TL-P3GAN: An Efficient Temporal-Learning-Based Generative Adversarial Network for Precise P300 Signal Generation for P300 Spellers

The problem of data imbalance among target and nontarget classes is inherent in the oddball paradigm-based P300 speller. This class imbalance is a critical issue and requires advanced rigorous learning to deal with. Conventionally, data level-like sampling approaches and algorithmic level-like ensem...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 16; no. 2; pp. 692 - 705
Main Authors Bhandari, Vibha, Londhe, Narendra D., Kshirsagar, Ghanahshyam B.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The problem of data imbalance among target and nontarget classes is inherent in the oddball paradigm-based P300 speller. This class imbalance is a critical issue and requires advanced rigorous learning to deal with. Conventionally, data level-like sampling approaches and algorithmic level-like ensemble approaches had been attempted in past research for data augmentation. However, information loss, overfitting, and subject variability were their major pitfalls. Alternatively, generative adversarial network (GAN)-based data augmentation managed to alleviate information loss but exhibits problems of overfitting and subject variability due to lack of temporal learning. To compensate for those problems, the authors have proposed novel temporal learning-based GAN (TL-P3GAN) to generate precise P300 signals and augment the minority class, i.e., P300. The TL-P3GAN comprises a novel contribution of multiscale morphological learning in both generator and discriminator. Moreover, the multiscale hybrid model in the generator learns multiresolution morphological information and considers sample-wise latency information from the original P300. The effectiveness of TL-P3GAN was confirmed by qualitative and quantitative evaluation metrics with two standard data sets. Further, the work is extended to analyze the effect of generated P300 signals on P300 classification and found significant performance improvement of 8%-16% with both data sets in comparison with existing conventional and GAN-based data augmentation approaches.
AbstractList The problem of data imbalance among target and nontarget classes is inherent in the oddball paradigm-based P300 speller. This class imbalance is a critical issue and requires advanced rigorous learning to deal with. Conventionally, data level-like sampling approaches and algorithmic level-like ensemble approaches had been attempted in past research for data augmentation. However, information loss, overfitting, and subject variability were their major pitfalls. Alternatively, generative adversarial network (GAN)-based data augmentation managed to alleviate information loss but exhibits problems of overfitting and subject variability due to lack of temporal learning. To compensate for those problems, the authors have proposed novel temporal learning-based GAN (TL-P3GAN) to generate precise P300 signals and augment the minority class, i.e., P300. The TL-P3GAN comprises a novel contribution of multiscale morphological learning in both generator and discriminator. Moreover, the multiscale hybrid model in the generator learns multiresolution morphological information and considers sample-wise latency information from the original P300. The effectiveness of TL-P3GAN was confirmed by qualitative and quantitative evaluation metrics with two standard data sets. Further, the work is extended to analyze the effect of generated P300 signals on P300 classification and found significant performance improvement of 8%-16% with both data sets in comparison with existing conventional and GAN-based data augmentation approaches.
Author Kshirsagar, Ghanahshyam B.
Londhe, Narendra D.
Bhandari, Vibha
Author_xml – sequence: 1
  givenname: Vibha
  orcidid: 0000-0002-6564-1859
  surname: Bhandari
  fullname: Bhandari, Vibha
  organization: Department of Electrical Engineering, National Institute of Technology Raipur, Raipur, India
– sequence: 2
  givenname: Narendra D.
  orcidid: 0000-0002-6320-5746
  surname: Londhe
  fullname: Londhe, Narendra D.
  email: nlondhe.ele@nitrr.ac.in
  organization: Department of Electrical Engineering, National Institute of Technology Raipur, Raipur, India
– sequence: 3
  givenname: Ghanahshyam B.
  orcidid: 0000-0003-4388-8436
  surname: Kshirsagar
  fullname: Kshirsagar, Ghanahshyam B.
  organization: Khoury College of Computer Science, Northeastern University, Boston, MA, USA
BookMark eNp9kMFOGzEQhq0KpNKQB6jUg6WeNx17nOyaW5pCWimCSEnPK8ceI8PiTe0NFVeenA2hFeKAfLClf76Z8feJHcU2EmOfBYyEAP1tPfuxGkmQOEJZVRLEB3YisdRFpVEf_X9L-MiGOd8AgJhgWanyhD2uF8US59PLMz6N_Nz7YAPFjq_pbtsm0xQLMimGeF18N5kcn1OkZLpwT3zq7illk4Jp-CV1f9t0y32b-DKRDZn4EgH4KlzHPv-HtfFQ8hxtqWn6Dqfs2Jsm0_DlHrDfF-fr2c9icTX_NZsuCiu16govHLjKS6c2dgKolRsbraBUm2os--OxFLaCDaBXVluJykn0jpRxstpIhwP29dB3m9o_O8pdfdPuUr9drhEQJxLGvcIBE4cqm9qcE_l6m8KdSQ-1gHpvu97brve26xfbPVO-YWzonn_bJROad8kvBzIQ0atJYqyFkvgEtMGNHw
CODEN ITCDA4
CitedBy_id crossref_primary_10_1186_s42490_024_00080_2
Cites_doi 10.5555/2969033.2969125
10.1088/1741-2552/abecc5
10.1109/tnsre.2020.3006180
10.1088/1741-2552/ab3bb4
10.1109/dicta.2016.7797091
10.1109/ijcnn.2015.7280834
10.1007/s40747-021-00336-7
10.1109/tnnls.2020.3016666
10.1109/embc.2017.8036864
10.1037/0033-2909.89.3.506
10.1109/tpami.2010.125
10.1109/ijcnn.2013.6706890
10.1038/s41598-019-42516-z
10.1109/tbme.2004.827072
10.1109/TNSRE.2022.3145515
10.1109/tcds.2019.2942437
10.1088/1741-2552/abb580
10.3390/s20195576
10.1109/tsmc.2022.3156861
10.1109/ijcnn.2018.8489727
10.1109/tnnls.2017.2785272
10.1109/tim.2021.3067943
10.1109/bci51272.2021.9385317
10.1109/fuzz-ieee.2017.8015660
10.1109/TBME.2004.826692
10.1007/s12652-018-0840-1
10.1109/tbme.2018.2875024
10.1016/s1388-2457(02)00057-3
10.1109/cvpr.2017.632
10.1016/j.neucom.2017.08.039
10.1109/sta50679.2020.9329330
10.1109/ijcnn.2019.8852227
10.1111/j.1469-8986.2006.00456.x
10.1007/978-3-030-92238-2_46
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2023.3288201
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 705
ExternalDocumentID 10_1109_TCDS_2023_3288201
10159142
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-f1d0d8f2d4bc60394d5a94074b852525f371c80b03f4c9c234d23fde4ad28b2d3
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Mon Jun 30 10:10:58 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Tue Jul 01 01:08:13 EDT 2025
Wed Aug 27 02:17:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-f1d0d8f2d4bc60394d5a94074b852525f371c80b03f4c9c234d23fde4ad28b2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6564-1859
0000-0003-4388-8436
0000-0002-6320-5746
PQID 3033620502
PQPubID 85513
PageCount 14
ParticipantIDs ieee_primary_10159142
crossref_primary_10_1109_TCDS_2023_3288201
crossref_citationtrail_10_1109_TCDS_2023_3288201
proquest_journals_3033620502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Vondrick (ref20)
ref35
ref12
Gulrajani (ref34)
ref15
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
Muller (ref41)
ref17
Donahue (ref19) 2018
Glorot (ref40); 9
ref18
Radford (ref33) 2015
ref24
ref23
ref45
ref26
ref25
ref42
ref22
ref44
ref21
ref43
Abadi (ref38)
ref28
ref27
ref29
Chan (ref3)
ref8
ref7
Kingma (ref39) 2014
ref9
ref4
ref6
ref5
Chollet (ref37) 2015
Perez (ref16) 2017
References_xml – ident: ref17
  doi: 10.5555/2969033.2969125
– ident: ref27
  doi: 10.1088/1741-2552/abecc5
– ident: ref30
  doi: 10.1109/tnsre.2020.3006180
– start-page: 4694
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: When does label smoothing help?
– ident: ref36
  doi: 10.1088/1741-2552/ab3bb4
– ident: ref15
  doi: 10.1109/dicta.2016.7797091
– year: 2014
  ident: ref39
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref14
  doi: 10.1109/ijcnn.2015.7280834
– ident: ref24
  doi: 10.1007/s40747-021-00336-7
– start-page: 265
  volume-title: Proc. 12th USENIX Symp. Oper. Syst. Design Implement.
  ident: ref38
  article-title: TensorFlow: A system for large-scale machine learning
– ident: ref22
  doi: 10.1109/tnnls.2020.3016666
– ident: ref28
  doi: 10.1109/embc.2017.8036864
– volume: 9
  start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Stat. (AISTATS)
  ident: ref40
  article-title: Understanding the difficulty of training deep feedforward neural networks
– year: 2017
  ident: ref16
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: arXiv:1712.04621
– ident: ref4
  doi: 10.1037/0033-2909.89.3.506
– ident: ref6
  doi: 10.1109/tpami.2010.125
– ident: ref11
  doi: 10.1109/ijcnn.2013.6706890
– ident: ref21
  doi: 10.1038/s41598-019-42516-z
– ident: ref32
  doi: 10.1109/tbme.2004.827072
– ident: ref45
  doi: 10.1109/TNSRE.2022.3145515
– start-page: 5769
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Improved training of Wasserstein GANs
– ident: ref13
  doi: 10.1109/tcds.2019.2942437
– ident: ref42
  doi: 10.1088/1741-2552/abb580
– start-page: 1
  volume-title: Proc. Neural Inf. Process. Syst. (NIPS)
  ident: ref20
  article-title: Generating videos with scene dynamics
– ident: ref12
  doi: 10.3390/s20195576
– ident: ref8
  doi: 10.1109/tsmc.2022.3156861
– year: 2018
  ident: ref19
  article-title: Adversarial audio synthesis
  publication-title: arXiv:1802.04208
– ident: ref25
  doi: 10.1109/ijcnn.2018.8489727
– ident: ref35
  doi: 10.1109/tnnls.2017.2785272
– ident: ref10
  doi: 10.1109/tim.2021.3067943
– ident: ref29
  doi: 10.1109/bci51272.2021.9385317
– ident: ref5
  doi: 10.1109/fuzz-ieee.2017.8015660
– ident: ref31
  doi: 10.1109/TBME.2004.826692
– volume-title: Keras
  year: 2015
  ident: ref37
– ident: ref44
  doi: 10.1007/s12652-018-0840-1
– start-page: 1
  volume-title: Proc. 30th Int. Conf. Comput. Appl.
  ident: ref3
  article-title: An overview of brain–computer interfaces
– ident: ref7
  doi: 10.1109/tbme.2018.2875024
– ident: ref1
  doi: 10.1016/s1388-2457(02)00057-3
– ident: ref18
  doi: 10.1109/cvpr.2017.632
– ident: ref9
  doi: 10.1016/j.neucom.2017.08.039
– ident: ref23
  doi: 10.1109/sta50679.2020.9329330
– ident: ref26
  doi: 10.1109/ijcnn.2019.8852227
– ident: ref2
  doi: 10.1111/j.1469-8986.2006.00456.x
– year: 2015
  ident: ref33
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
– ident: ref43
  doi: 10.1007/978-3-030-92238-2_46
SSID ssj0001637847
Score 2.3175368
Snippet The problem of data imbalance among target and nontarget classes is inherent in the oddball paradigm-based P300 speller. This class imbalance is a critical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 692
SubjectTerms Brain modeling
Brain–computer interface (BCI)
Classification algorithms
Data augmentation
Datasets
Electroencephalography
generative adversarial network (GAN)
Generative adversarial networks
Generators
Machine learning algorithms
Morphology
P300 speller
Qualitative analysis
Signal classification
Signal generation
Standard data
temporal learning
Visualization
Title TL-P3GAN: An Efficient Temporal-Learning-Based Generative Adversarial Network for Precise P300 Signal Generation for P300 Spellers
URI https://ieeexplore.ieee.org/document/10159142
https://www.proquest.com/docview/3033620502
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgT72UZ8Xykg-oh0pOHdtJbG7LFooQXa3EInGLEj8QKs0idvcAR345YzuhtFURyiVSbMvSTPx57JnvQ-iAS_Ccyuu7SMOI0KklUtQVYTzTLk9TcCpf7_xjlJ9eirOr7KotVg-1MNbakHxmE_8a7vLNVC_8URn84QC-qYAVdxkit1is9ftAJeeFDIJijBeKSMW6W8yUqq-T4beLxEuFJ5xJj3p_4FAQVvlnNQ4Qc7KCRt3kYmbJz2QxrxP9-Bdv47tnv4o-tptNPIjesYaWbLOONgYNBNq_HvBnHNI_w7n6BnqanJMx_z4YHeJBg48DswSMhyeRu-qWtEys1-QIgM_gyFftF0scRJ1nlXdlPIpp5Rj2wnjsmTNmFo85pfji5trPpes2bWKT8MnfAMEIm-jy5HgyPCWtQAPRTIk5camhRjpmRK1zypUwWaUgQhS1zBg8jheplrSm3AmtNOPCMO6MFZVhsmaGf0K9ZtrYLYQLo7Xlua3zSgihc8mdKjLmhJPUFZT2Ee3MVeqWvdyLaNyWIYqhqvQWLr2Fy9bCffTlpctdpO54q_Gmt9irhtFYfbTbOUXZ_t2zEmAfcJ9mlG3_p9sO-gCjtyk-u6g3v1_YPdi9zOv94LXPf6znzQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq9lAu0BdioRQfEAckB8d2EpvbUtousI1Wair1FiV-VBUli9jdAxz55YztpOWhoiqXSLEdSzP258fM9yH0kkvwnMbru0jDiNCpJVK0DWE80y5PU3Aqn-98WuaTc_HxIrvok9VDLoy1NgSf2cS_hrt8M9crf1QGIxzANxUw424A8GdpTNe6PVLJeSGDpBjjhSJSseEeM6XqTXX4_izxYuEJZ9Lj3h9IFKRV_pmPA8gcP0Ll0L0YW_I5WS3bRP_4i7nx3v3fQg_75SYeR__YRmu220G74w622l--41c4BICGk_Vd9LOakhk_GZdv8bjDR4FbAtrDVWSvuiY9F-sleQfQZ3BkrPbTJQ6yzovGOzMuY2A5htUwnnnujIXFM04pPru69H0Zqs27WCR88ndA0MIeOj8-qg4npJdoIJopsSQuNdRIx4xodU65EiZrFOwRRSszBo_jRaolbSl3QivNuDCMO2NFY5hsmeGP0Xo37-wThAujteW5bfNGCKFzyZ0qMuaEk9QVlI4QHcxV656_3MtoXNdhH0NV7S1cewvXvYVH6PVNla-RvON_hfe8xX4rGI01QvuDU9T9-F7UAPyA_DSj7Okd1V6gzUl1Oq2nH8pPz9AD-FMf8LOP1pffVvY5rGWW7UHw4F-_7OsW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TL-P3GAN%3A+An+Efficient+Temporal-Learning-Based+Generative+Adversarial+Network+for+Precise+P300+Signal+Generation+for+P300+Spellers&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Bhandari%2C+Vibha&rft.au=Londhe%2C+Narendra+D.&rft.au=Kshirsagar%2C+Ghanahshyam+B.&rft.date=2024-04-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=16&rft.issue=2&rft.spage=692&rft.epage=705&rft_id=info:doi/10.1109%2FTCDS.2023.3288201&rft.externalDocID=10159142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon