VLSI Architectures of Approximate Arithmetic Units Applied to Parallel Sensors Calibration
Approximate computing maximizes area and energy savings for a trade-off between quality and efficiency. Approximate arithmetic operators have emerged as an efficient alternative to design low-power VLSI circuits. This paper investigates the design of approximate arithmetic operator units used in the...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 71; no. 3; pp. 1 - 0 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1549-8328 1558-0806 |
DOI | 10.1109/TCSI.2023.3331675 |
Cover
Abstract | Approximate computing maximizes area and energy savings for a trade-off between quality and efficiency. Approximate arithmetic operators have emerged as an efficient alternative to design low-power VLSI circuits. This paper investigates the design of approximate arithmetic operator units used in the calibration procedure for radio astronomy light sensors - the so-called StEFCal (statistically efficient and fast calibration) method. The StEFCal algorithm comprises arithmetic operations like a divider, square-accumulate (SAC), and multiply-accumulate (MAC) units. The StEFCal circuit of this work explores the following arithmetic operators: i) two approximate squarer units from the literature, i.e., radix-4 (AxRSU) and SquASH, ii) two approximate iterative-based Newton-Raphson (NR) and Goldschmidt (GLD) dividers, iii) one approximate parallel prefix adder (AxPPA), and iv) a new approximate radix-4 multiplier (AxRMU), proposed in this work, explored in the StEFCal multiply-accumulate circuit design. The AxRSU utilizes the parameters <inline-formula> <tex-math notation="LaTeX">K1</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K2</tex-math> </inline-formula> to represent the number of exact encoders for squarer-and conventional-partial products, respectively, subsequently replaced with approximate encoders. The same principle applies to AxRMU, where the parameter <inline-formula> <tex-math notation="LaTeX">K</tex-math> </inline-formula> indicates the number of exact encoders for conventional-partial products, subsequently exchanged with approximate encoders. We demonstrate the efficiency of StEFCal using the approximate arithmetic operators from the Pareto-optimal front that expresses the area-and power-quality trade-off. The results show that using the AxRSU with <inline-formula> <tex-math notation="LaTeX">K1=4</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K2=6</tex-math> </inline-formula>, AxRMU, and AxPPA with <inline-formula> <tex-math notation="LaTeX">K=16</tex-math> </inline-formula> and NR with one iteration has an MSE equal to <inline-formula> <tex-math notation="LaTeX">89.98</tex-math> </inline-formula>dB and offers up to <inline-formula> <tex-math notation="LaTeX">158\times</tex-math> </inline-formula> energy-savings compared to the exact StEFCal, and up to <inline-formula> <tex-math notation="LaTeX">25\times</tex-math> </inline-formula> more energy-savings and <inline-formula> <tex-math notation="LaTeX">3.33\times</tex-math> </inline-formula> area-savings compared with our previous work, <inline-formula> <tex-math notation="LaTeX">440\times</tex-math> </inline-formula> energy-savings compared to the accurate state-of-the-art, and <inline-formula> <tex-math notation="LaTeX">258\times</tex-math> </inline-formula> compared with the approximate state-of-the-art. |
---|---|
AbstractList | Approximate computing maximizes area and energy savings for a trade-off between quality and efficiency. Approximate arithmetic operators have emerged as an efficient alternative to design low-power VLSI circuits. This paper investigates the design of approximate arithmetic operator units used in the calibration procedure for radio astronomy light sensors - the so-called StEFCal (statistically efficient and fast calibration) method. The StEFCal algorithm comprises arithmetic operations like a divider, square-accumulate (SAC), and multiply-accumulate (MAC) units. The StEFCal circuit of this work explores the following arithmetic operators: i) two approximate squarer units from the literature, i.e., radix-4 (AxRSU) and SquASH, ii) two approximate iterative-based Newton-Raphson (NR) and Goldschmidt (GLD) dividers, iii) one approximate parallel prefix adder (AxPPA), and iv) a new approximate radix-4 multiplier (AxRMU), proposed in this work, explored in the StEFCal multiply-accumulate circuit design. The AxRSU utilizes the parameters <inline-formula> <tex-math notation="LaTeX">K1</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K2</tex-math> </inline-formula> to represent the number of exact encoders for squarer-and conventional-partial products, respectively, subsequently replaced with approximate encoders. The same principle applies to AxRMU, where the parameter <inline-formula> <tex-math notation="LaTeX">K</tex-math> </inline-formula> indicates the number of exact encoders for conventional-partial products, subsequently exchanged with approximate encoders. We demonstrate the efficiency of StEFCal using the approximate arithmetic operators from the Pareto-optimal front that expresses the area-and power-quality trade-off. The results show that using the AxRSU with <inline-formula> <tex-math notation="LaTeX">K1=4</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K2=6</tex-math> </inline-formula>, AxRMU, and AxPPA with <inline-formula> <tex-math notation="LaTeX">K=16</tex-math> </inline-formula> and NR with one iteration has an MSE equal to <inline-formula> <tex-math notation="LaTeX">89.98</tex-math> </inline-formula>dB and offers up to <inline-formula> <tex-math notation="LaTeX">158\times</tex-math> </inline-formula> energy-savings compared to the exact StEFCal, and up to <inline-formula> <tex-math notation="LaTeX">25\times</tex-math> </inline-formula> more energy-savings and <inline-formula> <tex-math notation="LaTeX">3.33\times</tex-math> </inline-formula> area-savings compared with our previous work, <inline-formula> <tex-math notation="LaTeX">440\times</tex-math> </inline-formula> energy-savings compared to the accurate state-of-the-art, and <inline-formula> <tex-math notation="LaTeX">258\times</tex-math> </inline-formula> compared with the approximate state-of-the-art. Approximate computing maximizes area and energy savings for a trade-off between quality and efficiency. Approximate arithmetic operators have emerged as an efficient alternative to design low-power VLSI circuits. This paper investigates the design of approximate arithmetic operator units used in the calibration procedure for radio astronomy light sensors — the so-called StEFCal (statistically efficient and fast calibration) method. The StEFCal algorithm comprises arithmetic operations like a divider, square-accumulate (SAC), and multiply-accumulate (MAC) units. The StEFCal circuit of this work explores the following arithmetic operators: i) two approximate squarer units from the literature, i.e., radix-4 (AxRSU) and SquASH, ii) two approximate iterative-based Newton-Raphson (NR) and Goldschmidt (GLD) dividers, iii) one approximate parallel prefix adder (AxPPA), and iv) a new approximate radix-4 multiplier (AxRMU), proposed in this work, explored in the StEFCal multiply-accumulate circuit design. The AxRSU utilizes the parameters [Formula Omitted] and [Formula Omitted] to represent the number of exact encoders for squarer- and conventional-partial products, respectively, subsequently replaced with approximate encoders. The same principle applies to AxRMU, where the parameter [Formula Omitted] indicates the number of exact encoders for conventional-partial products, subsequently exchanged with approximate encoders. We demonstrate the efficiency of StEFCal using the approximate arithmetic operators from the Pareto-optimal front that expresses the area- and power-quality trade-off. The results show that using the AxRSU with [Formula Omitted] and [Formula Omitted], AxRMU, and AxPPA with [Formula Omitted] and NR with one iteration has an MSE equal to 89.98dB and offers up to [Formula Omitted] energy-savings compared to the exact StEFCal, and up to [Formula Omitted] more energy-savings and [Formula Omitted] area-savings compared with our previous work, [Formula Omitted] energy-savings compared to the accurate state-of-the-art, and [Formula Omitted] compared with the approximate state-of-the-art. |
Author | Soares, Rafael I. da Rosa, Morgana Macedo Azevedo da Costa, Eduardo Antonio Cesar da Costa, Patricia Ucker Leleu Bampi, Sergio |
Author_xml | – sequence: 1 givenname: Morgana Macedo Azevedo orcidid: 0000-0001-9582-9011 surname: da Rosa fullname: da Rosa, Morgana Macedo Azevedo organization: Programa de Pós-Graduação em Computação (PPGC), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil – sequence: 2 givenname: Patricia Ucker Leleu orcidid: 0000-0001-5121-7101 surname: da Costa fullname: da Costa, Patricia Ucker Leleu organization: PGMICRO, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil – sequence: 3 givenname: Eduardo Antonio Cesar orcidid: 0000-0003-0521-5898 surname: da Costa fullname: da Costa, Eduardo Antonio Cesar organization: Mestrado em Engenharia Eletrônica e Computação (MEEC), Universidade Católica de Pelotas (UCPel), Pelotas, Brazil – sequence: 4 givenname: Rafael I. orcidid: 0000-0001-9493-7272 surname: Soares fullname: Soares, Rafael I. organization: Programa de Pós-Graduação em Computação (PPGC), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil – sequence: 5 givenname: Sergio orcidid: 0000-0002-9018-6309 surname: Bampi fullname: Bampi, Sergio organization: PGMICRO, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil |
BookMark | eNp9UE1LAzEUDFLBtvoDBA8Bz1vzsdlNjqX4USgotPXgJaS7LzRlu6lJCvrv3bUexIOn92Bm3ryZERq0vgWErimZUErU3Wq2nE8YYXzCOadFKc7QkAohMyJJMej3XGWSM3mBRjHuCGGKcDpEb6-L5RxPQ7V1Cap0DBCxt3h6OAT_4fYmQQe6tN1DchVety7FHmwc1Dh5_GKCaRpo8BLa6EPEM9O4TTDJ-fYSnVvTRLj6mWO0frhfzZ6yxfPjfDZdZBVTecosFYrJYgOSWFmqUpRUqpoxygm1itaMkFoKzgtLaNlRRGVET2ObvGDK1nyMbk93u5ffjxCT3vljaDtLzRRnoiy4EB2LnlhV8DEGsPoQunzhU1Oi-wp1X6HuK9Q_FXaa8o-mcuk7WwrGNf8qb05KBwC_nDjL80LyLyXafyQ |
CODEN | ITCSCH |
CitedBy_id | crossref_primary_10_1109_TCSI_2024_3443270 |
Cites_doi | 10.1109/ICCAD.2015.7372600 10.1109/ISCAS.2000.857435 10.1109/IIC.2015.7150883 10.1109/LASCAS53948.2022.9789077 10.1109/TCSI.2016.2564699 10.1109/TCSVT.2019.2945763 10.1109/TC.2015.2494005 10.1109/TCSVT.2021.3059229 10.1109/TCSI.2009.2027626 10.1109/ACCESS.2019.2920335 10.1109/socdc.2010.5682905 10.1109/TVLSI.2020.2976131 10.1109/TCSI.2020.2988353 10.1109/ISCAS.2014.6865140 10.1109/iccd.2002.1106756 10.1093/mnras/sty357 10.1145/2744769.2744778 10.1109/ISCAS.2013.6572317 10.1145/2897937.2897981 10.1109/LASCAS51355.2021.9459128 10.1109/TCSI.2022.3169028 10.1109/sbcci.2013.6644866 10.1109/DATE.2008.4484850 10.1007/0-387-21769-x_9 10.1109/LASCAS45839.2020.9068958 10.1145/2897937.2897965 10.1109/tcsii.2015.2435752 10.1109/TMSCS.2018.2817608 10.1109/ARITH.2018.8464807 10.1109/DATE.2012.6176685 10.1109/ICECS.2017.8292065 10.1109/JETCAS.2018.2832204 10.1109/ISVDAT.2015.7208092 10.1109/ACSSC.1994.471512 10.1109/ICECS.2015.7440321 10.1145/2966986.2967005 10.1109/ACCESS.2020.2978773 10.1109/TCSI.2019.2918241 10.1109/ISCAS48785.2022.9937770 10.1109/TVLSI.2009.2020591 10.1109/T-C.1973.223648 10.1109/ICECS49266.2020.9294854 10.1109/TCSI.2019.2892588 10.3850/9783981537079_0521 10.23919/DATE.2019.8715112 10.1109/NEWCAS.2015.7182097 10.1051/0004-6361/201424487 10.1007/s10836-020-05883-4 10.1109/TCSII.2021.3068971 10.1109/ICCAD.2013.6691108 10.1145/3075564.3078891 10.1109/ISLPED.2011.5993675 10.1109/ACCESS.2018.2868036 10.1007/s00034-020-01431-9 10.1109/TCSI.2021.3085572 10.1109/T-C.1970.223019 10.1109/TGCN.2021.3122911 10.1145/2228360.2228509 10.1109/ACCESS.2021.3108443 10.29292/jics.v15i3.91 10.1109/TVLSI.2022.3218021 10.1109/LASCAS56464.2023.10108306 10.1109/TCAD.2012.2217962 10.1109/TCSI.2015.2388839 10.1109/TCSI.2021.3057584 10.1109/PGEC.1964.263942 10.1109/ICSSIT.2018.8748579 10.1109/12.609274 10.1109/MC.2004.1274006 10.1007/978-1-4615-2355-0 10.1109/ACSSC.2000.911207 10.1109/TVLSI.2016.2587696 10.1109/ICECS.2017.8292078 10.1109/TCSI.2015.2403036 10.1109/TCSI.2020.3019460 10.1109/iccad.2013.6691096 10.15623/ijret.2014.0306078 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCSI.2023.3331675 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0806 |
EndPage | 0 |
ExternalDocumentID | 10_1109_TCSI_2023_3331675 10324468 |
Genre | orig-research |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001 |
GroupedDBID | 0R~ 29I 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS HZ~ H~9 IFIPE IPLJI JAVBF M43 O9- OCL PZZ RIA RIE RNS 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD RIG VJK 7SP 8FD L7M |
ID | FETCH-LOGICAL-c294t-f159286be80f879757189d221301f91d200d85336f0170f85ca579752b4629fd3 |
IEDL.DBID | RIE |
ISSN | 1549-8328 |
IngestDate | Mon Jun 30 08:38:19 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Tue Jul 01 04:15:21 EDT 2025 Wed Aug 27 02:17:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-f159286be80f879757189d221301f91d200d85336f0170f85ca579752b4629fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9018-6309 0000-0003-0521-5898 0000-0001-5121-7101 0000-0001-9493-7272 0000-0001-9582-9011 |
PQID | 2932576355 |
PQPubID | 85411 |
PageCount | 0 |
ParticipantIDs | crossref_primary_10_1109_TCSI_2023_3331675 ieee_primary_10324468 proquest_journals_2932576355 crossref_citationtrail_10_1109_TCSI_2023_3331675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems. I, Regular papers |
PublicationTitleAbbrev | TCSI |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 Sharath (ref60) 2014; 3 ref11 ref55 ref10 ref54 Jaikumar (ref61) 2015; 10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Dadda (ref70) 1965; 34 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref77 ref32 ref76 Bellaouar (ref74) 1995 ref2 ref1 ref39 ref38 ref71 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Miao (ref33) ref28 ref27 ref29 ref62 |
References_xml | – ident: ref21 doi: 10.1109/ICCAD.2015.7372600 – ident: ref73 doi: 10.1109/ISCAS.2000.857435 – ident: ref62 doi: 10.1109/IIC.2015.7150883 – ident: ref26 doi: 10.1109/LASCAS53948.2022.9789077 – ident: ref17 doi: 10.1109/TCSI.2016.2564699 – ident: ref3 doi: 10.1109/TCSVT.2019.2945763 – ident: ref42 doi: 10.1109/TC.2015.2494005 – ident: ref22 doi: 10.1109/TCSVT.2021.3059229 – ident: ref15 doi: 10.1109/TCSI.2009.2027626 – ident: ref8 doi: 10.1109/ACCESS.2019.2920335 – ident: ref30 doi: 10.1109/socdc.2010.5682905 – ident: ref24 doi: 10.1109/TVLSI.2020.2976131 – ident: ref25 doi: 10.1109/TCSI.2020.2988353 – ident: ref57 doi: 10.1109/ISCAS.2014.6865140 – ident: ref75 doi: 10.1109/iccd.2002.1106756 – ident: ref80 doi: 10.1093/mnras/sty357 – ident: ref37 doi: 10.1145/2744769.2744778 – ident: ref45 doi: 10.1109/ISCAS.2013.6572317 – ident: ref34 doi: 10.1145/2897937.2897981 – ident: ref39 doi: 10.1109/LASCAS51355.2021.9459128 – ident: ref4 doi: 10.1109/TCSI.2022.3169028 – start-page: 728 volume-title: Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD) ident: ref33 article-title: Modeling and synthesis of quality-energy optimal approximate adders – ident: ref76 doi: 10.1109/sbcci.2013.6644866 – ident: ref31 doi: 10.1109/DATE.2008.4484850 – ident: ref51 doi: 10.1007/0-387-21769-x_9 – ident: ref11 doi: 10.1109/LASCAS45839.2020.9068958 – ident: ref44 doi: 10.1145/2897937.2897965 – ident: ref40 doi: 10.1109/tcsii.2015.2435752 – ident: ref43 doi: 10.1109/TMSCS.2018.2817608 – ident: ref47 doi: 10.1109/ARITH.2018.8464807 – ident: ref65 doi: 10.1109/DATE.2012.6176685 – ident: ref78 doi: 10.1109/ICECS.2017.8292065 – ident: ref53 doi: 10.1109/JETCAS.2018.2832204 – ident: ref59 doi: 10.1109/ISVDAT.2015.7208092 – ident: ref72 doi: 10.1109/ACSSC.1994.471512 – ident: ref77 doi: 10.1109/ICECS.2015.7440321 – ident: ref52 doi: 10.1145/2966986.2967005 – ident: ref54 doi: 10.1109/ACCESS.2020.2978773 – ident: ref55 doi: 10.1109/TCSI.2019.2918241 – ident: ref2 doi: 10.1109/ISCAS48785.2022.9937770 – ident: ref14 doi: 10.1109/TVLSI.2009.2020591 – ident: ref71 doi: 10.1109/T-C.1973.223648 – ident: ref63 doi: 10.1109/ICECS49266.2020.9294854 – ident: ref32 doi: 10.1109/TCSI.2019.2892588 – ident: ref46 doi: 10.3850/9783981537079_0521 – ident: ref48 doi: 10.23919/DATE.2019.8715112 – ident: ref49 doi: 10.1109/NEWCAS.2015.7182097 – ident: ref6 doi: 10.1051/0004-6361/201424487 – ident: ref19 doi: 10.1007/s10836-020-05883-4 – ident: ref56 doi: 10.1109/TCSII.2021.3068971 – ident: ref64 doi: 10.1109/ICCAD.2013.6691108 – ident: ref9 doi: 10.1145/3075564.3078891 – volume: 34 start-page: 349 year: 1965 ident: ref70 article-title: Some schemes for parallel multipliers publication-title: Alta Frequenza – ident: ref38 doi: 10.1109/ISLPED.2011.5993675 – ident: ref7 doi: 10.1109/ACCESS.2018.2868036 – ident: ref28 doi: 10.1007/s00034-020-01431-9 – ident: ref29 doi: 10.1109/TCSI.2021.3085572 – volume: 10 start-page: 16 year: 2015 ident: ref61 article-title: A novel approach to implement high speed squaring circuit using ancient vedic mathematics techniques publication-title: Int. J. Appl. Eng. Res. – ident: ref50 doi: 10.1109/T-C.1970.223019 – ident: ref1 doi: 10.1109/TGCN.2021.3122911 – ident: ref35 doi: 10.1145/2228360.2228509 – ident: ref16 doi: 10.1109/ACCESS.2021.3108443 – ident: ref79 doi: 10.29292/jics.v15i3.91 – ident: ref10 doi: 10.1109/TVLSI.2022.3218021 – ident: ref12 doi: 10.1109/LASCAS56464.2023.10108306 – ident: ref13 doi: 10.1109/TCAD.2012.2217962 – ident: ref41 doi: 10.1109/TCSI.2015.2388839 – ident: ref5 doi: 10.1109/TCSI.2021.3057584 – ident: ref69 doi: 10.1109/PGEC.1964.263942 – ident: ref67 doi: 10.1109/ICSSIT.2018.8748579 – ident: ref68 doi: 10.1109/12.609274 – ident: ref66 doi: 10.1109/MC.2004.1274006 – volume-title: Low-Power Digital VLSI Design Circuits and Systems year: 1995 ident: ref74 doi: 10.1007/978-1-4615-2355-0 – ident: ref58 doi: 10.1109/ACSSC.2000.911207 – ident: ref20 doi: 10.1109/TVLSI.2016.2587696 – ident: ref27 doi: 10.1109/ICECS.2017.8292078 – ident: ref18 doi: 10.1109/TCSI.2015.2403036 – ident: ref23 doi: 10.1109/TCSI.2020.3019460 – ident: ref36 doi: 10.1109/iccad.2013.6691096 – volume: 3 start-page: 423 year: 2014 ident: ref60 article-title: Optimization and implementation of parallel squarer publication-title: Int. J. Res. Eng. Technol. doi: 10.15623/ijret.2014.0306078 |
SSID | ssj0029031 |
Score | 2.4463375 |
Snippet | Approximate computing maximizes area and energy savings for a trade-off between quality and efficiency. Approximate arithmetic operators have emerged as an... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adders Algorithms Approximation algorithms Arithmetic Arithmetic and logic units AxPPA AxRMU AxRSU Calibration Circuit design Coders Dividers Goldschmidt Iterative methods Mathematical analysis Newton-Raphson Operators Parameters Radio astronomy Sensors Signal processing algorithms SquASH State of the art StEFCal Tradeoffs Very large scale integration VLSI |
Title | VLSI Architectures of Approximate Arithmetic Units Applied to Parallel Sensors Calibration |
URI | https://ieeexplore.ieee.org/document/10324468 https://www.proquest.com/docview/2932576355 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78OXE6JQdPQrsuTbrmOIZjEx3CNhleStomOJyrrB2If73vtd2YiuKt0KSEvJe87zX5vkfIlUZZOMlCy4m82OIKNSAhUFtKcamFVq6IkZx8P_B6Y347EZOSrJ5zYbTW-eUzbeNjfpYfJ9ESf5U1UPwN0hd_m2yDnxVkrXV2JR23EEfl0gI39csjzKYjG6POsG9jnXDbdZH5Lb4Eobyqyo-tOI8v3X0yWI2suFbyYi-z0I4-vok2_nvoB2SvRJq0XbjGIdnS8yOyu6E_eEyeHu-GfdreOEtIaWJoG3XG36eAZTW8nGbPr8h0pAhPU1rCVpol9EEtsBLLjA4hF04WKUWiV1i4VJWMuzejTs8qiy1YEZM8swzgGuZ7ofYd47dkS0DQkjFjEOOaRjZjWE0xhHbXM6i4Y3wRKYHNWMg9Jk3snpDKPJnrU0Ijplsw2bAbMM2bRigpXK59GSo_ipVnasRZzX4QlUrkWBBjFuQZiSMDNFiABgtKg9XI9brLWyHD8VfjKhpgo2Ex9zVSX9k4KFdqGgDcwZwLYNfZL93OyQ58nRcXz-qkki2W-gKQSBZe5h74CcM714M |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_8eFAf_BbnZx58Elq7NOmaxyHKpnMImyK-lLRNUNRVtg7Ev967tpOpKL4VmrQld8n9rsnvdwBHhmThFI8dLwlSR2jSgMRA7WgtlJFG-zIlcvJVN2jdiIs7eVeR1QsujDGmOHxmXLos9vLTLBnTr7ITEn_D9CWchXl8npAlXeszv1KeX8qjCuWgo4bVJmbdUyf9017bpUrhru8T91t-CUNFXZUfi3ERYc5XoDv5tvJgyZM7zmM3ef8m2_jvj1-F5QprsmbpHGswYwbrsDSlQLgB97edXps1p3YTRiyzrElK42-PiGYN3nzMH16I68gIoI5YBVxZnrFrPaRaLM-sh9lwNhwxonrFpVNtws35Wf-05VTlFpyEK5E7FpEND4PYhJ4NG6ohMWyplHOMcnWr6inOpxSDux9Y0tyxoUy0pGY8FgFXNvW3YG6QDcw2sISbBg42rgfciLqVWklfmFDFOkxSHdgaeJPRj5JKi5xKYjxHRU7iqYgMFpHBospgNTj-7PJaCnH81XiTDDDVsBz7GuxNbBxVc3UUIeChrAuB184v3Q5hodW_6kSddvdyFxbxTaI8hrYHc_lwbPYRl-TxQeGNHziG2tA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VLSI+Architectures+of+Approximate+Arithmetic+Units+Applied+to+Parallel+Sensors+Calibration&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Morgana+Macedo+Azevedo+da+Rosa&rft.au=Patricia+Ucker+Leleu+da+Costa&rft.au=Eduardo+Antonio+Cesar+da+Costa&rft.au=Soares%2C+Rafael+I&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=71&rft.issue=3&rft.spage=1000&rft_id=info:doi/10.1109%2FTCSI.2023.3331675&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon |