A simple frequency-domain method for stress analysis of stall-regulated wind turbines

ABSTRACT A simple method, based in the frequency domain, was developed for calculating the dynamic response of a stall‐regulated wind turbine. Emphasis is placed on two aspects of the method, which are necessary in order to obtain a reasonable linearization of behavior when the blades are stalled. F...

Full description

Saved in:
Bibliographic Details
Published inWind energy (Chichester, England) Vol. 15; no. 5; pp. 773 - 798
Main Authors Merz, Karl O., Muskulus, Michael, Moe, Geir
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT A simple method, based in the frequency domain, was developed for calculating the dynamic response of a stall‐regulated wind turbine. Emphasis is placed on two aspects of the method, which are necessary in order to obtain a reasonable linearization of behavior when the blades are stalled. First, the tangential (in‐plane) component of turbulence is included, in addition to the axial component. Second, the linearized relationship between lift coefficient and angle‐of‐attack is adjusted to account for the effects of dynamic stall: separate linearizations are used for excitation and damping of vibration. A thorough comparison is made between linear and non‐linear dynamic‐stall methods, with the conclusion that the accuracy of the linear method depends upon the frequency and amplitude of oscillation. The linear dynamic‐stall method is accurate at blade vibrational frequencies, but it can be inaccurate at frequencies in the vicinity of 1P or below, when the angle‐of‐attack oscillates with an amplitude of 3° or more. Load spectra of a Nordtank 500 turbine, calculated using the frequency‐domain method, are compared with measurements. The frequency‐domain method provides estimates of load spectra and aerodynamic damping (stability) that are useful for preliminary design and optimization, but the method lacks sufficient accuracy and generality to be used for certification. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList ABSTRACT A simple method, based in the frequency domain, was developed for calculating the dynamic response of a stall‐regulated wind turbine. Emphasis is placed on two aspects of the method, which are necessary in order to obtain a reasonable linearization of behavior when the blades are stalled. First, the tangential (in‐plane) component of turbulence is included, in addition to the axial component. Second, the linearized relationship between lift coefficient and angle‐of‐attack is adjusted to account for the effects of dynamic stall: separate linearizations are used for excitation and damping of vibration. A thorough comparison is made between linear and non‐linear dynamic‐stall methods, with the conclusion that the accuracy of the linear method depends upon the frequency and amplitude of oscillation. The linear dynamic‐stall method is accurate at blade vibrational frequencies, but it can be inaccurate at frequencies in the vicinity of 1P or below, when the angle‐of‐attack oscillates with an amplitude of 3° or more. Load spectra of a Nordtank 500 turbine, calculated using the frequency‐domain method, are compared with measurements. The frequency‐domain method provides estimates of load spectra and aerodynamic damping (stability) that are useful for preliminary design and optimization, but the method lacks sufficient accuracy and generality to be used for certification. Copyright © 2011 John Wiley & Sons, Ltd.
Author Muskulus, Michael
Moe, Geir
Merz, Karl O.
Author_xml – sequence: 1
  givenname: Karl O.
  surname: Merz
  fullname: Merz, Karl O.
  email: karl.merz@ntnu.no, Karl O. Merz, Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, 7491 Trondheim, Norway., karl.merz@ntnu.no
  organization: Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, 7491 Trondheim, Norway
– sequence: 2
  givenname: Michael
  surname: Muskulus
  fullname: Muskulus, Michael
  organization: Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, 7491 Trondheim, Norway
– sequence: 3
  givenname: Geir
  surname: Moe
  fullname: Moe, Geir
  organization: Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, 7491 Trondheim, Norway
BookMark eNp10L1OwzAUBWALgURb4Bk8ITG42I7dxGNV2oBUlaVVEYvlxNcQyE-xU4W8PYUiNqZzdfTpDmeITuumBoSuGB0zSvltB2NJxQkaMKoUYQkXpz-3JIILcY6GIbxRyihjyQBtpjgU1a4E7Dx87KHOe2KbyhQ1rqB9bSx2jceh9RACNrUp-1AE3LhDZcqSeHjZl6YFi7uitrjd-6yoIVygM2fKAJe_OUKbxXw9uyfLx_RhNl2SnCspiIzyKGZO5cqoTGVW0IkFToVUMrcq49xQnjvLRZzw2ERCOnAZzYRRDrjJk2iEro9_c9-E4MHpnS8q43vNqP4eQ3egD2Mc4M0RdkUJ_T9Kb-dHS462CC18_lnj3_UkjmKpt6tUp4u7dcpXz_op-gJl6HFf
CitedBy_id crossref_primary_10_1002_we_1738
crossref_primary_10_5194_wes_1_153_2016
crossref_primary_10_1002_we_1898
crossref_primary_10_1016_j_renene_2018_11_036
crossref_primary_10_1002_we_2605
crossref_primary_10_1016_j_jsv_2016_07_031
crossref_primary_10_1002_we_1786
crossref_primary_10_1016_j_renene_2018_11_067
crossref_primary_10_5028_jatm_v11_1076
Cites_doi 10.1016/j.fluidstructs.2007.02.005
10.2172/6548367
10.1016/j.paerosci.2006.10.002
10.1002/we.116
10.1016/0266-8920(88)90006-9
10.1016/0142-1123(82)90018-4
10.1115/1.2847866
10.1002/we.242
10.1002/0470846062
10.1111/j.2517-6161.1965.tb01488.x
10.1016/0038-092X(82)90072-X
10.1002/we.120
10.1016/0167-6105(82)90067-8
10.1016/0022-460X(67)90160-5
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/we.504
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1824
EndPage 798
ExternalDocumentID 10_1002_we_504
WE504
ark_67375_WNG_GFDTG2NZ_X
Genre article
GroupedDBID 05W
0R~
123
1OC
24P
31~
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AAONW
AAZKR
ABCUV
ABHUG
ABIJN
ACBWZ
ACCFJ
ACGFS
ACPOU
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVUZU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HF~
HVGLF
HZ~
I-F
IAO
IX1
LATKE
LAW
LITHE
LOXES
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OK1
P2P
P2W
P4E
QRW
R.K
ROL
RX1
RYL
SUPJJ
UCJ
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WXSBR
WYISQ
WYJ
XPP
XV2
ZZTAW
ABJCF
AFKRA
ALUQN
ARAPS
ATCPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
HCIFZ
M7S
OIG
PATMY
PCBAR
PTHSS
PYCSY
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c2954-53c371f9c9a9b9bd406de204595cd9b22a02cfd247827a345fefb0b4a9fe2ac83
IEDL.DBID DR2
ISSN 1095-4244
IngestDate Thu Sep 26 19:18:37 EDT 2024
Sat Aug 24 01:06:10 EDT 2024
Wed Jan 17 05:06:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2954-53c371f9c9a9b9bd406de204595cd9b22a02cfd247827a345fefb0b4a9fe2ac83
Notes ArticleID:WE504
ark:/67375/WNG-GFDTG2NZ-X
istex:FDF0C561562B249651D105E051BDED5080804E68
PageCount 26
ParticipantIDs crossref_primary_10_1002_we_504
wiley_primary_10_1002_we_504_WE504
istex_primary_ark_67375_WNG_GFDTG2NZ_X
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Wind energy (Chichester, England)
PublicationTitleAlternate Wind Energ
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Kristensen L, Frandsen S. Model for power spectra of the blade of a wind turbine measured from the moving frame of reference. Journal of Wind Engineering and Industrial Aerodynamics 1992; 10: 249-262.
Leishman JG, Beddoes TS. A semi-empirical model for dynamic stall. Journal of the American Helicopter Society 1986; 34: 3-17.
Larsen JW, Nielsen SRK, Krenk S. Dynamic stall model for wind turbine airfoils. Journal of Fluids and Structures 2007; 23: 959-982. DOI: 10.1016/j.fluidstructs.2007.02.005.
Downing SD, Socie DF. Simple rainflow counting algorithms. International Journal of Fatigue 1982; 4: 31-40.
Sørensen P, Larsen GC, Christensen CJ. A complex frequency domain model of wind turbine structures. Journal of Solar Energy Engineering 1995; 117: 311-317.
Lobitz DW. Aeroelastic stability predictions for a MW-sized blade. Wind Energy 2004; 7: 211-224. DOI: 10.1002/we.120.
Abbott IH, von Doenhoff AE. Theory of Wing Sections, Including a Summary of Airfoil Data. Dover Publications: New York, 1959.
Priestley MB. Power spectral analysis of non-stationary random processes. Journal of Sound and Vibration 1967; 6: 86-97.
Gaonkar GH. A perspective on modelling rotorcraft in turbulence. Probabilistic Engineering Mechanics 1988; 3: 36-42.
Connell JR. The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system. Solar Energy 1982; 29: 363-375.
Priestley MB. Evolutionary spectra and non-stationary processes. Journal of the Royal Statistical Society, Series B (Methodological) 1965; 27: 204-237.
Hansen MH. Aeroelastic instability problems for wind turbines. Wind Energy 2007; 10: 551-577. DOI: 10.1002/we.242.
Burton T, Sharpe D, Jenkins N, Bossanyi E. Wind Energy Handbook. Wiley: Chichester, England, 2001.
Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HAA. State of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences 2006; 42: 285-330. DOI: 10.1016/j.paerosci.2006.10.002.
Lee Y-L, Pan J, Hathaway RB, Barkey ME. Fatigue Testing and Analysis-Theory and Practice. Elsevier Butterworth-Heinemann: Burlington, MA, USA, 2005.
Paraschivoiu I. Wind Turbine Design, with Emphasis on Darrieus Concept. Polytechnic International Press: Montreal, 2002.
Hansen MH. Aeroelastic stability analysis of wind turbines using an eigenvalue approach. Wind Energy 2004; 7: 133-143. DOI: 10.1002/we.116.
Davidson PA. Turbulence-An Introduction for Scientists and Engineers. Oxford University Press: New York, 2004.
1986; 34
2004; 7
1998
1995; 117
1997
1995
2005
1994
2004
1991
2002
1992; 10
2007; 10
1959
1999
1967; 6
1988; 3
2006; 42
1982; 29
2001
1990
1982; 4
1986
1981
1965; 27
2007; 23
Abbott IH (e_1_2_9_29_1) 1959
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_32_1
Øye S (e_1_2_9_8_1) 1991
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Leishman JG (e_1_2_9_13_1) 1986; 34
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Davidson PA (e_1_2_9_20_1) 2004
e_1_2_9_2_1
Paraschivoiu I (e_1_2_9_28_1) 2002
e_1_2_9_9_1
Lee Y‐L (e_1_2_9_34_1) 2005
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
Petersen JT (e_1_2_9_6_1) 1994
References_xml – volume: 10
  start-page: 551
  year: 2007
  end-page: 577
  article-title: Aeroelastic instability problems for wind turbines
  publication-title: Wind Energy
– volume: 6
  start-page: 86
  year: 1967
  end-page: 97
  article-title: Power spectral analysis of non‐stationary random processes
  publication-title: Journal of Sound and Vibration
– year: 1981
– volume: 29
  start-page: 363
  year: 1982
  end-page: 375
  article-title: The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system
  publication-title: Solar Energy
– start-page: 274
  year: 1990
  end-page: 278
– start-page: 243
  year: 1986
  end-page: 265
– year: 2005
– year: 2001
– volume: 3
  start-page: 36
  year: 1988
  end-page: 42
  article-title: A perspective on modelling rotorcraft in turbulence
  publication-title: Probabilistic Engineering Mechanics
– volume: 42
  start-page: 285
  year: 2006
  end-page: 330
  article-title: State of the art in wind turbine aerodynamics and aeroelasticity
  publication-title: Progress in Aerospace Sciences
– volume: 7
  start-page: 133
  year: 2004
  end-page: 143
  article-title: Aeroelastic stability analysis of wind turbines using an eigenvalue approach
  publication-title: Wind Energy
– volume: 117
  start-page: 311
  year: 1995
  end-page: 317
  article-title: A complex frequency domain model of wind turbine structures
  publication-title: Journal of Solar Energy Engineering
– year: 1994
– year: 1998
– year: 1959
– volume: 27
  start-page: 204
  year: 1965
  end-page: 237
  article-title: Evolutionary spectra and non‐stationary processes
  publication-title: Journal of the Royal Statistical Society, Series B (Methodological)
– volume: 10
  start-page: 249
  year: 1992
  end-page: 262
  article-title: Model for power spectra of the blade of a wind turbine measured from the moving frame of reference
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– start-page: 429
  year: 1997
  end-page: 433
– year: 2002
– volume: 23
  start-page: 959
  year: 2007
  end-page: 982
  article-title: Dynamic stall model for wind turbine airfoils
  publication-title: Journal of Fluids and Structures
– year: 2004
– volume: 4
  start-page: 31
  year: 1982
  end-page: 40
  article-title: Simple rainflow counting algorithms
  publication-title: International Journal of Fatigue
– volume: 34
  start-page: 3
  year: 1986
  end-page: 17
  article-title: A semi‐empirical model for dynamic stall
  publication-title: Journal of the American Helicopter Society
– volume: 7
  start-page: 211
  year: 2004
  end-page: 224
  article-title: Aeroelastic stability predictions for a MW‐sized blade
  publication-title: Wind Energy
– year: 1995
– year: 1991
– year: 1999
– ident: e_1_2_9_27_1
  doi: 10.1016/j.fluidstructs.2007.02.005
– volume-title: Fatigue Testing and Analysis—Theory and Practice
  year: 2005
  ident: e_1_2_9_34_1
  contributor:
    fullname: Lee Y‐L
– ident: e_1_2_9_30_1
  doi: 10.2172/6548367
– ident: e_1_2_9_14_1
– ident: e_1_2_9_26_1
  doi: 10.1016/j.paerosci.2006.10.002
– ident: e_1_2_9_31_1
– ident: e_1_2_9_3_1
– ident: e_1_2_9_11_1
  doi: 10.1002/we.116
– ident: e_1_2_9_21_1
  doi: 10.1016/0266-8920(88)90006-9
– ident: e_1_2_9_25_1
– ident: e_1_2_9_33_1
  doi: 10.1016/0142-1123(82)90018-4
– ident: e_1_2_9_16_1
  doi: 10.1115/1.2847866
– ident: e_1_2_9_17_1
– ident: e_1_2_9_7_1
– ident: e_1_2_9_15_1
  doi: 10.1002/we.242
– volume-title: Theory of Wing Sections, Including a Summary of Airfoil Data
  year: 1959
  ident: e_1_2_9_29_1
  contributor:
    fullname: Abbott IH
– volume-title: Contributions from the department of meteorology and wind energy to the EWEC’94 conference in Thessaloniki, Greece
  year: 1994
  ident: e_1_2_9_6_1
  contributor:
    fullname: Petersen JT
– ident: e_1_2_9_2_1
  doi: 10.1002/0470846062
– volume-title: Wind Turbine Design, with Emphasis on Darrieus Concept
  year: 2002
  ident: e_1_2_9_28_1
  contributor:
    fullname: Paraschivoiu I
– ident: e_1_2_9_19_1
– ident: e_1_2_9_32_1
– ident: e_1_2_9_24_1
– ident: e_1_2_9_22_1
  doi: 10.1111/j.2517-6161.1965.tb01488.x
– volume-title: Turbulence—An Introduction for Scientists and Engineers
  year: 2004
  ident: e_1_2_9_20_1
  contributor:
    fullname: Davidson PA
– ident: e_1_2_9_5_1
  doi: 10.1016/0038-092X(82)90072-X
– ident: e_1_2_9_12_1
– ident: e_1_2_9_10_1
  doi: 10.1002/we.120
– ident: e_1_2_9_18_1
– volume: 34
  start-page: 3
  year: 1986
  ident: e_1_2_9_13_1
  article-title: A semi‐empirical model for dynamic stall
  publication-title: Journal of the American Helicopter Society
  contributor:
    fullname: Leishman JG
– ident: e_1_2_9_9_1
– volume-title: Proceedings of the fourth IEA symposium on the aerodynamics of wind turbines
  year: 1991
  ident: e_1_2_9_8_1
  contributor:
    fullname: Øye S
– ident: e_1_2_9_4_1
  doi: 10.1016/0167-6105(82)90067-8
– ident: e_1_2_9_23_1
  doi: 10.1016/0022-460X(67)90160-5
SSID ssj0010118
Score 2.0712903
Snippet ABSTRACT A simple method, based in the frequency domain, was developed for calculating the dynamic response of a stall‐regulated wind turbine. Emphasis is...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 773
SubjectTerms blade design
dynamic stall
frequency domain
stall regulated
Title A simple frequency-domain method for stress analysis of stall-regulated wind turbines
URI https://api.istex.fr/ark:/67375/WNG-GFDTG2NZ-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.504
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JT8JAFMcnBC96cDfiOjHGW4HOdChzJMoSEzkYCOClmTUhIBiWoJ78CH5GP4kznRbFxMR46aF9bSaz9P3bee_3ALhkJDTtw9Lz_VLRC0KsPc5C3-NEBFhiTkraJjjfNUuNdnDbJd0MKKe5MI4PsfzhZldG_L62C5zxaeELGrpQeRKDQC1Fz6qh-yU3yrfplPE2JyWezeRKiwoVUcHdtuKF1myHPq-q09i91LZAL22YiyoZ5OcznhevP5iN_2n5NthMNCesuEmyAzJqtAs2vpEI90CvAqd9CwqGeuKCq18-3t7l-JH1R9BVmYZG3kKXWgJZgjKBY21OseHQGE9cVXsl4cJ850PjyrgNqd8H7Vq1dd3wkqoLnrB7fh7BAoe-poIyyimXxuNLZaH1lAhJOUKsiISWKDDaImQ4IFppXuQBo1ohJsr4AGRH45E6BNBIN0YQFaHAMlAhZcyYYK18oRErS5kD5-koRE8OrhE5jDKKFioynZQDV_HgLC-zycCGooUk6jTrUb1206qj5kPUzYGLuMt_eU7UqZrj0V-MjsG6EUVJSO4JyM4mc3VqhMeMn8WT7BP6c9nE
link.rule.ids 315,786,790,1382,27957,27958,46329,46753,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFG0MLNSF8RnxRWOMuxGmnTJ0SZSHCqxA0E3TZ2JEMIhBd36C3-iX2E4HhIWJm1nM3JlMbqdzTnvvPReAM05i-35YBWFYKgZRjE0geBwGgsgIKyxIybgC51a71OhGN33SX2j15fUh5htubmYk_2s3wd2GdOFXNXSqL4hTAs1azCPlDMhW7roP3XkIwZVUJqFOSgJXzTVrLFREBX_nEhJlnVPflxlqAjG1TbCRckNY8YO5BVb0cBusLygG7oD7Cnx9dIK-0Ix9EvTH9-eXGj3bBT703aChpaHQl4BAnkqOwJGxp_hgYI3Hvvu8VnBq1-PQQo5wqe-7oFurdi4bQdodIZAuNhcQLHEcGiopp4IKZZFZaScuT4lUVCDEi0gahSLLAWKOI2K0EUURcWo04rKM90BmOBrqfQAtxeIEURlLrCIdU86tCTY6lAbxslI5kJ95ir14EQzm5Y4Rm2pmfZkD54kD55f5-MmljMWE9dp1Vq9ddeqo_cD6OXCaePiP57Be1R4P_mOUB6uNTqvJmtft20OwZolMmkZ7BDKT8Zs-tmRhIk7Sz-IHmQm_zw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7EgujBt1ifQcTb1m6y6TZHsbY-i4hi9RLyBFFbqS1VT_4Ef6O_xGTT1gcI4mUPu5NlmEx2vk1mvgHYFDR1-hEdxXGpGCUpsZEUaRxJqhKiiaQl6wucT-ql_YvksEEbI1Ae1MIEfojhhptfGdn32i_wB223P0lDe6ZAPRFoLikR7P25cjYkjop9PWV2zslo5Eu5Bl2Fing7jPsWhnLeok_f4WkWX6pTcDXQLKSV3Ba6HVlQLz9IG_-j-jRM9kEn2gleMgMjpjkLE1-oCOfgagc93nimYGTbIbv6-f31TbfuxU0ThTbTyOFbFGpLkOhzmaCWdbfE3Z0Tboe29kajnvvRRy6WSZ9TPw8X1b3z3f2o33YhUv7QL6JEkTS2TDHBJJPahXxtPGs9o0ozibEoYmU1Thy4SAVJqDVWFmUimDVYqDJZgNFmq2kWATnsJihmKlVEJyZlQjgRYk2sLBZlrfOwPpgF_hDYNXjgUca8Z7gzUh62sskZPhbtW5-LllJ-Wa_xWrVyXsP1a97Iw0Zm8l_ewy_33HXpL0LrMHZaqfLjg_rRMow7gNRPz12B0U67a1YdCOnItczfPgAztNyV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+frequency-domain+method+for+stress+analysis+of+stall-regulated+wind+turbines&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Merz%2C+Karl+O.&rft.au=Muskulus%2C+Michael&rft.au=Moe%2C+Geir&rft.date=2012-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1095-4244&rft.eissn=1099-1824&rft.volume=15&rft.issue=5&rft.spage=773&rft.epage=798&rft_id=info:doi/10.1002%2Fwe.504&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_GFDTG2NZ_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon