Comparative analysis of throughfall observations in six different forest stands: Influence of seasons, rainfall‐ and stand characteristics

Throughfall, that is, the fraction of rainfall that passes through the forest canopy, is strongly influenced by rainfall and forest stand characteristics which are in turn both subject to seasonal dynamics. Disentangling the complex interplay of these controls is challenging, and only possible with...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 36; no. 3
Main Authors Blume, Theresa, Schneider, Lisa, Güntner, Andreas
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0885-6087
1099-1085
DOI10.1002/hyp.14461

Cover

Abstract Throughfall, that is, the fraction of rainfall that passes through the forest canopy, is strongly influenced by rainfall and forest stand characteristics which are in turn both subject to seasonal dynamics. Disentangling the complex interplay of these controls is challenging, and only possible with long‐term monitoring and a large number of throughfall events measured in parallel at different forest stands. We therefore based our analysis on 346 rainfall events across six different forest stands at the long‐term terrestrial environmental observatory TERENO Northeast Germany. These forest stands included pure stands of beech, pine and young pine, and mixed stands of oak‐beech, pine‐beech and pine‐oak‐beech. Throughfall was overall relatively low, with 54–68% of incident rainfall in summer. Based on the large number of events it was possible to not only investigate mean or cumulative throughfall but also its statistical distribution. The distributions of throughfall fractions show distinct differences between the three types of forest stands (deciduous, mixed and pine). The distributions of the deciduous stands have a pronounced peak at low throughfall fractions and a secondary peak at high fractions in summer, as well as a pronounced peak at higher throughfall fractions in winter. Interestingly, the mixed stands behave like deciduous stands in summer and like pine stands in winter: their summer distributions are similar to the deciduous stands but the winter peak at high throughfall fractions is much less pronounced. The seasonal comparison further revealed that the wooden components and the leaves behaved differently in their throughfall response to incident rainfall, especially at higher rainfall intensities. These results are of interest for estimating forest water budgets and in the context of hydrological and land surface modelling where poor simulation of throughfall would adversely impact estimates of evaporative recycling and water availability for vegetation and runoff. Summer and winter distributions of throughfall fractions for six forest stands (transparent colouring to allow for full visibility of the overlapping distributions). Mixed stands (PB: Pine/Beech, PBO: Pine/Beech/Oak) have the summer peak at low fractions similar to the deciduous stands (B: Beech, OB: Oak/Beech) but their winter distributions resemble those of the pine stands (P: Pine, YP: young Pine), that is, they do not have the pronounced peak at high fractions as in the deciduous stands.
AbstractList Throughfall, that is, the fraction of rainfall that passes through the forest canopy, is strongly influenced by rainfall and forest stand characteristics which are in turn both subject to seasonal dynamics. Disentangling the complex interplay of these controls is challenging, and only possible with long‐term monitoring and a large number of throughfall events measured in parallel at different forest stands. We therefore based our analysis on 346 rainfall events across six different forest stands at the long‐term terrestrial environmental observatory TERENO Northeast Germany. These forest stands included pure stands of beech, pine and young pine, and mixed stands of oak‐beech, pine‐beech and pine‐oak‐beech. Throughfall was overall relatively low, with 54–68% of incident rainfall in summer. Based on the large number of events it was possible to not only investigate mean or cumulative throughfall but also its statistical distribution. The distributions of throughfall fractions show distinct differences between the three types of forest stands (deciduous, mixed and pine). The distributions of the deciduous stands have a pronounced peak at low throughfall fractions and a secondary peak at high fractions in summer, as well as a pronounced peak at higher throughfall fractions in winter. Interestingly, the mixed stands behave like deciduous stands in summer and like pine stands in winter: their summer distributions are similar to the deciduous stands but the winter peak at high throughfall fractions is much less pronounced. The seasonal comparison further revealed that the wooden components and the leaves behaved differently in their throughfall response to incident rainfall, especially at higher rainfall intensities. These results are of interest for estimating forest water budgets and in the context of hydrological and land surface modelling where poor simulation of throughfall would adversely impact estimates of evaporative recycling and water availability for vegetation and runoff.
Throughfall, that is, the fraction of rainfall that passes through the forest canopy, is strongly influenced by rainfall and forest stand characteristics which are in turn both subject to seasonal dynamics. Disentangling the complex interplay of these controls is challenging, and only possible with long‐term monitoring and a large number of throughfall events measured in parallel at different forest stands. We therefore based our analysis on 346 rainfall events across six different forest stands at the long‐term terrestrial environmental observatory TERENO Northeast Germany. These forest stands included pure stands of beech, pine and young pine, and mixed stands of oak‐beech, pine‐beech and pine‐oak‐beech. Throughfall was overall relatively low, with 54–68% of incident rainfall in summer. Based on the large number of events it was possible to not only investigate mean or cumulative throughfall but also its statistical distribution. The distributions of throughfall fractions show distinct differences between the three types of forest stands (deciduous, mixed and pine). The distributions of the deciduous stands have a pronounced peak at low throughfall fractions and a secondary peak at high fractions in summer, as well as a pronounced peak at higher throughfall fractions in winter. Interestingly, the mixed stands behave like deciduous stands in summer and like pine stands in winter: their summer distributions are similar to the deciduous stands but the winter peak at high throughfall fractions is much less pronounced. The seasonal comparison further revealed that the wooden components and the leaves behaved differently in their throughfall response to incident rainfall, especially at higher rainfall intensities. These results are of interest for estimating forest water budgets and in the context of hydrological and land surface modelling where poor simulation of throughfall would adversely impact estimates of evaporative recycling and water availability for vegetation and runoff. Summer and winter distributions of throughfall fractions for six forest stands (transparent colouring to allow for full visibility of the overlapping distributions). Mixed stands (PB: Pine/Beech, PBO: Pine/Beech/Oak) have the summer peak at low fractions similar to the deciduous stands (B: Beech, OB: Oak/Beech) but their winter distributions resemble those of the pine stands (P: Pine, YP: young Pine), that is, they do not have the pronounced peak at high fractions as in the deciduous stands.
Author Schneider, Lisa
Blume, Theresa
Güntner, Andreas
Author_xml – sequence: 1
  givenname: Theresa
  orcidid: 0000-0003-3754-7571
  surname: Blume
  fullname: Blume, Theresa
  email: blume@gfz-potsdam.de
  organization: Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences
– sequence: 2
  givenname: Lisa
  surname: Schneider
  fullname: Schneider, Lisa
  organization: Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences
– sequence: 3
  givenname: Andreas
  surname: Güntner
  fullname: Güntner, Andreas
  organization: University of Potsdam
BookMark eNp1kbFuFDEQhi2USFwCBW9giQYkNrF3vV4vHTpBEikSKaCgWnntMedozz483oTreACKPCNPgu8uVQTVNN__z8z_n5CjEAMQ8oqzM85Yfb7abs64EJI_IwvO-r7iTLVHZMGUaivJVPecnCDeMsYEU2xBfi_jeqOTzv4OqA562qJHGh3NqxTn7yunp4nGESHdFSYGpD5Q9D-p9c5BgpCpiwkwU8w6WHxPr4KbZggGdi4IGovoHU3ah53Xn18PZY090NSsymqTIXnM3uALclwYhJeP85R8_fTxy_Kyuv58cbX8cF2Zum95BWCb0dXSNFyXl1retQpa27TKSKlHVnfKjpbXnXVqFKwWIEA3nR2BG8GYaU7Jm4PvJsUfczl-WHs0ME06QJxxqKVQSvZS9gV9_QS9jXMqOe0pIeuWCV6o8wNlUkRM4Abj8z6vXB6fBs6GXTtDaWfYt1MUb58oNsmvddr-k310v_cTbP8PDpffbg6Kv_lspOA
CitedBy_id crossref_primary_10_1016_j_ecohyd_2023_04_003
crossref_primary_10_1016_j_jhydrol_2025_132942
crossref_primary_10_1016_j_ecoinf_2024_102962
crossref_primary_10_3390_rs16122094
crossref_primary_10_1016_j_scitotenv_2023_165409
crossref_primary_10_1088_2515_7620_adbba4
crossref_primary_10_1016_j_jhydrol_2024_132294
crossref_primary_10_1016_j_jhydrol_2024_130671
crossref_primary_10_5194_hess_28_3837_2024
crossref_primary_10_1016_j_foreco_2022_120342
crossref_primary_10_1029_2022MS003494
crossref_primary_10_1002_hyp_15001
crossref_primary_10_1002_hyp_70069
Cites_doi 10.1002/hyp.1007
10.1051/forest:19800104
10.1002/eco.1278
10.1016/j.agrformet.2004.01.010
10.1007/978-94-007-1363-5_26
10.1016/j.jhydrol.2004.04.007
10.1002/hyp.3360040206
10.1016/j.agrformet.2005.03.003
10.1016/j.agrformet.2015.11.017
10.1002/eco.2192
10.5194/hess-18-3511-2014
10.1007/s10342-019-01221-2
10.2136/vzj2018.06.0116
10.1016/j.ecolmodel.2014.01.021
10.1016/j.jhydrol.2006.09.019
10.1002/hyp.6610
10.1016/j.agrformet.2011.08.005
10.21105/joss.01686
10.3178/jjshwr.13.17
10.1016/j.agrformet.2008.05.011
10.1016/j.catena.2020.104647
10.1016/j.advwatres.2005.07.017
10.1007/978-1-4842-6876-6_1
10.1007/978-3-030-29702-2_7
10.1016/S0022-1694(00)00301-2
10.1007/s10533-017-0300-6
10.1016/0022-1694(95)02999-0
10.1016/j.jhydrol.2014.06.007
10.1016/j.foreco.2007.12.025
10.1016/S0140-1963(03)00125-3
10.1177/0309133306071145
10.1016/j.jhydrol.2011.01.037
10.3390/geosciences9100405
10.1016/j.foreco.2015.09.028
10.1029/2009WR007776
10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6
10.5194/hess-8-23-2004
10.1002/hyp.10936
10.1016/j.jhydrol.2006.04.032
10.1016/S0022-1694(02)00399-2
10.1016/S0022-1694(00)00339-5
10.1007/978-3-030-29702-2_4
10.1002/eco.266
10.1016/S0022-1694(96)03334-3
10.1002/hyp.7850
10.1007/978-3-662-50397-3_7
10.1175/JHM564.1
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
DOI 10.1002/hyp.14461
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage n/a
ExternalDocumentID 10_1002_hyp_14461
HYP14461
Genre article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c2951-eed3bf26c31a60851758e5d358c66ab0278dbd127df8b4024e4ea37dbe1c400c3
IEDL.DBID DR2
ISSN 0885-6087
IngestDate Fri Jul 11 18:32:06 EDT 2025
Fri Jul 25 07:55:12 EDT 2025
Tue Jul 01 01:46:50 EDT 2025
Thu Apr 24 22:57:37 EDT 2025
Wed Jan 22 16:25:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2951-eed3bf26c31a60851758e5d358c66ab0278dbd127df8b4024e4ea37dbe1c400c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3754-7571
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14461
PQID 2644625041
PQPubID 2034139
PageCount 21
ParticipantIDs proquest_miscellaneous_2648869669
proquest_journals_2644625041
crossref_citationtrail_10_1002_hyp_14461
crossref_primary_10_1002_hyp_14461
wiley_primary_10_1002_hyp_14461_HYP14461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Hydrological processes
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2002; 16
2004; 21
2019; 9
2006; 30
2019; 4
2005; 130
2014; 517
2006; 13
2011
2010
2000; 237
2004; 8
2016; 218–219
1997; 199
2016; 30
2006; 330
2020; 13
2008; 148
1996; 185
2017; 132
2013; 6
2003; 274
2014; 278
2011; 400
2004; 297
1980; 37
2012; 152
2007; 333
2018; 17
2010; 46
2000; 14
2021
2020
2000; 13
2004; 58
2020; 193
2007; 8
2019; 138
2017
2016; 359
2008; 22
2014; 18
2011; 25
2008; 255
2012; 5
1990; 4
2011; 142
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
Germer S. (e_1_2_8_11_1) 2011; 142
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
R Core Team (e_1_2_8_40_1) 2020
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 517
  start-page: 677
  year: 2014
  end-page: 690
  article-title: Partitioning forest evapotranspiration: Interception evaporation and the impact of canopy structure, local and regional advection
  publication-title: Journal of Hydrology
– volume: 185
  start-page: 379
  issue: 1
  year: 1996
  end-page: 388
  article-title: Dependence of rainfall interception on drop size: 2. Experimental determination of the wetting functions and two‐layer stochastic model parameters for five tropical tree species
  publication-title: Journal of Hydrology
– volume: 148
  start-page: 1655
  issue: 11
  year: 2008
  end-page: 1667
  article-title: Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest
  publication-title: Agricultural and Forest Meteorology
– volume: 218–219
  start-page: 65
  year: 2016
  end-page: 73
  article-title: Process‐based rainfall interception by small trees in northern China: The effect of rainfall traits and crown structure characteristics
  publication-title: Agricultural and Forest Meteorology
– volume: 274
  start-page: 1
  issue: 1–4
  year: 2003
  end-page: 29
  article-title: A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems
  publication-title: Journal of Hydrology
– volume: 14
  start-page: 131
  year: 2000
  end-page: 144
  article-title: A simpli®ed method for forest water storage capacity measurement
  publication-title: Journal of Hydrology
– volume: 400
  start-page: 244
  issue: 1–2
  year: 2011
  end-page: 254
  article-title: Spatial and temporal patterns of throughfall volume in a deciduous mixed‐species stand
  publication-title: Journal of Hydrology
– year: 2021
– volume: 16
  start-page: 2347
  issue: 12
  year: 2002
  end-page: 2361
  article-title: Comparison of interception losses in a broadleaved native forest and a Pseudotsuga menziesii (Douglas fir) plantation in the Andes Mountains of southern Chile
  publication-title: Hydrological Processes
– volume: 330
  start-page: 651
  issue: 3–4
  year: 2006
  end-page: 662
  article-title: Spatial variability and temporal stability of throughfall water under a dominant beech ( L.) tree in relationship to canopy cover
  publication-title: Journal of Hydrology
– volume: 30
  start-page: 605
  issue: 5
  year: 2006
  end-page: 632
  article-title: Variability of throughfall volume and solute inputs in wooded ecosystems
  publication-title: Progress in Physical Geography
– volume: 8
  start-page: 825
  issue: 4
  year: 2007
  end-page: 836
  article-title: A comparison of three canopy interception models for a leafless mixed deciduous forest stand in the eastern United States
  publication-title: Journal of Hydrometeorology
– volume: 138
  start-page: 1033
  issue: 6
  year: 2019
  end-page: 1047
  article-title: Comparing direct and indirect leaf area measurements for scots pine and Norway spruce plantations in Sweden
  publication-title: European Journal of Forest Research
– volume: 297
  start-page: 124
  issue: 1
  year: 2004
  end-page: 135
  article-title: Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico
  publication-title: Journal of Hydrology
– volume: 6
  start-page: 483
  issue: 3
  year: 2013
  end-page: 490
  article-title: Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity
  publication-title: Ecohydrology
– volume: 142
  start-page: 65
  issue: 1–2
  year: 2011
  end-page: 95
  article-title: Water balance changes and responses of ecosystems and Society in the Berlin‐Brandenburg Region – A review
  publication-title: DIE ERDE – Journal of the Geographical Society of Berlin
– volume: 4
  start-page: 1686
  issue: 43
  year: 2019
  article-title: Welcome to the Tidyverse
  publication-title: Journal of Open Source Software
– volume: 18
  start-page: 3511
  issue: 9
  year: 2014
  end-page: 3538
  article-title: Sensitivity of simulated global‐scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration
  publication-title: Hydrology and Earth System Sciences
– volume: 132
  start-page: 273
  issue: 3
  year: 2017
  end-page: 292
  article-title: Do storm synoptic patterns affect biogeochemical fluxes from temperate deciduous forest canopies?
  publication-title: Biogeochemistry
– volume: 359
  start-page: 109
  year: 2016
  end-page: 117
  article-title: Small‐scale topographic variability influences tree species distribution and canopy throughfall partitioning in a temperate deciduous forest
  publication-title: Forest Ecology and Management
– volume: 58
  start-page: 181
  issue: 2
  year: 2004
  end-page: 202
  article-title: Throughfall, stemflow, and canopy interception loss fluxes in a semi‐arid Sierra Madre oriental matorral community
  publication-title: Journal of Arid Environments
– volume: 22
  start-page: 33
  issue: 1
  year: 2008
  end-page: 45
  article-title: Rainfall partitioning into throughfall, stemflow, and interception within a single beech ( L.) canopy: Influence of foliation, rain event characteristics, and meteorology
  publication-title: Hydrological Processes
– volume: 255
  start-page: 1915
  issue: 5–6
  year: 2008
  end-page: 1925
  article-title: The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation
  publication-title: Forest Ecology and Management
– volume: 5
  start-page: 759
  issue: 6
  year: 2012
  end-page: 767
  article-title: Rainfall partitioning in a deciduous forest plot in leafed and leafless periods
  publication-title: Ecohydrology
– start-page: 49
  year: 2020
  end-page: 70
– volume: 278
  start-page: 9
  year: 2014
  end-page: 17
  article-title: Of climate and its resulting tree growth: Simulating the productivity of temperate forests
  publication-title: Ecological Modelling
– volume: 13
  start-page: 974
  year: 2006
  end-page: 986
  article-title: Storage of water on vegetation under simulated rainfall of varying intensity
  publication-title: Advances in Water Resources
– volume: 8
  start-page: 23
  issue: 1
  year: 2004
  end-page: 34
  article-title: A stochastic model of throughfall for extreme events
  publication-title: Hydrology and Earth System Sciences
– start-page: 521
  year: 2011
  end-page: 539
– volume: 13
  issue: 3
  year: 2020
  article-title: Differences in submillimetre surface morphology and canopy interception storage capacities of Gleditsia triacanthos L.(honeylocust) in relation to canopy phenophase and position
  publication-title: Ecohydrology
– volume: 17
  issue: 1
  year: 2018
  article-title: Interdisciplinary geo‐ecological research across time scales in the northeast German lowland observatory (TERENO‐NE)
  publication-title: Vadose Zone Journal
– volume: 333
  start-page: 472
  issue: 2–4
  year: 2007
  end-page: 485
  article-title: Disturbance and long‐term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico
  publication-title: Journal of Hydrology
– volume: 21
  start-page: 171
  year: 2004
  end-page: 191
  article-title: The dynamics of rainfall interception by a seasonal temperate rainforest
  publication-title: Agricultural and Forest Meteorology
– volume: 37
  start-page: 53
  issue: 1
  year: 1980
  end-page: 71
  article-title: Interception des précipitations et apport au sol d'éléments minéraux par les eaux de pluie et les pluviolessivats dans une hêtraie atlantique et dans quelques peuplements résineux en Bretagne
  publication-title: Annales des Sciences Forestières
– volume: 13
  start-page: 17
  issue: 1
  year: 2000
  end-page: 30
  article-title: Seasonal and inter‐plot variations of stemflow, throughfall and interception loss in two deciduous broad‐leaved forests
  publication-title: Journal of Japan Society of Hydrology and Water Resources
– volume: 30
  start-page: 4185
  issue: 22
  year: 2016
  end-page: 4201
  article-title: Double funnelling in a mature coastal British Columbia forest: Spatial patterns of stemflow after infiltration: Double Funnelling in a mature coastal British Columbia Forest
  publication-title: Hydrological Processes
– year: 2010
– volume: 130
  start-page: 113
  issue: 1–2
  year: 2005
  end-page: 129
  article-title: The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old‐growth Douglas‐fir forest
  publication-title: Agricultural and Forest Meteorology
– volume: 237
  start-page: 40
  issue: 1–2
  year: 2000
  end-page: 57
  article-title: Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia
  publication-title: Journal of Hydrology
– volume: 4
  start-page: 157
  issue: 2
  year: 1990
  end-page: 167
  article-title: Partitioning of rainfall in a eucalypt forest and pine plantation in southeastern Australia: III determination of the canopy storage capacity of a dry sclerophyll eucalypt forest
  publication-title: Hydrological Processes
– volume: 193
  start-page: 104647
  year: 2020
  article-title: Palaeosols and their cover sediments of a glacial landscape in northern Central Europe: Spatial distribution, pedostratigraphy and evidence on landscape evolution
  publication-title: Catena
– volume: 9
  start-page: 405
  issue: 10
  year: 2019
  article-title: Spatial and temporal variability of throughfall among oak and co‐occurring non‐oak tree species in an upland hardwood Forest
  publication-title: Geosciences
– volume: 152
  start-page: 11
  year: 2012
  end-page: 16
  article-title: The relationship between leaf hydrophobicity, water droplet retention, and leaf angle of common species in a semi‐arid region of the western United States
  publication-title: Agricultural and Forest Meteorology
– year: 2020
– volume: 46
  start-page: W01503
  issue: 1
  year: 2010
  article-title: Sampling procedures for throughfall monitoring: A simulation study: Sampling procedures for throughfall monitoring
  publication-title: Water Resources Research
– volume: 199
  start-page: 331
  issue: 3
  year: 1997
  end-page: 345
  article-title: Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale
  publication-title: Journal of Hydrology
– year: 2017
– volume: 14
  start-page: 2903
  issue: 16–17
  year: 2000
  end-page: 2920
  article-title: Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate
  publication-title: Hydrological Processes
– volume: 25
  start-page: 623
  issue: 4
  year: 2011
  end-page: 633
  article-title: Seasonal and annual throughfall and stemflow in Andean temperate rainforests
  publication-title: Hydrological Processes
– ident: e_1_2_8_19_1
  doi: 10.1002/hyp.1007
– ident: e_1_2_8_10_1
  doi: 10.1051/forest:19800104
– ident: e_1_2_8_18_1
  doi: 10.1002/eco.1278
– ident: e_1_2_8_30_1
  doi: 10.1016/j.agrformet.2004.01.010
– ident: e_1_2_8_48_1
  doi: 10.1007/978-94-007-1363-5_26
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jhydrol.2004.04.007
– ident: e_1_2_8_8_1
  doi: 10.1002/hyp.3360040206
– ident: e_1_2_8_39_1
  doi: 10.1016/j.agrformet.2005.03.003
– ident: e_1_2_8_28_1
  doi: 10.1016/j.agrformet.2015.11.017
– ident: e_1_2_8_5_1
  doi: 10.1002/eco.2192
– volume-title: R: A language and environment for statistical computing
  year: 2020
  ident: e_1_2_8_40_1
– ident: e_1_2_8_34_1
  doi: 10.5194/hess-18-3511-2014
– ident: e_1_2_8_12_1
  doi: 10.1007/s10342-019-01221-2
– ident: e_1_2_8_15_1
  doi: 10.2136/vzj2018.06.0116
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ecolmodel.2014.01.021
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jhydrol.2006.09.019
– ident: e_1_2_8_49_1
  doi: 10.1002/hyp.6610
– ident: e_1_2_8_17_1
  doi: 10.1016/j.agrformet.2011.08.005
– ident: e_1_2_8_50_1
  doi: 10.21105/joss.01686
– ident: e_1_2_8_29_1
– ident: e_1_2_8_38_1
  doi: 10.3178/jjshwr.13.17
– ident: e_1_2_8_16_1
  doi: 10.1016/j.agrformet.2008.05.011
– volume: 142
  start-page: 65
  issue: 1
  year: 2011
  ident: e_1_2_8_11_1
  article-title: Water balance changes and responses of ecosystems and Society in the Berlin‐Brandenburg Region – A review
  publication-title: DIE ERDE – Journal of the Geographical Society of Berlin
– ident: e_1_2_8_20_1
  doi: 10.1016/j.catena.2020.104647
– ident: e_1_2_8_23_1
  doi: 10.1016/j.advwatres.2005.07.017
– ident: e_1_2_8_51_1
  doi: 10.1007/978-1-4842-6876-6_1
– ident: e_1_2_8_13_1
  doi: 10.1007/978-3-030-29702-2_7
– ident: e_1_2_8_33_1
  doi: 10.1016/S0022-1694(00)00301-2
– ident: e_1_2_8_44_1
  doi: 10.1007/s10533-017-0300-6
– ident: e_1_2_8_4_1
  doi: 10.1016/0022-1694(95)02999-0
– ident: e_1_2_8_21_1
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jhydrol.2014.06.007
– ident: e_1_2_8_37_1
  doi: 10.1016/j.foreco.2007.12.025
– ident: e_1_2_8_6_1
  doi: 10.1016/S0140-1963(03)00125-3
– ident: e_1_2_8_27_1
  doi: 10.1177/0309133306071145
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jhydrol.2011.01.037
– ident: e_1_2_8_45_1
  doi: 10.3390/geosciences9100405
– ident: e_1_2_8_43_1
  doi: 10.1016/j.foreco.2015.09.028
– ident: e_1_2_8_52_1
  doi: 10.1029/2009WR007776
– ident: e_1_2_8_9_1
  doi: 10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6
– ident: e_1_2_8_22_1
  doi: 10.5194/hess-8-23-2004
– ident: e_1_2_8_46_1
  doi: 10.1002/hyp.10936
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jhydrol.2006.04.032
– ident: e_1_2_8_26_1
  doi: 10.1016/S0022-1694(02)00399-2
– ident: e_1_2_8_31_1
  doi: 10.1016/S0022-1694(00)00339-5
– ident: e_1_2_8_42_1
  doi: 10.1007/978-3-030-29702-2_4
– ident: e_1_2_8_35_1
  doi: 10.1002/eco.266
– ident: e_1_2_8_32_1
  doi: 10.1016/S0022-1694(96)03334-3
– ident: e_1_2_8_36_1
  doi: 10.1002/hyp.7850
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-662-50397-3_7
– ident: e_1_2_8_24_1
  doi: 10.1175/JHM564.1
SSID ssj0004080
Score 2.445816
Snippet Throughfall, that is, the fraction of rainfall that passes through the forest canopy, is strongly influenced by rainfall and forest stand characteristics which...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Beech
Comparative analysis
Deciduous forests
Fagus
forest canopy
forest hydrology
forest stand characteristics
forest stands
Forests
Germany
Hydrology
interception
leaf area index
Oak
Plant cover
Rain
Rainfall
rainfall characteristics
Rainfall intensity
Runoff
Seasonal comparisons
seasonal effects
Seasonal variations
Seasons
Small mammals
stratified event analysis
Summer
Terrestrial environments
Throughfall
tree species effects
Vegetation
Water availability
Water resources
Winter
Title Comparative analysis of throughfall observations in six different forest stands: Influence of seasons, rainfall‐ and stand characteristics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14461
https://www.proquest.com/docview/2644625041
https://www.proquest.com/docview/2648869669
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7qRS_u4rgRxYMHq22aZlo9iQujoIg4MIJQkjRhBoeO2BlQT_4AD_5Gf4kv6TIqCuKtkJekWV7ee1m-D6FNRsCuESUcsJXCoaGOnEgw5miufVdJoamFYzi_YI0mPWsFrRG0X76FyfEhqg03oxl2vTYKzkW2OwQNbT_dm5NJG_p4PjO4-UdXQ-go6lrWNFCiwGFuWC9RhVyyW-X8aouGDuZnN9XamZMpdFv-YX695G5n0Bc78vkbeOM_mzCNJgv_Ex_kE2YGjah0Fo0XVOjtpzn0ejjEA8e8gCzBPY0LRh_Nu13cE9VmboY7Kc46j7ikWulj8IOhgdjuUmR7-LTkQTGlmD1JyLSNDTWFKev95Q2qSXJpLL_iR8-j5snx9WHDKSgbHEnAV3PA4vpCEyZ9jzPjzUE4ooLED0LJGBfmmDMRiUfqiQ4FhK5UUcX9eiKUJ2E1kf4CGkt7qVpEONQk0S5k9CJFXe1HlAeScXMVUmhF6jW0VQ5eLAs8c0Or0Y1zJGYSQ_fGtntraKMSvc9BPH4SWilnQFzocRYbd5EZlDdIXq-SQQPNsQpPVW9gZcKQQdgYwS_Z4f69krhxc2k_lv4uuowmiHlzYS--raCx_sNArYIn1BdraJTQyzU78T8Ab2oJ-Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FD3oRn_ioGsWDBxe32Wy6K16kKPVR8WChnpYkm6BQtmIr2Js_wIO_0V_iTPZRCwreFjJ5sLOz880k-YaQA8HArzGjPPCVyuORjb1YCeFZaQPfaGW5o2Po3Ip2l1_1wl6NnJZ3YXJ-iCrhhpbh_tdo4JiQPp6whj6On3FrEmOfWQ64HA_0MX43uRXpu7ppYEahJ_yoWfIK-ey46jrtjSYQ8ydQdZ7mYpEsFBCRnuU6XSI1ky2TuaJa-eN4hXy0JpTdVBasInRgaVF0x8p-nw5UlW8d0qeMDp_eaFkNZUQBqsIKqEskDE_oZVmqBEfBtCF0OqJYPQLH-nr_hGnSXJrqaYrnVdK9OL9vtb2iqoKnGcApD5xioCwTOmhIgYALIgYTpkEYaSGkwp3IVKUN1kxtpCC65IYbGTRTZRoaDF4Ha2QmG2RmndDIstT60LERG-7bIOYy1ELiaUVlDWtukMPy7Sa6oBzHyhf9JCdLZgkoInGK2CD7lehzzrPxm1C9VFFSmNowQUQnkIgNmveqZjAS3PmQmRm8OpkoEhDZxbAkp9q_J0naD3fuYfP_ortkrn3fuUluLm-vt8g8wysS7pxancyMXl7NNgCXkdpx3-c3dfvsbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA5iwfpStVW02ppKH_rg6Gwmk51pn4p22VW7LKULCsKQZBKULjNLdxeqT_4AH_yN_pKek7nVUqH4NpCTZHI5Od_J5TuEvBcM7BozygNbqTwe2diLlRCelTbwjVaWOzqGr33RHfKj0_B0jnyq3sIU_BD1hhtqhluvUcHHqd1vSEMvrsZ4MomuzzMuAEkgIvrWcEdx34VNAy0KPUhuV7RCPtuvsz40Rg3C_BOnOkPTWSLn1S8W90t-7M2mak9f_8Xe-MQ2LJMXJQCln4sZs0LmTPaSPC9joV9cvSK3Bw0hOJUlZwnNLS1D-lg5GtFc1bu5E3qZ0cnlL1rFWplSAMLQQOq2KSYfaa8KhIKl4KYkZNqlGJsCy7q_uYNq0kKa6ocE0qtk2Pny_aDrlTEbPM0ArHlgcgNlmdBBSwqEc-CPmDANwkgLIRWec6YqbbF2aiMFvis33MignSrT0rCc6GCNzGd5ZtYJjSxLrQ8ZW7Hhvg1iLkMtJN6FVNaw9gb5UA1eoktCc4yrMUoKKmaWQPcmrns3yE4tOi5YPP4ltFXNgKRU5EmCeFEgzRskv6uTQQXxXEVmJp85mSgS4DfG8EtuuB-vJOmeDdzH6_8X3SYLg8NOctLrH2-SRYbvL9wluC0yP_05M28AFU3VWzf7fwOVeAvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+throughfall+observations+in+six+different+forest+stands%3A+Influence+of+seasons%2C+rainfall%E2%80%90+and+stand+characteristics&rft.jtitle=Hydrological+processes&rft.au=Blume%2C+Theresa&rft.au=Schneider%2C+Lisa&rft.au=G%C3%BCntner%2C+Andreas&rft.date=2022-03-01&rft.issn=0885-6087&rft.volume=36&rft.issue=3+p.e14461-&rft_id=info:doi/10.1002%2Fhyp.14461&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon