeHIsj3-cHu3AS-ZHfjix3IXO9Hpm3qPjNVUfwkO7BW9PI4U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xIqENCVjZxLoBRuIBmKLFjp2Px2qsGl8TD6u0Nyt27G4aSsra_v87u_ZaJpjEa3S2E_3O57uc73cA7ytlda5FlqCzoRLelGlS5zZNKFUlU7lQirvi5B9n-emYf70QF6HP6Szedo8pyWVNg2NpaudH08YerQrfGPO3JzLPoZeIDXiM1pg6RR-zYTTFPM18KzE3BlcvWExr_m0KR65w2bWT37j0n4fUyvO8lyz1Z9DoBTwLziMZLtHehkem7cPT4VouoA_PY58GErZtH7bWSAf7sB2ez8iHwDn98SXMT3wNIJnGf--kswQDU3w9BI6slcORWms8qpzitBOib2p9jaMw9J54jMmy7pHUbddcaeLS_UG516azKDpZmB0Yj07Oj0-T0JAh0awSIrEit1Y3hc2YMFUtmM65RgfNdaWyWrDCondhbFWphjpzoXJ0B1RpRFUZDIXrbBd6bdeaV0BMpkrPks10wS0tlDKccsUZN7RIFd-DwR0acrok3pBcOB4mKvYgjfBIHajMXUeNX3JFwuzQlYiudOhKHPLpbkic7gHhdxFzibvNpVDq1nSLGQZKtCjLvOQPyeD5gjF-xfEjDqPCyGAaZv9edfBf0m_hyc_PI_n9y9m3fdhkvkmHU-cD6M1vFuY1ukpz9cZvh1vd5QsK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+principle+of+corrosion+environment+accelerating+crack+propagation+during+anodic+dissolution+corrosion+fatigue&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=Huang%2C+Xiao-guang&rft.au=Xu%2C+Jin-quan&rft.au=Feng%2C+Miao-lin&rft.date=2013-04-01&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=18&rft.issue=2&rft.spage=190&rft.epage=196&rft_id=info:doi/10.1007%2Fs12204-013-1382-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12204_013_1382_5 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85391X%2F85391X.jpg |