TL-P3GAN: An Efficient Temporal-Learning-Based Generative Adversarial Network for Precise P300 Signal Generation for P300 Spellers
The problem of data imbalance among target and nontarget classes is inherent in the oddball paradigm-based P300 speller. This class imbalance is a critical issue and requires advanced rigorous learning to deal with. Conventionally, data level-like sampling approaches and algorithmic level-like ensem...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems Vol. 16; no. 2; pp. 692 - 705 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The problem of data imbalance among target and nontarget classes is inherent in the oddball paradigm-based P300 speller. This class imbalance is a critical issue and requires advanced rigorous learning to deal with. Conventionally, data level-like sampling approaches and algorithmic level-like ensemble approaches had been attempted in past research for data augmentation. However, information loss, overfitting, and subject variability were their major pitfalls. Alternatively, generative adversarial network (GAN)-based data augmentation managed to alleviate information loss but exhibits problems of overfitting and subject variability due to lack of temporal learning. To compensate for those problems, the authors have proposed novel temporal learning-based GAN (TL-P3GAN) to generate precise P300 signals and augment the minority class, i.e., P300. The TL-P3GAN comprises a novel contribution of multiscale morphological learning in both generator and discriminator. Moreover, the multiscale hybrid model in the generator learns multiresolution morphological information and considers sample-wise latency information from the original P300. The effectiveness of TL-P3GAN was confirmed by qualitative and quantitative evaluation metrics with two standard data sets. Further, the work is extended to analyze the effect of generated P300 signals on P300 classification and found significant performance improvement of 8%-16% with both data sets in comparison with existing conventional and GAN-based data augmentation approaches. |
---|---|
AbstractList | The problem of data imbalance among target and nontarget classes is inherent in the oddball paradigm-based P300 speller. This class imbalance is a critical issue and requires advanced rigorous learning to deal with. Conventionally, data level-like sampling approaches and algorithmic level-like ensemble approaches had been attempted in past research for data augmentation. However, information loss, overfitting, and subject variability were their major pitfalls. Alternatively, generative adversarial network (GAN)-based data augmentation managed to alleviate information loss but exhibits problems of overfitting and subject variability due to lack of temporal learning. To compensate for those problems, the authors have proposed novel temporal learning-based GAN (TL-P3GAN) to generate precise P300 signals and augment the minority class, i.e., P300. The TL-P3GAN comprises a novel contribution of multiscale morphological learning in both generator and discriminator. Moreover, the multiscale hybrid model in the generator learns multiresolution morphological information and considers sample-wise latency information from the original P300. The effectiveness of TL-P3GAN was confirmed by qualitative and quantitative evaluation metrics with two standard data sets. Further, the work is extended to analyze the effect of generated P300 signals on P300 classification and found significant performance improvement of 8%-16% with both data sets in comparison with existing conventional and GAN-based data augmentation approaches. |
Author | Kshirsagar, Ghanahshyam B. Londhe, Narendra D. Bhandari, Vibha |
Author_xml | – sequence: 1 givenname: Vibha orcidid: 0000-0002-6564-1859 surname: Bhandari fullname: Bhandari, Vibha organization: Department of Electrical Engineering, National Institute of Technology Raipur, Raipur, India – sequence: 2 givenname: Narendra D. orcidid: 0000-0002-6320-5746 surname: Londhe fullname: Londhe, Narendra D. email: nlondhe.ele@nitrr.ac.in organization: Department of Electrical Engineering, National Institute of Technology Raipur, Raipur, India – sequence: 3 givenname: Ghanahshyam B. orcidid: 0000-0003-4388-8436 surname: Kshirsagar fullname: Kshirsagar, Ghanahshyam B. organization: Khoury College of Computer Science, Northeastern University, Boston, MA, USA |
BookMark | eNp9kMFOGzEQhq0KpNKQB6jUg6WeNx17nOyaW5pCWimCSEnPK8ceI8PiTe0NFVeenA2hFeKAfLClf76Z8feJHcU2EmOfBYyEAP1tPfuxGkmQOEJZVRLEB3YisdRFpVEf_X9L-MiGOd8AgJhgWanyhD2uF8US59PLMz6N_Nz7YAPFjq_pbtsm0xQLMimGeF18N5kcn1OkZLpwT3zq7illk4Jp-CV1f9t0y32b-DKRDZn4EgH4KlzHPv-HtfFQ8hxtqWn6Dqfs2Jsm0_DlHrDfF-fr2c9icTX_NZsuCiu16govHLjKS6c2dgKolRsbraBUm2os--OxFLaCDaBXVluJykn0jpRxstpIhwP29dB3m9o_O8pdfdPuUr9drhEQJxLGvcIBE4cqm9qcE_l6m8KdSQ-1gHpvu97brve26xfbPVO-YWzonn_bJROad8kvBzIQ0atJYqyFkvgEtMGNHw |
CODEN | ITCDA4 |
CitedBy_id | crossref_primary_10_1186_s42490_024_00080_2 |
Cites_doi | 10.5555/2969033.2969125 10.1088/1741-2552/abecc5 10.1109/tnsre.2020.3006180 10.1088/1741-2552/ab3bb4 10.1109/dicta.2016.7797091 10.1109/ijcnn.2015.7280834 10.1007/s40747-021-00336-7 10.1109/tnnls.2020.3016666 10.1109/embc.2017.8036864 10.1037/0033-2909.89.3.506 10.1109/tpami.2010.125 10.1109/ijcnn.2013.6706890 10.1038/s41598-019-42516-z 10.1109/tbme.2004.827072 10.1109/TNSRE.2022.3145515 10.1109/tcds.2019.2942437 10.1088/1741-2552/abb580 10.3390/s20195576 10.1109/tsmc.2022.3156861 10.1109/ijcnn.2018.8489727 10.1109/tnnls.2017.2785272 10.1109/tim.2021.3067943 10.1109/bci51272.2021.9385317 10.1109/fuzz-ieee.2017.8015660 10.1109/TBME.2004.826692 10.1007/s12652-018-0840-1 10.1109/tbme.2018.2875024 10.1016/s1388-2457(02)00057-3 10.1109/cvpr.2017.632 10.1016/j.neucom.2017.08.039 10.1109/sta50679.2020.9329330 10.1109/ijcnn.2019.8852227 10.1111/j.1469-8986.2006.00456.x 10.1007/978-3-030-92238-2_46 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCDS.2023.3288201 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2379-8939 |
EndPage | 705 |
ExternalDocumentID | 10_1109_TCDS_2023_3288201 10159142 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-f1d0d8f2d4bc60394d5a94074b852525f371c80b03f4c9c234d23fde4ad28b2d3 |
IEDL.DBID | RIE |
ISSN | 2379-8920 |
IngestDate | Mon Jun 30 10:10:58 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Tue Jul 01 01:08:13 EDT 2025 Wed Aug 27 02:17:07 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-f1d0d8f2d4bc60394d5a94074b852525f371c80b03f4c9c234d23fde4ad28b2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6564-1859 0000-0003-4388-8436 0000-0002-6320-5746 |
PQID | 3033620502 |
PQPubID | 85513 |
PageCount | 14 |
ParticipantIDs | ieee_primary_10159142 crossref_primary_10_1109_TCDS_2023_3288201 crossref_citationtrail_10_1109_TCDS_2023_3288201 proquest_journals_3033620502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive and developmental systems |
PublicationTitleAbbrev | TCDS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Vondrick (ref20) ref35 ref12 Gulrajani (ref34) ref15 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 Muller (ref41) ref17 Donahue (ref19) 2018 Glorot (ref40); 9 ref18 Radford (ref33) 2015 ref24 ref23 ref45 ref26 ref25 ref42 ref22 ref44 ref21 ref43 Abadi (ref38) ref28 ref27 ref29 Chan (ref3) ref8 ref7 Kingma (ref39) 2014 ref9 ref4 ref6 ref5 Chollet (ref37) 2015 Perez (ref16) 2017 |
References_xml | – ident: ref17 doi: 10.5555/2969033.2969125 – ident: ref27 doi: 10.1088/1741-2552/abecc5 – ident: ref30 doi: 10.1109/tnsre.2020.3006180 – start-page: 4694 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: When does label smoothing help? – ident: ref36 doi: 10.1088/1741-2552/ab3bb4 – ident: ref15 doi: 10.1109/dicta.2016.7797091 – year: 2014 ident: ref39 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref14 doi: 10.1109/ijcnn.2015.7280834 – ident: ref24 doi: 10.1007/s40747-021-00336-7 – start-page: 265 volume-title: Proc. 12th USENIX Symp. Oper. Syst. Design Implement. ident: ref38 article-title: TensorFlow: A system for large-scale machine learning – ident: ref22 doi: 10.1109/tnnls.2020.3016666 – ident: ref28 doi: 10.1109/embc.2017.8036864 – volume: 9 start-page: 249 volume-title: Proc. 13th Int. Conf. Artif. Intell. Stat. (AISTATS) ident: ref40 article-title: Understanding the difficulty of training deep feedforward neural networks – year: 2017 ident: ref16 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: arXiv:1712.04621 – ident: ref4 doi: 10.1037/0033-2909.89.3.506 – ident: ref6 doi: 10.1109/tpami.2010.125 – ident: ref11 doi: 10.1109/ijcnn.2013.6706890 – ident: ref21 doi: 10.1038/s41598-019-42516-z – ident: ref32 doi: 10.1109/tbme.2004.827072 – ident: ref45 doi: 10.1109/TNSRE.2022.3145515 – start-page: 5769 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref34 article-title: Improved training of Wasserstein GANs – ident: ref13 doi: 10.1109/tcds.2019.2942437 – ident: ref42 doi: 10.1088/1741-2552/abb580 – start-page: 1 volume-title: Proc. Neural Inf. Process. Syst. (NIPS) ident: ref20 article-title: Generating videos with scene dynamics – ident: ref12 doi: 10.3390/s20195576 – ident: ref8 doi: 10.1109/tsmc.2022.3156861 – year: 2018 ident: ref19 article-title: Adversarial audio synthesis publication-title: arXiv:1802.04208 – ident: ref25 doi: 10.1109/ijcnn.2018.8489727 – ident: ref35 doi: 10.1109/tnnls.2017.2785272 – ident: ref10 doi: 10.1109/tim.2021.3067943 – ident: ref29 doi: 10.1109/bci51272.2021.9385317 – ident: ref5 doi: 10.1109/fuzz-ieee.2017.8015660 – ident: ref31 doi: 10.1109/TBME.2004.826692 – volume-title: Keras year: 2015 ident: ref37 – ident: ref44 doi: 10.1007/s12652-018-0840-1 – start-page: 1 volume-title: Proc. 30th Int. Conf. Comput. Appl. ident: ref3 article-title: An overview of brain–computer interfaces – ident: ref7 doi: 10.1109/tbme.2018.2875024 – ident: ref1 doi: 10.1016/s1388-2457(02)00057-3 – ident: ref18 doi: 10.1109/cvpr.2017.632 – ident: ref9 doi: 10.1016/j.neucom.2017.08.039 – ident: ref23 doi: 10.1109/sta50679.2020.9329330 – ident: ref26 doi: 10.1109/ijcnn.2019.8852227 – ident: ref2 doi: 10.1111/j.1469-8986.2006.00456.x – year: 2015 ident: ref33 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv:1511.06434 – ident: ref43 doi: 10.1007/978-3-030-92238-2_46 |
SSID | ssj0001637847 |
Score | 2.3175368 |
Snippet | The problem of data imbalance among target and nontarget classes is inherent in the oddball paradigm-based P300 speller. This class imbalance is a critical... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 692 |
SubjectTerms | Brain modeling Brain–computer interface (BCI) Classification algorithms Data augmentation Datasets Electroencephalography generative adversarial network (GAN) Generative adversarial networks Generators Machine learning algorithms Morphology P300 speller Qualitative analysis Signal classification Signal generation Standard data temporal learning Visualization |
Title | TL-P3GAN: An Efficient Temporal-Learning-Based Generative Adversarial Network for Precise P300 Signal Generation for P300 Spellers |
URI | https://ieeexplore.ieee.org/document/10159142 https://www.proquest.com/docview/3033620502 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgT72UZ8Xykg-oh0pOHdtJbG7LFooQXa3EInGLEj8QKs0idvcAR345YzuhtFURyiVSbMvSTPx57JnvQ-iAS_Ccyuu7SMOI0KklUtQVYTzTLk9TcCpf7_xjlJ9eirOr7KotVg-1MNbakHxmE_8a7vLNVC_8URn84QC-qYAVdxkit1is9ftAJeeFDIJijBeKSMW6W8yUqq-T4beLxEuFJ5xJj3p_4FAQVvlnNQ4Qc7KCRt3kYmbJz2QxrxP9-Bdv47tnv4o-tptNPIjesYaWbLOONgYNBNq_HvBnHNI_w7n6BnqanJMx_z4YHeJBg48DswSMhyeRu-qWtEys1-QIgM_gyFftF0scRJ1nlXdlPIpp5Rj2wnjsmTNmFo85pfji5trPpes2bWKT8MnfAMEIm-jy5HgyPCWtQAPRTIk5camhRjpmRK1zypUwWaUgQhS1zBg8jheplrSm3AmtNOPCMO6MFZVhsmaGf0K9ZtrYLYQLo7Xlua3zSgihc8mdKjLmhJPUFZT2Ee3MVeqWvdyLaNyWIYqhqvQWLr2Fy9bCffTlpctdpO54q_Gmt9irhtFYfbTbOUXZ_t2zEmAfcJ9mlG3_p9sO-gCjtyk-u6g3v1_YPdi9zOv94LXPf6znzQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq9lAu0BdioRQfEAckB8d2EpvbUtousI1Wair1FiV-VBUli9jdAxz55YztpOWhoiqXSLEdSzP258fM9yH0kkvwnMbru0jDiNCpJVK0DWE80y5PU3Aqn-98WuaTc_HxIrvok9VDLoy1NgSf2cS_hrt8M9crf1QGIxzANxUw424A8GdpTNe6PVLJeSGDpBjjhSJSseEeM6XqTXX4_izxYuEJZ9Lj3h9IFKRV_pmPA8gcP0Ll0L0YW_I5WS3bRP_4i7nx3v3fQg_75SYeR__YRmu220G74w622l--41c4BICGk_Vd9LOakhk_GZdv8bjDR4FbAtrDVWSvuiY9F-sleQfQZ3BkrPbTJQ6yzovGOzMuY2A5htUwnnnujIXFM04pPru69H0Zqs27WCR88ndA0MIeOj8-qg4npJdoIJopsSQuNdRIx4xodU65EiZrFOwRRSszBo_jRaolbSl3QivNuDCMO2NFY5hsmeGP0Xo37-wThAujteW5bfNGCKFzyZ0qMuaEk9QVlI4QHcxV656_3MtoXNdhH0NV7S1cewvXvYVH6PVNla-RvON_hfe8xX4rGI01QvuDU9T9-F7UAPyA_DSj7Okd1V6gzUl1Oq2nH8pPz9AD-FMf8LOP1pffVvY5rGWW7UHw4F-_7OsW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TL-P3GAN%3A+An+Efficient+Temporal-Learning-Based+Generative+Adversarial+Network+for+Precise+P300+Signal+Generation+for+P300+Spellers&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Bhandari%2C+Vibha&rft.au=Londhe%2C+Narendra+D.&rft.au=Kshirsagar%2C+Ghanahshyam+B.&rft.date=2024-04-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=16&rft.issue=2&rft.spage=692&rft.epage=705&rft_id=info:doi/10.1109%2FTCDS.2023.3288201&rft.externalDocID=10159142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |