Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification

Electroencephalography (EEG) data across multiple individuals have a high variance. Directly using the data to train a deep learning (DL) model usually degrades the performance. To address this issue, we propose a shallow Inception domain adaptation framework to extract informative deep features fro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 16; no. 2; pp. 521 - 533
Main Authors Huang, Xiuyu, Choi, Kup-Sze, Zhou, Nan, Zhang, Yuanpeng, Chen, Badong, Pedrycz, Witold
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) data across multiple individuals have a high variance. Directly using the data to train a deep learning (DL) model usually degrades the performance. To address this issue, we propose a shallow Inception domain adaptation framework to extract informative deep features from data of multiple subjects for accurate motor imagery (MI) recognition. To our best knowledge, the Inception architecture in DL is combined with a domain adaptation (DA) scheme for the first time for the MI classification task. The approach contains two compact Inception blocks that decode temporal features in different scales. In addition, we jointly optimize a novel combined loss function to reduce both marginal and class conditional discrepancies caused by the multimodal structure of EEG signals. The DA-based loss enables Inception blocks to take full advantage of their learning abilities to capture discriminative patterns of MI data from multiple subjects instead of relying on the target user only. To demonstrate the effectiveness of our approach, we conduct substantial experiments on two well-known data sets, brain-computer interface competition IV-2a and competition IV-2b. Results show that our model achieves better performance than state-of-the-art strategies. The proposed model is able to extract informative features from high-variant EEG data collected from different individuals and achieves accurate MI classifications.
AbstractList Electroencephalography (EEG) data across multiple individuals have a high variance. Directly using the data to train a deep learning (DL) model usually degrades the performance. To address this issue, we propose a shallow Inception domain adaptation framework to extract informative deep features from data of multiple subjects for accurate motor imagery (MI) recognition. To our best knowledge, the Inception architecture in DL is combined with a domain adaptation (DA) scheme for the first time for the MI classification task. The approach contains two compact Inception blocks that decode temporal features in different scales. In addition, we jointly optimize a novel combined loss function to reduce both marginal and class conditional discrepancies caused by the multimodal structure of EEG signals. The DA-based loss enables Inception blocks to take full advantage of their learning abilities to capture discriminative patterns of MI data from multiple subjects instead of relying on the target user only. To demonstrate the effectiveness of our approach, we conduct substantial experiments on two well-known data sets, brain-computer interface competition IV-2a and competition IV-2b. Results show that our model achieves better performance than state-of-the-art strategies. The proposed model is able to extract informative features from high-variant EEG data collected from different individuals and achieves accurate MI classifications.
Author Pedrycz, Witold
Huang, Xiuyu
Zhang, Yuanpeng
Zhou, Nan
Chen, Badong
Choi, Kup-Sze
Author_xml – sequence: 1
  givenname: Xiuyu
  orcidid: 0000-0003-1600-9109
  surname: Huang
  fullname: Huang, Xiuyu
  email: xiuyu.huang@connect.polyu.hk
  organization: Center for Smart Health, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 2
  givenname: Kup-Sze
  orcidid: 0000-0003-0836-7088
  surname: Choi
  fullname: Choi, Kup-Sze
  organization: Center for Smart Health, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 3
  givenname: Nan
  orcidid: 0000-0002-0434-6231
  surname: Zhou
  fullname: Zhou, Nan
  organization: School of Electronic Information and Electronic Engineering, Chengdu University, Chengdu, China
– sequence: 4
  givenname: Yuanpeng
  orcidid: 0000-0003-1736-3425
  surname: Zhang
  fullname: Zhang, Yuanpeng
  organization: Department of Medical Informatics, Nantong University, Nantong, China
– sequence: 5
  givenname: Badong
  orcidid: 0000-0003-1710-3818
  surname: Chen
  fullname: Chen, Badong
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Witold
  orcidid: 0000-0002-9335-9930
  surname: Pedrycz
  fullname: Pedrycz, Witold
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
BookMark eNp9kEtPwkAQgDcGExH5ASYemngu7qN0u0csiCSoB9DrZtmHLpZu3S0h_HsLJcZ48DSPzDcz-S5Bp3SlBuAawQFCkN0t8_FigCEmA4Ipwyk-A11MKIszRljnJ8fwAvRDWEMIUUpoltAueFt8iKJwu2hWSl3V1pXR2G2ELaORElUtjp1nXe-c_4yM89FkMo3vRdAqenJ1U8824l37fZQXIgRrrDwiV-DciCLo_in2wOvDZJk_xvOX6SwfzWOJWVLHJlvBYZYapBEidCiYwIlq_jdEUJYOqcQypRqvcKaEUDJBKklMAhXNsFGpoqQHbtu9lXdfWx1qvnZbXzYnOYGEpBiiJvQAaqekdyF4bXjl7Ub4PUeQHwzyg0F-MMhPBhuG_mGkbXXUXtjiX_KmJa3W-tclRDAkjHwDyTF_cA
CODEN ITCDA4
CitedBy_id crossref_primary_10_3390_app132312823
crossref_primary_10_1016_j_knosys_2024_112417
crossref_primary_10_1111_1744_1633_70002
Cites_doi 10.1109/TBME.2004.827827
10.1088/1741-2552/aace8c
10.1109/CVPR.2017.107
10.1109/TBME.2021.3105912
10.1109/icdm.2009.108
10.1109/IJCNN.2008.4634130
10.5555/3045118.3045167
10.1109/TNNLS.2020.3010780
10.1609/aaai.v32i1.11784
10.11613/BM.2012.031
10.1016/S1388-2457(02)00057-3
10.1007/978-3-319-46478-7_31
10.5555/3298023.3298188
10.1109/TNSRE.2021.3059166
10.1016/j.patcog.2017.10.003
10.1109/APWC-on-CSE.2016.017
10.1088/1741-2560/14/1/016003
10.3389/fninf.2018.00078
10.1098/rsta.2015.0202
10.1109/CVPR.2017.195
10.1109/LSP.2009.2022557
10.1109/TAU.1967.1161901
10.3389/fncom.2019.00087
10.1016/j.neunet.2020.12.013
10.1088/1741-2552/ab260c
10.1007/s10994-009-5152-4
10.1109/CVPR.2018.00352
10.3389/fnins.2012.00055
10.1109/CVPR.2016.308
10.3389/fnins.2012.00039
10.1002/hbm.23730
10.48550/ARXIV.1706.03762
10.1017/CBO9780511801181
10.1016/j.jneumeth.2015.01.033
10.1088/1741-2552/abed81
10.1109/CVPR.2017.316
10.1111/rssb.12031
10.1214/aoms/1177729694
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2023.3279262
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 533
ExternalDocumentID 10_1109_TCDS_2023_3279262
10132039
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82072019; 61802036; U21A20485; 61976175; 11901063
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20201441
  funderid: 10.13039/501100004608
– fundername: Sichuan Provincial Science and Technology Department
  grantid: 2023NSFSC1425
– fundername: Hong Kong Research Grants Council
  grantid: PolyU 152006/19E
  funderid: 10.13039/501100002920
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-f8b0586f1e11375a9a24d262f3a79657c2c67e2b28daadc41d44f40d782fd6d73
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Mon Jun 30 08:36:52 EDT 2025
Tue Jul 01 01:08:13 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Wed Aug 27 02:17:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-f8b0586f1e11375a9a24d262f3a79657c2c67e2b28daadc41d44f40d782fd6d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9335-9930
0000-0002-0434-6231
0000-0003-1710-3818
0000-0003-0836-7088
0000-0003-1736-3425
0000-0003-1600-9109
PQID 3033620103
PQPubID 85513
PageCount 13
ParticipantIDs proquest_journals_3033620103
crossref_primary_10_1109_TCDS_2023_3279262
crossref_citationtrail_10_1109_TCDS_2023_3279262
ieee_primary_10132039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref31
ref30
ref33
ref10
ref32
Zhao (ref34); 31
ref17
ref16
Bishop (ref28) 2006; 128
ref38
ref19
Wolpaw (ref1) 2002; 113
Arjovsky (ref42); 70
ref24
ref23
ref45
Bashivan (ref20) 2015
Kingma (ref36) 2014
ref25
Zheng (ref18) 2018; 76
ref41
ref22
ref44
ref21
ref43
Zhang (ref26) 2021; 136
Long (ref46) 2017
Bickel (ref39) 2009; 10
ref27
ref29
ref8
ref7
Ahn (ref2) 2015; 243
ref9
ref4
ref3
ref6
Ganin (ref11); 37
ref5
ref40
References_xml – ident: ref17
  doi: 10.1109/TBME.2004.827827
– year: 2017
  ident: ref46
  article-title: Conditional adversarial domain adaptation
  publication-title: arXiv:1705.10667
– ident: ref5
  doi: 10.1088/1741-2552/aace8c
– ident: ref12
  doi: 10.1109/CVPR.2017.107
– ident: ref23
  doi: 10.1109/TBME.2021.3105912
– ident: ref38
  doi: 10.1109/icdm.2009.108
– volume: 128
  start-page: 9
  year: 2006
  ident: ref28
  article-title: Pattern recognition
  publication-title: Mach. Learn.
– volume: 10
  start-page: 2137
  issue: 9
  year: 2009
  ident: ref39
  article-title: Discriminative learning under covariate shift
  publication-title: J. Mach. Learn. Res.
– volume: 70
  start-page: 214
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref42
  article-title: Wasserstein generative adversarial networks
– ident: ref14
  doi: 10.1109/IJCNN.2008.4634130
– ident: ref27
  doi: 10.5555/3045118.3045167
– ident: ref24
  doi: 10.1109/TNNLS.2020.3010780
– ident: ref44
  doi: 10.1609/aaai.v32i1.11784
– ident: ref37
  doi: 10.11613/BM.2012.031
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: ref1
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 37
  start-page: 1180
  volume-title: Proc. 32nd Int. Conf. Int. Conf. Mach. Learn. (ICML)
  ident: ref11
  article-title: Unsupervised domain adaptation by Backpropagation
– ident: ref13
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref8
  doi: 10.5555/3298023.3298188
– ident: ref25
  doi: 10.1109/TNSRE.2021.3059166
– volume: 76
  start-page: 715
  year: 2018
  ident: ref18
  article-title: Sparse support matrix machine
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.003
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Adversarial multiple source domain adaptation
– ident: ref19
  doi: 10.1109/APWC-on-CSE.2016.017
– ident: ref21
  doi: 10.1088/1741-2560/14/1/016003
– ident: ref3
  doi: 10.3389/fninf.2018.00078
– year: 2014
  ident: ref36
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref45
  doi: 10.1098/rsta.2015.0202
– ident: ref9
  doi: 10.1109/CVPR.2017.195
– ident: ref22
  doi: 10.1109/LSP.2009.2022557
– ident: ref30
  doi: 10.1109/TAU.1967.1161901
– ident: ref10
  doi: 10.3389/fncom.2019.00087
– volume: 136
  start-page: 1
  year: 2021
  ident: ref26
  article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref4
  doi: 10.1088/1741-2552/ab260c
– ident: ref41
  doi: 10.1007/s10994-009-5152-4
– ident: ref43
  doi: 10.1109/CVPR.2018.00352
– ident: ref35
  doi: 10.3389/fnins.2012.00055
– ident: ref7
  doi: 10.1109/CVPR.2016.308
– ident: ref15
  doi: 10.3389/fnins.2012.00039
– ident: ref6
  doi: 10.1002/hbm.23730
– ident: ref29
  doi: 10.48550/ARXIV.1706.03762
– ident: ref31
  doi: 10.1017/CBO9780511801181
– volume: 243
  start-page: 103
  year: 2015
  ident: ref2
  article-title: Performance variation in motor imagery brain–computer interface: A brief review
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.033
– ident: ref32
  doi: 10.1088/1741-2552/abed81
– ident: ref33
  doi: 10.1109/CVPR.2017.316
– ident: ref16
  doi: 10.1111/rssb.12031
– year: 2015
  ident: ref20
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
  publication-title: arXiv:1511.06448
– ident: ref40
  doi: 10.1214/aoms/1177729694
SSID ssj0001637847
Score 2.3422213
Snippet Electroencephalography (EEG) data across multiple individuals have a high variance. Directly using the data to train a deep learning (DL) model usually...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 521
SubjectTerms Adaptation
Brain modeling
Data models
Deep learning
Deep neural network
domain adaptation (DA)
Domains
Electroencephalography
Feature extraction
Human-computer interface
Image classification
inception
motor imagery (MI)
Performance degradation
Task analysis
Training
Title Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification
URI https://ieeexplore.ieee.org/document/10132039
https://www.proquest.com/docview/3033620103
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLagEws3olCQB8SAlJDYrhOPpZRLogsUdYscHxKCJhW0QuXX8-yknAKxZbAtK5_td78PoQNtrOXE2gDeAe-6kUHKJAlcRCdhMhY2d37I6z6_GLCrYXtYF6v7WhhjjE8-M6H79LF8Xaqpc5XBDXcFv1QsokWw3KpirQ-HCqdJ6gnFCE1EkAoyj2LGkTi-7Z7ehI4qPKSuZR4nX-SQJ1b58Rp7EXO2gvrzzVWZJQ_hdJKH6vVb38Z_734VLdfKJu5Up2MNLZhiHW10CjC0RzN8iH36p_erb6C7G0erUr7gy6LOdMGn5UjeF7ij5bgK2ON-lTSOQdPFvd55cAIyUOPrEgx3fDly7TBm2NNsugQkP2UTDc56t92LoCZdCBQRbBLYNI_aKbexiWOatKWQhGn4X5bKRPB2oojiiSE5SbWUWrFYM2ZZpEHTsJrrhG6hRlEWZhthBtod1bCgkpopOAawTmSpjXgklE5FE0VzCDJVdyR3xBiPmbdMIpE51DKHWlaj1kRH71PGVTuOvwZvOhQ-DawAaKLWHOisvrHPGYhykOWO9WLnl2m7aAlWr9N2WqgxeZqaPdBIJvm-P4lvF27bJg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALfQDqUtr6gHqolJDYjhMft7B0F9i9sCBukeOHhMomCHaF6K_v2Mm2tBWotxz8Usb2jGe-mQ9gz1jnBHUuwnsguG5UVHBFIx_RyblKpau8H3I8EcNzfnyZXXbJ6iEXxlobwGc29p8hlm8avfCuMjzhPuGXyRV4iYo_S9t0rd8uFcHyIlCKUZbLqJB0GcdME7k_PTg8iz1ZeMx80TxB_9BEgVrln_s4KJmjVzBZLq_FlnyPF_Mq1j_-qtz43-t_DRuduUn67f54Ay9s_RY2-zU-tWcP5DMJANDgWd-EizNPrNLck1HdYV3IYTNTVzXpG3XThuzJpIWNE7R1yWDwLfqKWtCQcYNPdzKa-YIYDyQQbXoIUuiyBedHg-nBMOpoFyJNJZ9HrqiSrBAutWnK8kxJRbnB_-WYyqXIck21yC2taGGUMpqnhnPHE4O2hjPC5GwbVuumtu-AcLTvmMEBtTJc40bAcRLHXCISqU0he5AsRVDqria5p8a4LsPbJJGll1rppVZ2UuvBl19dbtqCHM813vJSeNSwFUAPdpeCLrsze1eiMkdt7nkvdp7o9gnWhtPxaXk6mpy8h3WcqQPx7MLq_HZhP6B9Mq8-hl35E7E73m8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shallow+Inception+Domain+Adaptation+Network+for+EEG-Based+Motor+Imagery+Classification&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Huang%2C+Xiuyu&rft.au=Choi%2C+Kup-Sze&rft.au=Zhou%2C+Nan&rft.au=Zhang%2C+Yuanpeng&rft.date=2024-04-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=16&rft.issue=2&rft.spage=521&rft.epage=533&rft_id=info:doi/10.1109%2FTCDS.2023.3279262&rft.externalDocID=10132039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon