Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification
Electroencephalography (EEG) data across multiple individuals have a high variance. Directly using the data to train a deep learning (DL) model usually degrades the performance. To address this issue, we propose a shallow Inception domain adaptation framework to extract informative deep features fro...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems Vol. 16; no. 2; pp. 521 - 533 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) data across multiple individuals have a high variance. Directly using the data to train a deep learning (DL) model usually degrades the performance. To address this issue, we propose a shallow Inception domain adaptation framework to extract informative deep features from data of multiple subjects for accurate motor imagery (MI) recognition. To our best knowledge, the Inception architecture in DL is combined with a domain adaptation (DA) scheme for the first time for the MI classification task. The approach contains two compact Inception blocks that decode temporal features in different scales. In addition, we jointly optimize a novel combined loss function to reduce both marginal and class conditional discrepancies caused by the multimodal structure of EEG signals. The DA-based loss enables Inception blocks to take full advantage of their learning abilities to capture discriminative patterns of MI data from multiple subjects instead of relying on the target user only. To demonstrate the effectiveness of our approach, we conduct substantial experiments on two well-known data sets, brain-computer interface competition IV-2a and competition IV-2b. Results show that our model achieves better performance than state-of-the-art strategies. The proposed model is able to extract informative features from high-variant EEG data collected from different individuals and achieves accurate MI classifications. |
---|---|
AbstractList | Electroencephalography (EEG) data across multiple individuals have a high variance. Directly using the data to train a deep learning (DL) model usually degrades the performance. To address this issue, we propose a shallow Inception domain adaptation framework to extract informative deep features from data of multiple subjects for accurate motor imagery (MI) recognition. To our best knowledge, the Inception architecture in DL is combined with a domain adaptation (DA) scheme for the first time for the MI classification task. The approach contains two compact Inception blocks that decode temporal features in different scales. In addition, we jointly optimize a novel combined loss function to reduce both marginal and class conditional discrepancies caused by the multimodal structure of EEG signals. The DA-based loss enables Inception blocks to take full advantage of their learning abilities to capture discriminative patterns of MI data from multiple subjects instead of relying on the target user only. To demonstrate the effectiveness of our approach, we conduct substantial experiments on two well-known data sets, brain-computer interface competition IV-2a and competition IV-2b. Results show that our model achieves better performance than state-of-the-art strategies. The proposed model is able to extract informative features from high-variant EEG data collected from different individuals and achieves accurate MI classifications. |
Author | Pedrycz, Witold Huang, Xiuyu Zhang, Yuanpeng Zhou, Nan Chen, Badong Choi, Kup-Sze |
Author_xml | – sequence: 1 givenname: Xiuyu orcidid: 0000-0003-1600-9109 surname: Huang fullname: Huang, Xiuyu email: xiuyu.huang@connect.polyu.hk organization: Center for Smart Health, The Hong Kong Polytechnic University, Hong Kong, China – sequence: 2 givenname: Kup-Sze orcidid: 0000-0003-0836-7088 surname: Choi fullname: Choi, Kup-Sze organization: Center for Smart Health, The Hong Kong Polytechnic University, Hong Kong, China – sequence: 3 givenname: Nan orcidid: 0000-0002-0434-6231 surname: Zhou fullname: Zhou, Nan organization: School of Electronic Information and Electronic Engineering, Chengdu University, Chengdu, China – sequence: 4 givenname: Yuanpeng orcidid: 0000-0003-1736-3425 surname: Zhang fullname: Zhang, Yuanpeng organization: Department of Medical Informatics, Nantong University, Nantong, China – sequence: 5 givenname: Badong orcidid: 0000-0003-1710-3818 surname: Chen fullname: Chen, Badong organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China – sequence: 6 givenname: Witold orcidid: 0000-0002-9335-9930 surname: Pedrycz fullname: Pedrycz, Witold organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada |
BookMark | eNp9kEtPwkAQgDcGExH5ASYemngu7qN0u0csiCSoB9DrZtmHLpZu3S0h_HsLJcZ48DSPzDcz-S5Bp3SlBuAawQFCkN0t8_FigCEmA4Ipwyk-A11MKIszRljnJ8fwAvRDWEMIUUpoltAueFt8iKJwu2hWSl3V1pXR2G2ELaORElUtjp1nXe-c_4yM89FkMo3vRdAqenJ1U8824l37fZQXIgRrrDwiV-DciCLo_in2wOvDZJk_xvOX6SwfzWOJWVLHJlvBYZYapBEidCiYwIlq_jdEUJYOqcQypRqvcKaEUDJBKklMAhXNsFGpoqQHbtu9lXdfWx1qvnZbXzYnOYGEpBiiJvQAaqekdyF4bXjl7Ub4PUeQHwzyg0F-MMhPBhuG_mGkbXXUXtjiX_KmJa3W-tclRDAkjHwDyTF_cA |
CODEN | ITCDA4 |
CitedBy_id | crossref_primary_10_3390_app132312823 crossref_primary_10_1016_j_knosys_2024_112417 crossref_primary_10_1111_1744_1633_70002 |
Cites_doi | 10.1109/TBME.2004.827827 10.1088/1741-2552/aace8c 10.1109/CVPR.2017.107 10.1109/TBME.2021.3105912 10.1109/icdm.2009.108 10.1109/IJCNN.2008.4634130 10.5555/3045118.3045167 10.1109/TNNLS.2020.3010780 10.1609/aaai.v32i1.11784 10.11613/BM.2012.031 10.1016/S1388-2457(02)00057-3 10.1007/978-3-319-46478-7_31 10.5555/3298023.3298188 10.1109/TNSRE.2021.3059166 10.1016/j.patcog.2017.10.003 10.1109/APWC-on-CSE.2016.017 10.1088/1741-2560/14/1/016003 10.3389/fninf.2018.00078 10.1098/rsta.2015.0202 10.1109/CVPR.2017.195 10.1109/LSP.2009.2022557 10.1109/TAU.1967.1161901 10.3389/fncom.2019.00087 10.1016/j.neunet.2020.12.013 10.1088/1741-2552/ab260c 10.1007/s10994-009-5152-4 10.1109/CVPR.2018.00352 10.3389/fnins.2012.00055 10.1109/CVPR.2016.308 10.3389/fnins.2012.00039 10.1002/hbm.23730 10.48550/ARXIV.1706.03762 10.1017/CBO9780511801181 10.1016/j.jneumeth.2015.01.033 10.1088/1741-2552/abed81 10.1109/CVPR.2017.316 10.1111/rssb.12031 10.1214/aoms/1177729694 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCDS.2023.3279262 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2379-8939 |
EndPage | 533 |
ExternalDocumentID | 10_1109_TCDS_2023_3279262 10132039 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 82072019; 61802036; U21A20485; 61976175; 11901063 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20201441 funderid: 10.13039/501100004608 – fundername: Sichuan Provincial Science and Technology Department grantid: 2023NSFSC1425 – fundername: Hong Kong Research Grants Council grantid: PolyU 152006/19E funderid: 10.13039/501100002920 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-f8b0586f1e11375a9a24d262f3a79657c2c67e2b28daadc41d44f40d782fd6d73 |
IEDL.DBID | RIE |
ISSN | 2379-8920 |
IngestDate | Mon Jun 30 08:36:52 EDT 2025 Tue Jul 01 01:08:13 EDT 2025 Thu Apr 24 23:12:54 EDT 2025 Wed Aug 27 02:17:07 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-f8b0586f1e11375a9a24d262f3a79657c2c67e2b28daadc41d44f40d782fd6d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9335-9930 0000-0002-0434-6231 0000-0003-1710-3818 0000-0003-0836-7088 0000-0003-1736-3425 0000-0003-1600-9109 |
PQID | 3033620103 |
PQPubID | 85513 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3033620103 crossref_primary_10_1109_TCDS_2023_3279262 crossref_citationtrail_10_1109_TCDS_2023_3279262 ieee_primary_10132039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive and developmental systems |
PublicationTitleAbbrev | TCDS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref31 ref30 ref33 ref10 ref32 Zhao (ref34); 31 ref17 ref16 Bishop (ref28) 2006; 128 ref38 ref19 Wolpaw (ref1) 2002; 113 Arjovsky (ref42); 70 ref24 ref23 ref45 Bashivan (ref20) 2015 Kingma (ref36) 2014 ref25 Zheng (ref18) 2018; 76 ref41 ref22 ref44 ref21 ref43 Zhang (ref26) 2021; 136 Long (ref46) 2017 Bickel (ref39) 2009; 10 ref27 ref29 ref8 ref7 Ahn (ref2) 2015; 243 ref9 ref4 ref3 ref6 Ganin (ref11); 37 ref5 ref40 |
References_xml | – ident: ref17 doi: 10.1109/TBME.2004.827827 – year: 2017 ident: ref46 article-title: Conditional adversarial domain adaptation publication-title: arXiv:1705.10667 – ident: ref5 doi: 10.1088/1741-2552/aace8c – ident: ref12 doi: 10.1109/CVPR.2017.107 – ident: ref23 doi: 10.1109/TBME.2021.3105912 – ident: ref38 doi: 10.1109/icdm.2009.108 – volume: 128 start-page: 9 year: 2006 ident: ref28 article-title: Pattern recognition publication-title: Mach. Learn. – volume: 10 start-page: 2137 issue: 9 year: 2009 ident: ref39 article-title: Discriminative learning under covariate shift publication-title: J. Mach. Learn. Res. – volume: 70 start-page: 214 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref42 article-title: Wasserstein generative adversarial networks – ident: ref14 doi: 10.1109/IJCNN.2008.4634130 – ident: ref27 doi: 10.5555/3045118.3045167 – ident: ref24 doi: 10.1109/TNNLS.2020.3010780 – ident: ref44 doi: 10.1609/aaai.v32i1.11784 – ident: ref37 doi: 10.11613/BM.2012.031 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: ref1 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 37 start-page: 1180 volume-title: Proc. 32nd Int. Conf. Int. Conf. Mach. Learn. (ICML) ident: ref11 article-title: Unsupervised domain adaptation by Backpropagation – ident: ref13 doi: 10.1007/978-3-319-46478-7_31 – ident: ref8 doi: 10.5555/3298023.3298188 – ident: ref25 doi: 10.1109/TNSRE.2021.3059166 – volume: 76 start-page: 715 year: 2018 ident: ref18 article-title: Sparse support matrix machine publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.003 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref34 article-title: Adversarial multiple source domain adaptation – ident: ref19 doi: 10.1109/APWC-on-CSE.2016.017 – ident: ref21 doi: 10.1088/1741-2560/14/1/016003 – ident: ref3 doi: 10.3389/fninf.2018.00078 – year: 2014 ident: ref36 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref45 doi: 10.1098/rsta.2015.0202 – ident: ref9 doi: 10.1109/CVPR.2017.195 – ident: ref22 doi: 10.1109/LSP.2009.2022557 – ident: ref30 doi: 10.1109/TAU.1967.1161901 – ident: ref10 doi: 10.3389/fncom.2019.00087 – volume: 136 start-page: 1 year: 2021 ident: ref26 article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.12.013 – ident: ref4 doi: 10.1088/1741-2552/ab260c – ident: ref41 doi: 10.1007/s10994-009-5152-4 – ident: ref43 doi: 10.1109/CVPR.2018.00352 – ident: ref35 doi: 10.3389/fnins.2012.00055 – ident: ref7 doi: 10.1109/CVPR.2016.308 – ident: ref15 doi: 10.3389/fnins.2012.00039 – ident: ref6 doi: 10.1002/hbm.23730 – ident: ref29 doi: 10.48550/ARXIV.1706.03762 – ident: ref31 doi: 10.1017/CBO9780511801181 – volume: 243 start-page: 103 year: 2015 ident: ref2 article-title: Performance variation in motor imagery brain–computer interface: A brief review publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.033 – ident: ref32 doi: 10.1088/1741-2552/abed81 – ident: ref33 doi: 10.1109/CVPR.2017.316 – ident: ref16 doi: 10.1111/rssb.12031 – year: 2015 ident: ref20 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks publication-title: arXiv:1511.06448 – ident: ref40 doi: 10.1214/aoms/1177729694 |
SSID | ssj0001637847 |
Score | 2.3422213 |
Snippet | Electroencephalography (EEG) data across multiple individuals have a high variance. Directly using the data to train a deep learning (DL) model usually... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 521 |
SubjectTerms | Adaptation Brain modeling Data models Deep learning Deep neural network domain adaptation (DA) Domains Electroencephalography Feature extraction Human-computer interface Image classification inception motor imagery (MI) Performance degradation Task analysis Training |
Title | Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification |
URI | https://ieeexplore.ieee.org/document/10132039 https://www.proquest.com/docview/3033620103 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLagEws3olCQB8SAlJDYrhOPpZRLogsUdYscHxKCJhW0QuXX8-yknAKxZbAtK5_td78PoQNtrOXE2gDeAe-6kUHKJAlcRCdhMhY2d37I6z6_GLCrYXtYF6v7WhhjjE8-M6H79LF8Xaqpc5XBDXcFv1QsokWw3KpirQ-HCqdJ6gnFCE1EkAoyj2LGkTi-7Z7ehI4qPKSuZR4nX-SQJ1b58Rp7EXO2gvrzzVWZJQ_hdJKH6vVb38Z_734VLdfKJu5Up2MNLZhiHW10CjC0RzN8iH36p_erb6C7G0erUr7gy6LOdMGn5UjeF7ij5bgK2ON-lTSOQdPFvd55cAIyUOPrEgx3fDly7TBm2NNsugQkP2UTDc56t92LoCZdCBQRbBLYNI_aKbexiWOatKWQhGn4X5bKRPB2oojiiSE5SbWUWrFYM2ZZpEHTsJrrhG6hRlEWZhthBtod1bCgkpopOAawTmSpjXgklE5FE0VzCDJVdyR3xBiPmbdMIpE51DKHWlaj1kRH71PGVTuOvwZvOhQ-DawAaKLWHOisvrHPGYhykOWO9WLnl2m7aAlWr9N2WqgxeZqaPdBIJvm-P4lvF27bJg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALfQDqUtr6gHqolJDYjhMft7B0F9i9sCBukeOHhMomCHaF6K_v2Mm2tBWotxz8Usb2jGe-mQ9gz1jnBHUuwnsguG5UVHBFIx_RyblKpau8H3I8EcNzfnyZXXbJ6iEXxlobwGc29p8hlm8avfCuMjzhPuGXyRV4iYo_S9t0rd8uFcHyIlCKUZbLqJB0GcdME7k_PTg8iz1ZeMx80TxB_9BEgVrln_s4KJmjVzBZLq_FlnyPF_Mq1j_-qtz43-t_DRuduUn67f54Ay9s_RY2-zU-tWcP5DMJANDgWd-EizNPrNLck1HdYV3IYTNTVzXpG3XThuzJpIWNE7R1yWDwLfqKWtCQcYNPdzKa-YIYDyQQbXoIUuiyBedHg-nBMOpoFyJNJZ9HrqiSrBAutWnK8kxJRbnB_-WYyqXIck21yC2taGGUMpqnhnPHE4O2hjPC5GwbVuumtu-AcLTvmMEBtTJc40bAcRLHXCISqU0he5AsRVDqria5p8a4LsPbJJGll1rppVZ2UuvBl19dbtqCHM813vJSeNSwFUAPdpeCLrsze1eiMkdt7nkvdp7o9gnWhtPxaXk6mpy8h3WcqQPx7MLq_HZhP6B9Mq8-hl35E7E73m8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shallow+Inception+Domain+Adaptation+Network+for+EEG-Based+Motor+Imagery+Classification&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Huang%2C+Xiuyu&rft.au=Choi%2C+Kup-Sze&rft.au=Zhou%2C+Nan&rft.au=Zhang%2C+Yuanpeng&rft.date=2024-04-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=16&rft.issue=2&rft.spage=521&rft.epage=533&rft_id=info:doi/10.1109%2FTCDS.2023.3279262&rft.externalDocID=10132039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |