Kir6.2 channel activity is regulated by interaction of transmembrane domains 1 and 2 through I167 in the bundle‐crossing gate

ATP‐sensitive potassium (K ATP ) channel in pancreatic β‐cells is composed of four pore‐forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N‐terminal region, an outer transmembrane heli...

Full description

Saved in:
Bibliographic Details
Published inPhysiological reports Vol. 13; no. 15; pp. e70481 - n/a
Main Authors Kawashima, Ryoko, Meller, Charlotte, Suzuki, Manabu, Kato, Shigeki, Horita, Shoichiro, Hidema, Shizu, Misaka, Shingen, Hosoya, Mitsuaki, Go, Hayato, Kobayashi, Kazuto, de Wet, Heidi, Maejima, Yuko, Shimomura, Kenju
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.08.2025
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ATP‐sensitive potassium (K ATP ) channel in pancreatic β‐cells is composed of four pore‐forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N‐terminal region, an outer transmembrane helix (TM1), an intramembrane region that functions as a potassium selectivity filter, an inner transmembrane helix (TM2) that forms a bundle‐crossing gate, and a C‐terminal cytoplasmic domain. Mutations in the Kir6.2 subunit can cause neonatal diabetes with severe neurological features (DEND syndrome). The DEND syndrome‐inducing I167L mutation of Kir6.2 increases the open probability ( P o ) of the K ATP channel. To investigate the gating mechanism impacted by this mutation in Kir6.2 alone, we used C‐terminus‐truncated Kir6.2 channels to ascertain the impact of I167 mutations on P o in Kir6.2 channels in the absence of SUR1. We found that I167L and I167F mutations showed an increased P o while the P o of other mutations (I167A, I167V) were unchanged when compared to wild‐type channels. By mutating residues in TM1 (W68, L72, F75) that may interact with I167, we found that a double mutation of I167L and F75A normalized the P o . These results would suggest that I167 may play an important role in stabilizing the open state of Kir6.2 channels.
AbstractList ATP‐sensitive potassium (KATP) channel in pancreatic β‐cells is composed of four pore‐forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N‐terminal region, an outer transmembrane helix (TM1), an intramembrane region that functions as a potassium selectivity filter, an inner transmembrane helix (TM2) that forms a bundle‐crossing gate, and a C‐terminal cytoplasmic domain. Mutations in the Kir6.2 subunit can cause neonatal diabetes with severe neurological features (DEND syndrome). The DEND syndrome‐inducing I167L mutation of Kir6.2 increases the open probability (Po) of the KATP channel. To investigate the gating mechanism impacted by this mutation in Kir6.2 alone, we used C‐terminus‐truncated Kir6.2 channels to ascertain the impact of I167 mutations on Po in Kir6.2 channels in the absence of SUR1. We found that I167L and I167F mutations showed an increased Po while the Po of other mutations (I167A, I167V) were unchanged when compared to wild‐type channels. By mutating residues in TM1 (W68, L72, F75) that may interact with I167, we found that a double mutation of I167L and F75A normalized the Po. These results would suggest that I167 may play an important role in stabilizing the open state of Kir6.2 channels.
Abstract ATP‐sensitive potassium (KATP) channel in pancreatic β‐cells is composed of four pore‐forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N‐terminal region, an outer transmembrane helix (TM1), an intramembrane region that functions as a potassium selectivity filter, an inner transmembrane helix (TM2) that forms a bundle‐crossing gate, and a C‐terminal cytoplasmic domain. Mutations in the Kir6.2 subunit can cause neonatal diabetes with severe neurological features (DEND syndrome). The DEND syndrome‐inducing I167L mutation of Kir6.2 increases the open probability (Po) of the KATP channel. To investigate the gating mechanism impacted by this mutation in Kir6.2 alone, we used C‐terminus‐truncated Kir6.2 channels to ascertain the impact of I167 mutations on Po in Kir6.2 channels in the absence of SUR1. We found that I167L and I167F mutations showed an increased Po while the Po of other mutations (I167A, I167V) were unchanged when compared to wild‐type channels. By mutating residues in TM1 (W68, L72, F75) that may interact with I167, we found that a double mutation of I167L and F75A normalized the Po. These results would suggest that I167 may play an important role in stabilizing the open state of Kir6.2 channels.
ATP-sensitive potassium (K ) channel in pancreatic β-cells is composed of four pore-forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N-terminal region, an outer transmembrane helix (TM1), an intramembrane region that functions as a potassium selectivity filter, an inner transmembrane helix (TM2) that forms a bundle-crossing gate, and a C-terminal cytoplasmic domain. Mutations in the Kir6.2 subunit can cause neonatal diabetes with severe neurological features (DEND syndrome). The DEND syndrome-inducing I167L mutation of Kir6.2 increases the open probability (P ) of the K channel. To investigate the gating mechanism impacted by this mutation in Kir6.2 alone, we used C-terminus-truncated Kir6.2 channels to ascertain the impact of I167 mutations on P in Kir6.2 channels in the absence of SUR1. We found that I167L and I167F mutations showed an increased P while the P of other mutations (I167A, I167V) were unchanged when compared to wild-type channels. By mutating residues in TM1 (W68, L72, F75) that may interact with I167, we found that a double mutation of I167L and F75A normalized the P . These results would suggest that I167 may play an important role in stabilizing the open state of Kir6.2 channels.
ATP‐sensitive potassium (K ATP ) channel in pancreatic β‐cells is composed of four pore‐forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N‐terminal region, an outer transmembrane helix (TM1), an intramembrane region that functions as a potassium selectivity filter, an inner transmembrane helix (TM2) that forms a bundle‐crossing gate, and a C‐terminal cytoplasmic domain. Mutations in the Kir6.2 subunit can cause neonatal diabetes with severe neurological features (DEND syndrome). The DEND syndrome‐inducing I167L mutation of Kir6.2 increases the open probability ( P o ) of the K ATP channel. To investigate the gating mechanism impacted by this mutation in Kir6.2 alone, we used C‐terminus‐truncated Kir6.2 channels to ascertain the impact of I167 mutations on P o in Kir6.2 channels in the absence of SUR1. We found that I167L and I167F mutations showed an increased P o while the P o of other mutations (I167A, I167V) were unchanged when compared to wild‐type channels. By mutating residues in TM1 (W68, L72, F75) that may interact with I167, we found that a double mutation of I167L and F75A normalized the P o . These results would suggest that I167 may play an important role in stabilizing the open state of Kir6.2 channels.
ATP-sensitive potassium (KATP) channel in pancreatic β-cells is composed of four pore-forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N-terminal region, an outer transmembrane helix (TM1), an intramembrane region that functions as a potassium selectivity filter, an inner transmembrane helix (TM2) that forms a bundle-crossing gate, and a C-terminal cytoplasmic domain. Mutations in the Kir6.2 subunit can cause neonatal diabetes with severe neurological features (DEND syndrome). The DEND syndrome-inducing I167L mutation of Kir6.2 increases the open probability (Po) of the KATP channel. To investigate the gating mechanism impacted by this mutation in Kir6.2 alone, we used C-terminus-truncated Kir6.2 channels to ascertain the impact of I167 mutations on Po in Kir6.2 channels in the absence of SUR1. We found that I167L and I167F mutations showed an increased Po while the Po of other mutations (I167A, I167V) were unchanged when compared to wild-type channels. By mutating residues in TM1 (W68, L72, F75) that may interact with I167, we found that a double mutation of I167L and F75A normalized the Po. These results would suggest that I167 may play an important role in stabilizing the open state of Kir6.2 channels.ATP-sensitive potassium (KATP) channel in pancreatic β-cells is composed of four pore-forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N-terminal region, an outer transmembrane helix (TM1), an intramembrane region that functions as a potassium selectivity filter, an inner transmembrane helix (TM2) that forms a bundle-crossing gate, and a C-terminal cytoplasmic domain. Mutations in the Kir6.2 subunit can cause neonatal diabetes with severe neurological features (DEND syndrome). The DEND syndrome-inducing I167L mutation of Kir6.2 increases the open probability (Po) of the KATP channel. To investigate the gating mechanism impacted by this mutation in Kir6.2 alone, we used C-terminus-truncated Kir6.2 channels to ascertain the impact of I167 mutations on Po in Kir6.2 channels in the absence of SUR1. We found that I167L and I167F mutations showed an increased Po while the Po of other mutations (I167A, I167V) were unchanged when compared to wild-type channels. By mutating residues in TM1 (W68, L72, F75) that may interact with I167, we found that a double mutation of I167L and F75A normalized the Po. These results would suggest that I167 may play an important role in stabilizing the open state of Kir6.2 channels.
Author Kawashima, Ryoko
Kato, Shigeki
Hosoya, Mitsuaki
Go, Hayato
Meller, Charlotte
Suzuki, Manabu
Hidema, Shizu
Shimomura, Kenju
Misaka, Shingen
Maejima, Yuko
Kobayashi, Kazuto
de Wet, Heidi
Horita, Shoichiro
Author_xml – sequence: 1
  givenname: Ryoko
  surname: Kawashima
  fullname: Kawashima, Ryoko
  organization: Department of Bioregulation and Pharmacological Medicine Fukushima Medical University School of Medicine Fukushima Japan, Department of Pediatrics Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 2
  givenname: Charlotte
  surname: Meller
  fullname: Meller, Charlotte
  organization: Dept of Physiology, Anatomy and Genetics University of Oxford Oxford UK, Electron Bio‐Imaging Centre (eBIC), Diamond Light Source Harwell Science & Innovation Campus Didcot, Oxfordshire UK, Research Complex at Harwell Harwell Science & Innovation Campus Didcot, Oxfordshire UK
– sequence: 3
  givenname: Manabu
  surname: Suzuki
  fullname: Suzuki, Manabu
  organization: Department of Bioregulation and Pharmacological Medicine Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 4
  givenname: Shigeki
  surname: Kato
  fullname: Kato, Shigeki
  organization: Department of Molecular Genetics Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 5
  givenname: Shoichiro
  orcidid: 0000-0002-2850-6738
  surname: Horita
  fullname: Horita, Shoichiro
  organization: Department of Diabetes, Endocrinology and Metabolism Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 6
  givenname: Shizu
  surname: Hidema
  fullname: Hidema, Shizu
  organization: Department of Bioregulation and Pharmacological Medicine Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 7
  givenname: Shingen
  orcidid: 0000-0003-3426-6897
  surname: Misaka
  fullname: Misaka, Shingen
  organization: Department of Bioregulation and Pharmacological Medicine Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 8
  givenname: Mitsuaki
  surname: Hosoya
  fullname: Hosoya, Mitsuaki
  organization: Department of Perinatology and Pediatrics for Regional Medical Support Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 9
  givenname: Hayato
  surname: Go
  fullname: Go, Hayato
  organization: Department of Pediatrics Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 10
  givenname: Kazuto
  surname: Kobayashi
  fullname: Kobayashi, Kazuto
  organization: Department of Molecular Genetics Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 11
  givenname: Heidi
  surname: de Wet
  fullname: de Wet, Heidi
  organization: Dept of Physiology, Anatomy and Genetics University of Oxford Oxford UK
– sequence: 12
  givenname: Yuko
  surname: Maejima
  fullname: Maejima, Yuko
  organization: Department of Bioregulation and Pharmacological Medicine Fukushima Medical University School of Medicine Fukushima Japan
– sequence: 13
  givenname: Kenju
  orcidid: 0000-0002-1539-2532
  surname: Shimomura
  fullname: Shimomura, Kenju
  organization: Department of Bioregulation and Pharmacological Medicine Fukushima Medical University School of Medicine Fukushima Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40746251$$D View this record in MEDLINE/PubMed
BookMark eNpdkstuFDEQRS0URELIij2yxAYJzeB3dy9RxGNEJDZZsLPKj-7xqNse7O5Is4JP4Bv5EpyZECFWVWWfunKV73N0FlP0CL2kZE1FS8W7_fbA1g2p-RN0wYikq5Y2387-yc_RVSk7QgglnHdEPEPngjRCMUkv0I8vIas1w3YLMfoRg53DXZgPOBSc_bCMMHuHTa3j7PP9bYo49XjOEMvkJ1Ojxy5NEGLBFEN0mOF5m9MybPGGqqZ21tpjs0Q3-t8_f9mcSglxwEPVfoGe9jAWf_UQL9Htxw-3159XN18_ba7f36ws6-octgNhe0oVY70FpSwxnFNmuQUODCTjisrWMsGIAGMUN6pvetuA6VkHnl-izUnWJdjpfQ4T5INOEPTxIOVBQ56DHb2G1hhqHCe1W1AqjQHXdsQJ7oB2rapab05a-5y-L77MegrF-nGsm0hL0ZxxydtGElnR1_-hu7TkWAetlCBSth1tKvXqgVrM5N3j8_7-UgXenoDj6rLvHxFK9NEG-t4G-mgD_gevMKRv
Cites_doi 10.1016/j.cell.2016.12.028
10.1021/bi501198f
10.1056/NEJMoa032922
10.7554/eLife.31054
10.2169/internalmedicine.8454-16
10.1152/physrev.00021.2009
10.1113/jphysiol.2011.209700
10.1073/pnas.2112267118
10.2337/diabetes.53.suppl_3.S113
10.7554/eLife.32481
10.1038/sj.emboj.7601828
10.1016/j.pbiomolbio.2006.04.001
10.1038/nsmb.2208
10.1016/j.celrep.2019.04.050
10.1038/387179a0
10.1007/s13238-018-0530-y
10.1085/jgp.202113046
10.7554/eLife.24149
10.1074/jbc.M114.631960
10.1053/meta.2000.17822
10.1038/s41598-021-86121-5
10.3389/fendo.2023.1161117
10.7554/eLife.103159
10.1038/s41467-022-30430-4
10.1016/j.jmb.2022.167789
10.7554/eLife.46417
10.1212/01.wnl.0000268488.51776.53
10.1126/science.1180310
10.1085/jgp.202213085
ContentType Journal Article
Copyright 2025 The Author(s). Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7T5
7TK
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOA
DOI 10.14814/phy2.70481
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2051-817X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a8bb1bd30c7a4115bbad890d43da1986
40746251
10_14814_phy2_70481
Genre Journal Article
GrantInformation_xml – fundername: Grant-in-Aid for scientific research
  grantid: 26461366
– fundername: Grant-in-Aid for scientific research
  grantid: 18K08483
GroupedDBID 0R~
1OC
24P
53G
5VS
7X7
8-1
8FE
8FH
8FI
8FJ
AAFWJ
AAMMB
AAYXX
AAZKR
ABDBF
ABUWG
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RHI
RPM
UKHRP
WIN
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7T5
7TK
7XB
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PUEGO
7X8
ID FETCH-LOGICAL-c2951-c9a4cf11622fca66c0b3312c3ca3a2a5236158c24204abb63b6f7fc7abf29ae3
IEDL.DBID 7X7
ISSN 2051-817X
IngestDate Wed Aug 27 01:19:32 EDT 2025
Fri Aug 01 18:25:25 EDT 2025
Sat Aug 23 12:57:35 EDT 2025
Wed Aug 06 16:36:38 EDT 2025
Wed Aug 06 20:07:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords KATP channel
Kir6.2
SUR
Language English
License 2025 The Author(s). Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2951-c9a4cf11622fca66c0b3312c3ca3a2a5236158c24204abb63b6f7fc7abf29ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1539-2532
0000-0003-3426-6897
0000-0002-2850-6738
OpenAccessLink https://www.proquest.com/docview/3240558917?pq-origsite=%requestingapplication%
PMID 40746251
PQID 3240558917
PQPubID 2034607
ParticipantIDs doaj_primary_oai_doaj_org_article_a8bb1bd30c7a4115bbad890d43da1986
proquest_miscellaneous_3235387505
proquest_journals_3240558917
pubmed_primary_40746251
crossref_primary_10_14814_phy2_70481
PublicationCentury 2000
PublicationDate 2025-08-00
2025-Aug
20250801
2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Physiological reports
PublicationTitleAlternate Physiol Rep
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References Martin G. M. (e_1_2_12_17_1) 2017; 6
Tarasov A. (e_1_2_12_23_1) 2004; 53
Wang M. (e_1_2_12_25_1) 2022; 13
Lee K. P. K. (e_1_2_12_12_1) 2017; 6
Tucker S. J. (e_1_2_12_24_1) 1997; 387
Bavro V. N. (e_1_2_12_2_1) 2012; 19
ElSheikh A. (e_1_2_12_6_1) 2023; 14
Ding D. (e_1_2_12_3_1) 2019; 27
Tao X. (e_1_2_12_22_1) 2009; 326
Martin G. M. (e_1_2_12_16_1) 2019; 8
Männikkö R. (e_1_2_12_14_1) 2011; 589
Nishida M. (e_1_2_12_18_1) 2007; 26
Gribble F. M. (e_1_2_12_8_1) 2000; 49
Elsheikh A. (e_1_2_12_5_1) 2025; 13
Li N. (e_1_2_12_13_1) 2017; 168
Horita S. (e_1_2_12_10_1) 2021; 11
Xie L. H. (e_1_2_12_28_1) 2007; 94
Jogini V. (e_1_2_12_11_1) 2023; 155
Gloyn A. L. (e_1_2_12_7_1) 2004; 350
Hibino H. (e_1_2_12_9_1) 2010; 90
Zhang R. S. (e_1_2_12_29_1) 2015; 290
Shimomura K. (e_1_2_12_20_1) 2017; 56
Driggers C. M. (e_1_2_12_4_1) 2023; 155
Shimomura K. (e_1_2_12_19_1) 2007; 69
Wu J. X. (e_1_2_12_27_1) 2018; 9
Martin G. M. (e_1_2_12_15_1) 2017; 6
Sung M. W. (e_1_2_12_21_1) 2022; 434
Wu E. Y. (e_1_2_12_26_1) 2014; 54
Zhao C. (e_1_2_12_30_1) 2021; 118
References_xml – volume: 168
  start-page: 101
  issue: 1
  year: 2017
  ident: e_1_2_12_13_1
  article-title: Structure of a pancreatic ATP‐sensitive Potassium Channel
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.028
– volume: 54
  start-page: 881
  issue: 3
  year: 2014
  ident: e_1_2_12_26_1
  article-title: A conservative isoleucine to leucine mutation causes major rearrangements and cold sensitivity in KlenTaq1 DNA polymerase
  publication-title: Biochemistry
  doi: 10.1021/bi501198f
– volume: 350
  start-page: 1838
  issue: 18
  year: 2004
  ident: e_1_2_12_7_1
  article-title: Activating mutations in the gene encoding the ATP‐sensitive potassium‐channel subunit Kir6.2 and permanent neonatal diabetes
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMoa032922
– volume: 6
  year: 2017
  ident: e_1_2_12_15_1
  article-title: Anti‐diabetic drug binding site in a mammalian KATP channel revealed by cryo‐EM
  publication-title: eLife
  doi: 10.7554/eLife.31054
– volume: 56
  start-page: 2387
  issue: 18
  year: 2017
  ident: e_1_2_12_20_1
  article-title: KATP Channel mutations and neonatal diabetes
  publication-title: Internal Medicine (Tokyo, Japan)
  doi: 10.2169/internalmedicine.8454-16
– volume: 90
  start-page: 291
  issue: 1
  year: 2010
  ident: e_1_2_12_9_1
  article-title: Inwardly rectifying potassium channels: Their structure, function, and physiological roles
  publication-title: Physiological Reviews
  doi: 10.1152/physrev.00021.2009
– volume: 589
  start-page: 3071
  issue: 13
  year: 2011
  ident: e_1_2_12_14_1
  article-title: A conserved tryptophan at the membrane‐water interface acts as a gatekeeper for Kir6.2/SUR1 channels and causes neonatal diabetes when mutated
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2011.209700
– volume: 118
  issue: 48
  year: 2021
  ident: e_1_2_12_30_1
  article-title: Molecular structure of an open human K ATP channel
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.2112267118
– volume: 53
  start-page: S113
  issue: 3
  year: 2004
  ident: e_1_2_12_23_1
  article-title: Metabolic regulation of the pancreatic beta‐cell ATP‐sensitive K+ channel: A pas de deux
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.suppl_3.S113
– volume: 6
  year: 2017
  ident: e_1_2_12_12_1
  article-title: Molecular structure of human KATP in complex with ATP and ADP
  publication-title: eLife
  doi: 10.7554/eLife.32481
– volume: 26
  start-page: 4005
  issue: 17
  year: 2007
  ident: e_1_2_12_18_1
  article-title: Crystal structure of a Kir3.1‐prokaryotic Kir channel chimera
  publication-title: The EMBO Journal
  doi: 10.1038/sj.emboj.7601828
– volume: 94
  start-page: 320
  issue: 3
  year: 2007
  ident: e_1_2_12_28_1
  article-title: Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital‐4,5‐bisphosphate (PIP2): Interaction with other regulatory ligands
  publication-title: Progress in Biophysics and Molecular Biology
  doi: 10.1016/j.pbiomolbio.2006.04.001
– volume: 19
  start-page: 158
  issue: 2
  year: 2012
  ident: e_1_2_12_2_1
  article-title: Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating
  publication-title: Nature Structural & Molecular Biology
  doi: 10.1038/nsmb.2208
– volume: 27
  start-page: 1848
  year: 2019
  ident: e_1_2_12_3_1
  article-title: The structural basis for the binding of repaglinide to the pancreatic KATP channel
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2019.04.050
– volume: 387
  start-page: 179
  issue: 6629
  year: 1997
  ident: e_1_2_12_24_1
  article-title: Truncation of Kir6.2 produces ATP‐sensitive K+ channels in the absence of the sulphonylurea receptor
  publication-title: Nature
  doi: 10.1038/387179a0
– volume: 9
  start-page: 553
  year: 2018
  ident: e_1_2_12_27_1
  article-title: Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP‐sensitive potassium channels
  publication-title: Protein & Cell
  doi: 10.1007/s13238-018-0530-y
– volume: 155
  issue: 1
  year: 2023
  ident: e_1_2_12_4_1
  article-title: Mechanistic insights on KATP channel regulation from cryo‐EM structures
  publication-title: The Journal of General Physiology
  doi: 10.1085/jgp.202113046
– volume: 6
  year: 2017
  ident: e_1_2_12_17_1
  article-title: Cryo‐EM structure of the ATP‐sensitive potassium channel illuminates mechanisms of assembly and gating
  publication-title: eLife
  doi: 10.7554/eLife.24149
– volume: 290
  start-page: 15450
  year: 2015
  ident: e_1_2_12_29_1
  article-title: A conserved residue cluster that governs kinetics of ATP‐dependent gating of Kir6.2 potassium channels
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M114.631960
– volume: 49
  start-page: 3
  issue: 10
  year: 2000
  ident: e_1_2_12_8_1
  article-title: Sulfonylurea sensitivity of adenosine triphosphate‐sensitive potassium channels from beta cells and extrapancreatic tissues
  publication-title: Metabolism, Clinical and Experimental
  doi: 10.1053/meta.2000.17822
– volume: 11
  start-page: 6668
  issue: 1
  year: 2021
  ident: e_1_2_12_10_1
  article-title: Structure based analysis of KATP channel with a DEND syndrome mutation in murine skeletal muscle
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-86121-5
– volume: 14
  year: 2023
  ident: e_1_2_12_6_1
  article-title: KATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism‐based therapies
  publication-title: Frontiers in Endocrinology
  doi: 10.3389/fendo.2023.1161117
– volume: 13
  year: 2025
  ident: e_1_2_12_5_1
  article-title: AI‐based discovery and cryoEM elucidation of a K ATP channel pharmacochaperone
  publication-title: eLife
  doi: 10.7554/eLife.103159
– volume: 13
  start-page: 2770
  issue: 1
  year: 2022
  ident: e_1_2_12_25_1
  article-title: Structural insights into the mechanism of pancreatic K ATP channel regulation by nucleotides
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-30430-4
– volume: 434
  year: 2022
  ident: e_1_2_12_21_1
  article-title: Ligand‐mediated structural dynamics of a mammalian pancreatic K ATP channel
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2022.167789
– volume: 8
  year: 2019
  ident: e_1_2_12_16_1
  article-title: Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo‐EM
  publication-title: eLife
  doi: 10.7554/eLife.46417
– volume: 69
  start-page: 1342
  issue: 13
  year: 2007
  ident: e_1_2_12_19_1
  article-title: A novel mutation causing DEND syndrome: A treatable channelopathy of pancreas and brain
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000268488.51776.53
– volume: 326
  start-page: 1668
  issue: 5960
  year: 2009
  ident: e_1_2_12_22_1
  article-title: Crystal structure of the eukaryotic strong inward‐rectifier K+ channel Kir2.2 at 3.1 a resolution
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1180310
– volume: 155
  issue: 2
  year: 2023
  ident: e_1_2_12_11_1
  article-title: Gating and modulation of an inward‐rectifier potassium channel
  publication-title: The Journal of General Physiology
  doi: 10.1085/jgp.202213085
SSID ssj0001033904
Score 2.3236969
Snippet ATP‐sensitive potassium (K ATP ) channel in pancreatic β‐cells is composed of four pore‐forming inward rectifier potassium (Kir) 6.2 subunits and four...
ATP-sensitive potassium (K ) channel in pancreatic β-cells is composed of four pore-forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory...
ATP‐sensitive potassium (KATP) channel in pancreatic β‐cells is composed of four pore‐forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory...
ATP-sensitive potassium (KATP) channel in pancreatic β-cells is composed of four pore-forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory...
Abstract ATP‐sensitive potassium (KATP) channel in pancreatic β‐cells is composed of four pore‐forming inward rectifier potassium (Kir) 6.2 subunits and four...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e70481
SubjectTerms Animals
Channel gating
Channel opening
Diabetes
Diabetes mellitus
HEK293 Cells
Humans
Insulin
Insulin secretion
Ion Channel Gating
KATP channel
Kir6.2
Ligands
Metabolism
Mutation
Neonates
Potassium
Potassium channels (inwardly-rectifying)
Potassium Channels, Inwardly Rectifying - chemistry
Potassium Channels, Inwardly Rectifying - genetics
Potassium Channels, Inwardly Rectifying - metabolism
Protein Domains
Sulfonylurea
Sulfonylurea Receptors - genetics
Sulfonylurea Receptors - metabolism
SUR
Transmembrane domains
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJy6oQIHw0lRC3ALxI072SKsiWgQnkLhFHseWVupmq30ceio_gd_IL2HGCSt6qHrpMYkjOTPjzIw9831CnJYjZ5zRkU8YQ24Mxtx5a3JyTrHA0oYouVH49s5eP5jvj-XjO6ovrgnr4YF7wV24GlFiqwtfOUPhC6Jr61HRGt06SpgT2Db5vHfJVNpdKTQl82ZoyDO1NBc0a3VeMTzKHy4oIfX_PbxMbubqg9gc4kO47Oe1JdZCty12LjvKjSe_4AxSxWbaCt8Rv2_GM3uugJt3u_ADuEeBqSBgPIdZzzEfWkC6Zun1HQwwjbBg_zQJE0qUuwDtdOLG3RwkuK4FBQNzD3yTtqI36ToALhmL4eXpOX0ReTvg3beP4v7q6_2X63wgVMi9okgq96QYH6W0SkXvrPUFai2V195pp1zJQCxl7clrF8YhWo02VpEEj1GNXNC7Yr2bdmFfgGwl0nL2pdGWC2tGaApk8DqmvaldyMTpm4ibnz1sRsPpBmuiYU00SROZ-MziXw1hrOt0gyygGSyg-ZcFZOLoTXnNsADnDeMMlsyYWGXi0-oxLR0-DyHhTpc8RtPvnqyyzMRer_TVTAzzsFDsd_A_ZngoNhTTBqe6wSOxvpgtwzHFMgs8SWb7CpTH8tM
  priority: 102
  providerName: Directory of Open Access Journals
Title Kir6.2 channel activity is regulated by interaction of transmembrane domains 1 and 2 through I167 in the bundle‐crossing gate
URI https://www.ncbi.nlm.nih.gov/pubmed/40746251
https://www.proquest.com/docview/3240558917
https://www.proquest.com/docview/3235387505
https://doaj.org/article/a8bb1bd30c7a4115bbad890d43da1986
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHmEltUgVdzSxo84yQm1qFUBUSFUpL1FtmOjlbpJ2ceBU_kJ_EZ-CTOOdysOcEziRI7H9jw8832MHZaNUUbJQCeMPlfKhtw4rXJUTqGwpfaBU6Hwp0t98VV9mJbTFHBbprTKzZ4YN-pucBQjPybguJIo8Kq3N99zYo2i09VEoXGf7RJ0GaV0VdPqLsZSSHTpVSrLUzVXx9h3cVQRSMpfiiji9f_byIzK5vwRe5isRDgZxfqY3fP9E7Z30qOHPP8BbyDmbcaA-B67_Thb6CMBVMLb-2ugSgUihIDZEhYj07zvwOI1jeFYxwBDgBVpqbmfo7vce-iGuZn1S-Bg-g4EJP4eeM91hW_itQe7JkSG3z9_xT9CnQcUg3vKrs7Prt5d5IlWIXcC7ancoXhc4FwLEZzR2hVWSi6cdEYaYUqCYylrh7q7UMZaLa0OVXCVsUE0xstnbKcfev-CAe-4xUXtSiU1pdc0VhWWIOyI_KY2PmOHmyFub0bwjJacDpJES5JooyQydkrDv21CiNfxxrD41qYF1JraWm47WWBHFJqx1pqubopOyc7wptYZO9gIr03LcNneTZqMvd4-xgVEpyI4uMOa2kjc9HFulhl7Pgp92xNFbCxoAb78_8f32QNBtMAxL_CA7awWa_8KbZWVncQJOWG7p2eXn79Mosf_B2Nk7Dc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjFW5p40ec5IBQC6122XaF0CL1FtmOg1Zik7IPoZ7gJ_BH-FP8Emby2IoD3Hp04ljOjMfzsGc-gL04M8ooWdIJow-VsmVonFYhKqcysrH2JadE4bOJHn5S78_j8y341efC0LXKfk9sNuqidhQjP6DCcTFB4CVvLr6GhBpFp6s9hEa7LMb-8hu6bMvXo3fI35dCnBxP3w7DDlUgdIIw5R3OzpWcayFKZ7R2kZWSCyedkUaYmKqRxKlD1RUpY62WVpdJ6RJjS5EZL3HYG7CtJHoyA9g-Op58-HgV1ImkzCLV5QGqlKsDJJbYT6gqy1-arwEI-LdV22i3kztwuzNL2WG7ju7Clq_uwc5hhS75_JK9Ys1F0SYCvwPfx7OF3heMcoYr_4VRagQhULDZki1aaHtfMIttYlqbOMHqkq1ILc79HP3zyrOinptZtWScmapggnWAQWzEdYJfYtszu6YSEL9__Gz-CJUso6DffZheB8UfwKCqK_8IGC-4xV3ExUh-us-TWRVZqplHaDup8QHs9STOL9pqHTl5OcSJnDiRN5wI4IjIv-lCJbabB_Xic95JbG5Sa7ktZIQTUWg3W2uKNIsKJQvDs1QHsNszL-_kfplfrdIAXmxeo8TSMQwSt15TH4laBoUhDuBhy_TNTBTBv6DJ-fj_gz-Hm8Pp2Wl-OpqMn8AtQZjEzaXEXRisFmv_FA2llX3WLU8G-TULxB_T6Cec
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiEuCCjQQAEjFW7pxj9xkkOFCmXVZaHiUKS9RbZjo5XYpOyPUE_wCLwOr9MnYSbJbsUBbj06cSxnxuOZsWfmA9hPC6OMkoFuGH2slA2xcVrFqJxCYlPtA6dE4Y-n-uSzej9JJ1vwe50LQ2GV6z2x3airxtEZ-YAKx6UEgZcNQh8W8el4-Pr8W0wIUnTTuobT6JbI2F98R_dtcTg6Rl6_FGL47uztSdwjDMROEL68w5m6wLkWIjijtUuslFw46Yw0wqRUmSTNHaqxRBlrtbQ6ZMFlxgZRGC9x2BtwM5MpJxHLJtnV8U4iZZGoPiNQ5VwNkGziIKP6LH_pwBYq4N_2bavnhnfhTm-gsqNuRd2DLV_fh52jGp3z2QV7xdqQ0fYsfgd-jKdzfSAYZQ_X_iujJAnComDTBZt3IPe-YhbbxL4uhYI1gS1JQc78DD312rOqmZlpvWCcmbpigvXQQWzEdYZfYtszu6JiEJc_f7V_hOqW0fHfAzi7Dno_hO26qf0uMF5xi_uJS5XUFNlTWJVYqp5HuDu58RHsr0lcnnd1O0ryd4gTJXGibDkRwRsi_6YLFdtuHzTzL2Uvu6XJreW2kglORKEFba2p8iKplKwML3Idwd6aeWW_AyzKq_UawYvNa5RdupBB4jYr6iNR36BYpBE86pi-mYkiIBg0Ph__f_DncAvFoPwwOh0_gdsCLa4uOnEPtpfzlX-KFtPSPmvXJoPymmXhD0iaKms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kir6.2+channel+activity+is+regulated+by+interaction+of+transmembrane+domains+1+and+2+through+I167+in+the+bundle-crossing+gate&rft.jtitle=Physiological+reports&rft.au=Kawashima%2C+Ryoko&rft.au=Meller%2C+Charlotte&rft.au=Suzuki%2C+Manabu&rft.au=Kato%2C+Shigeki&rft.date=2025-08-01&rft.eissn=2051-817X&rft.volume=13&rft.issue=15&rft.spage=e70481&rft_id=info:doi/10.14814%2Fphy2.70481&rft_id=info%3Apmid%2F40746251&rft.externalDocID=40746251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-817X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-817X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-817X&client=summon