PIFNet: 3D Object Detection Using Joint Image and Point Cloud Features for Autonomous Driving
Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar point cloud data. However, these methods have some limitations in localization consistency and classification confide...
Saved in:
Published in | Applied sciences Vol. 12; no. 7; p. 3686 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar point cloud data. However, these methods have some limitations in localization consistency and classification confidence, due to the irregularity and sparsity of Light Detection and Ranging (LiDAR) point cloud data. Inspired by the complementary characteristics of Lidar and camera sensors, we propose a new end-to-end learnable framework named Point-Image Fusion Network (PIFNet) to integrate the LiDAR point cloud and camera images. To resolve the problem of inconsistency in the localization and classification, we designed an Encoder-Decoder Fusion (EDF) module to extract the image features effectively, while maintaining the fine-grained localization information of objects. Furthermore, a new effective fusion module is proposed to integrate the color and texture features from images and the depth information from the point cloud. This module can enhance the irregularity and sparsity problem of the point cloud features by capitalizing the fine-grained information from camera images. In PIFNet, each intermediate feature map is fed into the fusion module to be integrated with its corresponding point-wise features. Furthermore, point-wise features are used instead of voxel-wise features to reduce information loss. Extensive experiments using the KITTI dataset demonstrate the superiority of PIFNet over other state-of-the-art methods. Compared with several state-of-the-art methods, our approach outperformed by 1.97% in mean Average Precision (mAP) and by 2.86% in Average Precision (AP) for the hard cases on the KITTI 3D object detection benchmark. |
---|---|
AbstractList | Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar point cloud data. However, these methods have some limitations in localization consistency and classification confidence, due to the irregularity and sparsity of Light Detection and Ranging (LiDAR) point cloud data. Inspired by the complementary characteristics of Lidar and camera sensors, we propose a new end-to-end learnable framework named Point-Image Fusion Network (PIFNet) to integrate the LiDAR point cloud and camera images. To resolve the problem of inconsistency in the localization and classification, we designed an Encoder-Decoder Fusion (EDF) module to extract the image features effectively, while maintaining the fine-grained localization information of objects. Furthermore, a new effective fusion module is proposed to integrate the color and texture features from images and the depth information from the point cloud. This module can enhance the irregularity and sparsity problem of the point cloud features by capitalizing the fine-grained information from camera images. In PIFNet, each intermediate feature map is fed into the fusion module to be integrated with its corresponding point-wise features. Furthermore, point-wise features are used instead of voxel-wise features to reduce information loss. Extensive experiments using the KITTI dataset demonstrate the superiority of PIFNet over other state-of-the-art methods. Compared with several state-of-the-art methods, our approach outperformed by 1.97% in mean Average Precision (mAP) and by 2.86% in Average Precision (AP) for the hard cases on the KITTI 3D object detection benchmark. |
Author | Roh, Jeongjin Shin, Hyunchul Zheng, Wenqi Chen, Yunfan Xie, Han |
Author_xml | – sequence: 1 givenname: Wenqi orcidid: 0000-0001-7697-4715 surname: Zheng fullname: Zheng, Wenqi – sequence: 2 givenname: Han orcidid: 0000-0002-2672-3990 surname: Xie fullname: Xie, Han – sequence: 3 givenname: Yunfan surname: Chen fullname: Chen, Yunfan – sequence: 4 givenname: Jeongjin orcidid: 0000-0001-6930-8183 surname: Roh fullname: Roh, Jeongjin – sequence: 5 givenname: Hyunchul orcidid: 0000-0003-3020-5130 surname: Shin fullname: Shin, Hyunchul |
BookMark | eNptUcFqGzEQFSWBuolP_QFBj8XJaKXVrnozdp04hCSH5FjEWNIaGXvlStpC_j5K3IAJmcubGd57PGa-kZM-9I6Q7wwuOFdwifs9q6DhspVfyKh0csIFa06O-q9knNIGSinGWwYj8udhubhz-Rflc3q_2jiT6dzlAj709Cn5fk1vgu8zXe5w7Sj2lj68zbNtGCxdOMxDdIl2IdLpkEMfdmFIdB79v6I9J6cdbpMb_8cz8rT4_Ti7ntzeXy1n09uJqZTIE9dWYIRRou4sCuSthMpCDaYxBiwzXWtaaNhKSctXkiEXhhUAbGCFaAU_I8uDrw240fvodxifdUCv3xYhrjXG7M3W6crxtkal0NVWAFatkA2oRkrJXFerrnj9OHjtY_g7uJT1JgyxL_F1JYUCJiWvC4sdWCaGlKLrtPEZX6-WI_qtZqBfn6KPnlI0Pz9o3pN-xn4BRGGM_A |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3550895 crossref_primary_10_3390_app12136516 crossref_primary_10_1155_2022_6909314 crossref_primary_10_3390_app122312444 crossref_primary_10_3390_s24206766 crossref_primary_10_3390_electronics13193873 crossref_primary_10_3390_rs15061580 |
Cites_doi | 10.1007/978-3-030-58555-6_3 10.1109/CVPR42600.2020.01054 10.1109/ICCV.2019.00204 10.1109/CVPR.2017.691 10.1109/ITSC45102.2020.9294293 10.1007/978-3-030-01270-0_39 10.1109/JSEN.2021.3118365 10.1109/CVPR42600.2020.01189 10.1109/IROS40897.2019.8968513 10.1007/978-3-030-58583-9_43 10.1109/CVPR.2019.00783 10.1109/IROS.2018.8594049 10.1109/CVPR.2012.6248074 10.1109/CVPRW.2019.00162 10.1109/CVPR.2019.00086 10.3390/s18103337 10.1007/978-3-030-58542-6_2 10.1109/CVPR.2019.00752 10.1109/TPAMI.2017.2706685 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app12073686 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_2e385a99ae5d40a284670976661ef59f 10_3390_app12073686 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c294t-e820c4c945fda4a38602d050c7cc0d1cf8c8071b96d3b61a34c161a0a70baad43 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:24 EDT 2025 Mon Jun 30 07:31:24 EDT 2025 Tue Jul 01 00:41:13 EDT 2025 Thu Apr 24 22:54:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-e820c4c945fda4a38602d050c7cc0d1cf8c8071b96d3b61a34c161a0a70baad43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3020-5130 0000-0001-7697-4715 0000-0001-6930-8183 0000-0002-2672-3990 |
OpenAccessLink | https://doaj.org/article/2e385a99ae5d40a284670976661ef59f |
PQID | 2649016635 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e385a99ae5d40a284670976661ef59f proquest_journals_2649016635 crossref_citationtrail_10_3390_app12073686 crossref_primary_10_3390_app12073686 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_13 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 Chen (ref_22) 2017; 40 ref_19 ref_18 ref_17 ref_16 ref_15 Feng (ref_3) 2021; 21 ref_25 ref_24 ref_23 ref_21 ref_20 ref_1 ref_2 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_11 – ident: ref_27 doi: 10.1007/978-3-030-58555-6_3 – ident: ref_7 doi: 10.1109/CVPR42600.2020.01054 – ident: ref_1 – ident: ref_18 – ident: ref_21 – ident: ref_5 doi: 10.1109/ICCV.2019.00204 – ident: ref_31 doi: 10.1109/CVPR.2017.691 – ident: ref_19 doi: 10.1109/ITSC45102.2020.9294293 – ident: ref_8 – ident: ref_25 doi: 10.1007/978-3-030-01270-0_39 – ident: ref_4 – ident: ref_33 – ident: ref_2 – volume: 21 start-page: 25922 year: 2021 ident: ref_3 article-title: A dynamic clustering algorithm for Lidar obstacle detection of autonomous driving system publication-title: IEEE Sens. doi: 10.1109/JSEN.2021.3118365 – ident: ref_13 doi: 10.1109/CVPR42600.2020.01189 – ident: ref_9 doi: 10.1109/IROS40897.2019.8968513 – ident: ref_12 – ident: ref_6 doi: 10.1109/CVPR42600.2020.01054 – ident: ref_10 – ident: ref_29 doi: 10.1007/978-3-030-58583-9_43 – ident: ref_23 doi: 10.1109/CVPR.2019.00783 – ident: ref_15 – ident: ref_26 doi: 10.1109/IROS.2018.8594049 – ident: ref_34 doi: 10.1109/CVPR.2012.6248074 – ident: ref_32 doi: 10.1109/CVPRW.2019.00162 – ident: ref_14 doi: 10.1109/CVPR.2019.00086 – ident: ref_16 doi: 10.3390/s18103337 – ident: ref_17 doi: 10.1007/978-3-030-58542-6_2 – ident: ref_24 doi: 10.1109/CVPR.2019.00752 – ident: ref_20 – volume: 40 start-page: 1259 year: 2017 ident: ref_22 article-title: 3d object proposals using stereo imagery for accurate object class detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2706685 |
SSID | ssj0000913810 |
Score | 2.2677536 |
Snippet | Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3686 |
SubjectTerms | 3D object detection camera images Cameras Deep learning lidar point cloud Methods Neural networks object detection Proposals Semantics Sensors Sparsity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6U9VIW26lKKfOBAkaImtpO1e6mAZQVILKuqSFyqyPEDIUFCd5P_35msd1mpVY9xfLLn8c145huAAxOUHnEfEh64TWRhsqTyGLXqzGXOWS9URXnIq2lxfiMvb_PbmHBbxLLKlU3sDbVrLOXIv6LjRtdF_vH70--EpkbR62ocofESttAEKzWArZOz6ezHOstCrJcqS5eNeQLje3oXzjjKdUHd0xuuqGfs_8sg915m8hbeRHjIjpf3uQ0vfL0DrzdIA3dgO6rjgh1Gzugv7-DX7GIy9e03JsbsuqLcChv7ti-zqllfFsAum_u6ZRePaECYqR2b9d-nD03nGAHBDgNvhhCWHXctdTo03YKN5_eUcHgPN5Ozn6fnSZyckFiuZZt49OtWWi3z4Iw0ggZNuTRP7cja1GU2KKsQW1S6cKIqMiOkReRnUjNKK2OcFB9gUDe1_wjMFRgAOuNswYPUBap7yLTXyhmjhBR-CEerQyxtpBWn6RYPJYYXdOLlxokP4WC9-WnJpvHvbSd0G-stRIHdLzTzuzJqVMlRjnKjtfG5k6nhBKRSBFcIOHzIdRjC3uouy6iXi_JZinb___sTvOLU6NDX6OzBoJ13_jPCj7bajzL2B_Zm2YA priority: 102 providerName: ProQuest |
Title | PIFNet: 3D Object Detection Using Joint Image and Point Cloud Features for Autonomous Driving |
URI | https://www.proquest.com/docview/2649016635 https://doaj.org/article/2e385a99ae5d40a284670976661ef59f |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_q9UUfRK3i2euxDz60hdBkd5PL-qae5wf0eoiCLyVs9gMONCde8v93ZhMl0EJffEwY2DA7O_ObzcxvAI61z9WEOx9xz00kM51EpcOsVSU2sdY4kZd0D_lznl3dy5uH9KE36otqwlp64FZxPziKp1op7VIrY80pXsYYQzGuOJ8qT94XY14vmQo-WCVEXdU25AnM6-l_cMLRnjPqmu6FoMDU_5cjDtFltgPbHSxkp-3n7MIHV-3BVo8scA92u2O4Zl87ruhvn-D34no2d_UJE1P2q6Q7FTZ1dSivqlgoB2A3q2VVs-sndBxMV5YtwvP546qxjABggwk3Q-jKTpuaOhxWzZpNX5Z00bAP97OLu_OrqJuYEBmuZB05jOdGGiVTb7XUggZM2TiNzcSY2CbG5yZHTFGqzIoyS7SQBhGfjvUkLrW2UhzAoFpV7hCYzTDxs9qajHupMjzmPlFO5VbrXEjhhvD9VYmF6ejEaarFY4FpBWm86Gl8CMdvws8ti8a_xc5oN95EiPo6vECDKDqDKP5nEEMYve5l0Z3HdYGwD4EPoauj91jjM2xyaoMIFTwjGNQvjfuC4KQux7CRzy7H8PHsYr64HQer_AOnJ-JE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFS0gti3gQ5EAKcJxnGyMVKHSZdntY-mhlXqpgmM7qFKblN1EiD_V38iMN1lWAnHrMYmVw3g83zfjeQDs6CJVfeGKQBTCBDLRYZA79FpVaENrjYvSnOKQx5NkdCYPzuPzFbjtamEorbKzid5Q28pQjPw9AjdCF-Hjx5sfAU2NotvVboTGXC0O3a-f6LLNdscD3N_XQgw_n-6PgnaqQGCEknXgEPOMNErGhdVSRzSEyfKYm74x3IamSE2KuJurxEZ5EupIGmRFmus-z7W2MsL_3oP7MkIkp8r04ZdFTId6bKYhn5cB4ndOt9ChwFOUUK32EvD5-QB_mX-PacPHsNaSUbY31551WHHlBjxaalG4Aevt4Z-xN22H6rdP4OJkPJy4-gOLBuxrTpEcNnC1T-oqmU9CYAfVZVmz8TWaK6ZLy0788_5V1VhGtLNBN58hYWZ7TU11FVUzY4PpJYU3nsLZnUj0GayWVemeA7MJuptWW5OIQqoEjUsRKqdSq3Uaycj14F0nxMy0TcxplsZVhs4MSTxbkngPdhaLb-a9O_697BPtxmIJNdz2L6rp96w9v5lArY21UtrFVnItiLZxpHJIb1wRq6IH291eZq0VmGV_dHbz_59fwYPR6fFRdjSeHG7BQ0ElFj47aBtW62njXiDxqfOXXtsYfLtr9f4NwX8VQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxFbF06r7UEGF0GR3k8sKIm3To9fqeYiFvkjc7IcUalLvEsR_zb_OmVxyHii-9THJkofZ2fn9ZnY-AHa1T9WIOx9wz00gEx0FhUOvVUU2stY4kRYUh3w_TY7P5Ml5fL4Bv_paGEqr7G1ia6htZShGvofAjdBF-Ljnu7SIWTZ-e_U9oAlSdNPaj9NYqsip-_kD3bfFm0mGe_2c8_HRp8PjoJswEBiuZB04xD8jjZKxt1pqQQOZbBiHZmRMaCPjU5MiBhcqsaJIIi2kQYakQz0KC62tFPjfG7A5Iq9oAJsHR9PZx1WEhzpuplG4LAoUQoV0Jx1xPFMJVW6vwWA7LeAvMGgRbnwX7nTUlO0vdWkLNly5DbfXGhZuw1ZnChbsRdev-uU9-DybjKeufs1Exj4UFNdhmavbFK-StSkJ7KS6KGs2-YbGi-nSsln7fHhZNZYRCW3Q6WdIn9l-U1OVRdUsWDa_oGDHfTi7Fpk-gEFZle4hMJug82m1NQn3UiVoanyknEqt1qmQwg3hVS_E3HQtzWmyxmWOrg1JPF-T-BB2V4uvlp08_r3sgHZjtYTab7cvqvnXvDvNOUcdjrVS2sVWhpoTiQuR2CHZcT5Wfgg7_V7mnU1Y5H80-NH_Pz-Dm6ja-bvJ9PQx3OJUb9GmCu3AoJ437gmyoLp42qkbgy_XreG_ATYAGtU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PIFNet%3A+3D+Object+Detection+Using+Joint+Image+and+Point+Cloud+Features+for+Autonomous+Driving&rft.jtitle=Applied+sciences&rft.au=Wenqi+Zheng&rft.au=Han+Xie&rft.au=Yunfan+Chen&rft.au=Jeongjin+Roh&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=7&rft.spage=3686&rft_id=info:doi/10.3390%2Fapp12073686&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e385a99ae5d40a284670976661ef59f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |