PIFNet: 3D Object Detection Using Joint Image and Point Cloud Features for Autonomous Driving

Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar point cloud data. However, these methods have some limitations in localization consistency and classification confide...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 7; p. 3686
Main Authors Zheng, Wenqi, Xie, Han, Chen, Yunfan, Roh, Jeongjin, Shin, Hyunchul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar point cloud data. However, these methods have some limitations in localization consistency and classification confidence, due to the irregularity and sparsity of Light Detection and Ranging (LiDAR) point cloud data. Inspired by the complementary characteristics of Lidar and camera sensors, we propose a new end-to-end learnable framework named Point-Image Fusion Network (PIFNet) to integrate the LiDAR point cloud and camera images. To resolve the problem of inconsistency in the localization and classification, we designed an Encoder-Decoder Fusion (EDF) module to extract the image features effectively, while maintaining the fine-grained localization information of objects. Furthermore, a new effective fusion module is proposed to integrate the color and texture features from images and the depth information from the point cloud. This module can enhance the irregularity and sparsity problem of the point cloud features by capitalizing the fine-grained information from camera images. In PIFNet, each intermediate feature map is fed into the fusion module to be integrated with its corresponding point-wise features. Furthermore, point-wise features are used instead of voxel-wise features to reduce information loss. Extensive experiments using the KITTI dataset demonstrate the superiority of PIFNet over other state-of-the-art methods. Compared with several state-of-the-art methods, our approach outperformed by 1.97% in mean Average Precision (mAP) and by 2.86% in Average Precision (AP) for the hard cases on the KITTI 3D object detection benchmark.
AbstractList Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar point cloud data. However, these methods have some limitations in localization consistency and classification confidence, due to the irregularity and sparsity of Light Detection and Ranging (LiDAR) point cloud data. Inspired by the complementary characteristics of Lidar and camera sensors, we propose a new end-to-end learnable framework named Point-Image Fusion Network (PIFNet) to integrate the LiDAR point cloud and camera images. To resolve the problem of inconsistency in the localization and classification, we designed an Encoder-Decoder Fusion (EDF) module to extract the image features effectively, while maintaining the fine-grained localization information of objects. Furthermore, a new effective fusion module is proposed to integrate the color and texture features from images and the depth information from the point cloud. This module can enhance the irregularity and sparsity problem of the point cloud features by capitalizing the fine-grained information from camera images. In PIFNet, each intermediate feature map is fed into the fusion module to be integrated with its corresponding point-wise features. Furthermore, point-wise features are used instead of voxel-wise features to reduce information loss. Extensive experiments using the KITTI dataset demonstrate the superiority of PIFNet over other state-of-the-art methods. Compared with several state-of-the-art methods, our approach outperformed by 1.97% in mean Average Precision (mAP) and by 2.86% in Average Precision (AP) for the hard cases on the KITTI 3D object detection benchmark.
Author Roh, Jeongjin
Shin, Hyunchul
Zheng, Wenqi
Chen, Yunfan
Xie, Han
Author_xml – sequence: 1
  givenname: Wenqi
  orcidid: 0000-0001-7697-4715
  surname: Zheng
  fullname: Zheng, Wenqi
– sequence: 2
  givenname: Han
  orcidid: 0000-0002-2672-3990
  surname: Xie
  fullname: Xie, Han
– sequence: 3
  givenname: Yunfan
  surname: Chen
  fullname: Chen, Yunfan
– sequence: 4
  givenname: Jeongjin
  orcidid: 0000-0001-6930-8183
  surname: Roh
  fullname: Roh, Jeongjin
– sequence: 5
  givenname: Hyunchul
  orcidid: 0000-0003-3020-5130
  surname: Shin
  fullname: Shin, Hyunchul
BookMark eNptUcFqGzEQFSWBuolP_QFBj8XJaKXVrnozdp04hCSH5FjEWNIaGXvlStpC_j5K3IAJmcubGd57PGa-kZM-9I6Q7wwuOFdwifs9q6DhspVfyKh0csIFa06O-q9knNIGSinGWwYj8udhubhz-Rflc3q_2jiT6dzlAj709Cn5fk1vgu8zXe5w7Sj2lj68zbNtGCxdOMxDdIl2IdLpkEMfdmFIdB79v6I9J6cdbpMb_8cz8rT4_Ti7ntzeXy1n09uJqZTIE9dWYIRRou4sCuSthMpCDaYxBiwzXWtaaNhKSctXkiEXhhUAbGCFaAU_I8uDrw240fvodxifdUCv3xYhrjXG7M3W6crxtkal0NVWAFatkA2oRkrJXFerrnj9OHjtY_g7uJT1JgyxL_F1JYUCJiWvC4sdWCaGlKLrtPEZX6-WI_qtZqBfn6KPnlI0Pz9o3pN-xn4BRGGM_A
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3550895
crossref_primary_10_3390_app12136516
crossref_primary_10_1155_2022_6909314
crossref_primary_10_3390_app122312444
crossref_primary_10_3390_s24206766
crossref_primary_10_3390_electronics13193873
crossref_primary_10_3390_rs15061580
Cites_doi 10.1007/978-3-030-58555-6_3
10.1109/CVPR42600.2020.01054
10.1109/ICCV.2019.00204
10.1109/CVPR.2017.691
10.1109/ITSC45102.2020.9294293
10.1007/978-3-030-01270-0_39
10.1109/JSEN.2021.3118365
10.1109/CVPR42600.2020.01189
10.1109/IROS40897.2019.8968513
10.1007/978-3-030-58583-9_43
10.1109/CVPR.2019.00783
10.1109/IROS.2018.8594049
10.1109/CVPR.2012.6248074
10.1109/CVPRW.2019.00162
10.1109/CVPR.2019.00086
10.3390/s18103337
10.1007/978-3-030-58542-6_2
10.1109/CVPR.2019.00752
10.1109/TPAMI.2017.2706685
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12073686
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_2e385a99ae5d40a284670976661ef59f
10_3390_app12073686
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c294t-e820c4c945fda4a38602d050c7cc0d1cf8c8071b96d3b61a34c161a0a70baad43
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:24 EDT 2025
Mon Jun 30 07:31:24 EDT 2025
Tue Jul 01 00:41:13 EDT 2025
Thu Apr 24 22:54:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-e820c4c945fda4a38602d050c7cc0d1cf8c8071b96d3b61a34c161a0a70baad43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3020-5130
0000-0001-7697-4715
0000-0001-6930-8183
0000-0002-2672-3990
OpenAccessLink https://doaj.org/article/2e385a99ae5d40a284670976661ef59f
PQID 2649016635
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_2e385a99ae5d40a284670976661ef59f
proquest_journals_2649016635
crossref_citationtrail_10_3390_app12073686
crossref_primary_10_3390_app12073686
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_13
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
Chen (ref_22) 2017; 40
ref_19
ref_18
ref_17
ref_16
ref_15
Feng (ref_3) 2021; 21
ref_25
ref_24
ref_23
ref_21
ref_20
ref_1
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_11
– ident: ref_27
  doi: 10.1007/978-3-030-58555-6_3
– ident: ref_7
  doi: 10.1109/CVPR42600.2020.01054
– ident: ref_1
– ident: ref_18
– ident: ref_21
– ident: ref_5
  doi: 10.1109/ICCV.2019.00204
– ident: ref_31
  doi: 10.1109/CVPR.2017.691
– ident: ref_19
  doi: 10.1109/ITSC45102.2020.9294293
– ident: ref_8
– ident: ref_25
  doi: 10.1007/978-3-030-01270-0_39
– ident: ref_4
– ident: ref_33
– ident: ref_2
– volume: 21
  start-page: 25922
  year: 2021
  ident: ref_3
  article-title: A dynamic clustering algorithm for Lidar obstacle detection of autonomous driving system
  publication-title: IEEE Sens.
  doi: 10.1109/JSEN.2021.3118365
– ident: ref_13
  doi: 10.1109/CVPR42600.2020.01189
– ident: ref_9
  doi: 10.1109/IROS40897.2019.8968513
– ident: ref_12
– ident: ref_6
  doi: 10.1109/CVPR42600.2020.01054
– ident: ref_10
– ident: ref_29
  doi: 10.1007/978-3-030-58583-9_43
– ident: ref_23
  doi: 10.1109/CVPR.2019.00783
– ident: ref_15
– ident: ref_26
  doi: 10.1109/IROS.2018.8594049
– ident: ref_34
  doi: 10.1109/CVPR.2012.6248074
– ident: ref_32
  doi: 10.1109/CVPRW.2019.00162
– ident: ref_14
  doi: 10.1109/CVPR.2019.00086
– ident: ref_16
  doi: 10.3390/s18103337
– ident: ref_17
  doi: 10.1007/978-3-030-58542-6_2
– ident: ref_24
  doi: 10.1109/CVPR.2019.00752
– ident: ref_20
– volume: 40
  start-page: 1259
  year: 2017
  ident: ref_22
  article-title: 3d object proposals using stereo imagery for accurate object class detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2706685
SSID ssj0000913810
Score 2.2677536
Snippet Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3686
SubjectTerms 3D object detection
camera images
Cameras
Deep learning
lidar point cloud
Methods
Neural networks
object detection
Proposals
Semantics
Sensors
Sparsity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6U9VIW26lKKfOBAkaImtpO1e6mAZQVILKuqSFyqyPEDIUFCd5P_35msd1mpVY9xfLLn8c145huAAxOUHnEfEh64TWRhsqTyGLXqzGXOWS9URXnIq2lxfiMvb_PbmHBbxLLKlU3sDbVrLOXIv6LjRtdF_vH70--EpkbR62ocofESttAEKzWArZOz6ezHOstCrJcqS5eNeQLje3oXzjjKdUHd0xuuqGfs_8sg915m8hbeRHjIjpf3uQ0vfL0DrzdIA3dgO6rjgh1Gzugv7-DX7GIy9e03JsbsuqLcChv7ti-zqllfFsAum_u6ZRePaECYqR2b9d-nD03nGAHBDgNvhhCWHXctdTo03YKN5_eUcHgPN5Ozn6fnSZyckFiuZZt49OtWWi3z4Iw0ggZNuTRP7cja1GU2KKsQW1S6cKIqMiOkReRnUjNKK2OcFB9gUDe1_wjMFRgAOuNswYPUBap7yLTXyhmjhBR-CEerQyxtpBWn6RYPJYYXdOLlxokP4WC9-WnJpvHvbSd0G-stRIHdLzTzuzJqVMlRjnKjtfG5k6nhBKRSBFcIOHzIdRjC3uouy6iXi_JZinb___sTvOLU6NDX6OzBoJ13_jPCj7bajzL2B_Zm2YA
  priority: 102
  providerName: ProQuest
Title PIFNet: 3D Object Detection Using Joint Image and Point Cloud Features for Autonomous Driving
URI https://www.proquest.com/docview/2649016635
https://doaj.org/article/2e385a99ae5d40a284670976661ef59f
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_q9UUfRK3i2euxDz60hdBkd5PL-qae5wf0eoiCLyVs9gMONCde8v93ZhMl0EJffEwY2DA7O_ObzcxvAI61z9WEOx9xz00kM51EpcOsVSU2sdY4kZd0D_lznl3dy5uH9KE36otqwlp64FZxPziKp1op7VIrY80pXsYYQzGuOJ8qT94XY14vmQo-WCVEXdU25AnM6-l_cMLRnjPqmu6FoMDU_5cjDtFltgPbHSxkp-3n7MIHV-3BVo8scA92u2O4Zl87ruhvn-D34no2d_UJE1P2q6Q7FTZ1dSivqlgoB2A3q2VVs-sndBxMV5YtwvP546qxjABggwk3Q-jKTpuaOhxWzZpNX5Z00bAP97OLu_OrqJuYEBmuZB05jOdGGiVTb7XUggZM2TiNzcSY2CbG5yZHTFGqzIoyS7SQBhGfjvUkLrW2UhzAoFpV7hCYzTDxs9qajHupMjzmPlFO5VbrXEjhhvD9VYmF6ejEaarFY4FpBWm86Gl8CMdvws8ti8a_xc5oN95EiPo6vECDKDqDKP5nEEMYve5l0Z3HdYGwD4EPoauj91jjM2xyaoMIFTwjGNQvjfuC4KQux7CRzy7H8PHsYr64HQer_AOnJ-JE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFS0gti3gQ5EAKcJxnGyMVKHSZdntY-mhlXqpgmM7qFKblN1EiD_V38iMN1lWAnHrMYmVw3g83zfjeQDs6CJVfeGKQBTCBDLRYZA79FpVaENrjYvSnOKQx5NkdCYPzuPzFbjtamEorbKzid5Q28pQjPw9AjdCF-Hjx5sfAU2NotvVboTGXC0O3a-f6LLNdscD3N_XQgw_n-6PgnaqQGCEknXgEPOMNErGhdVSRzSEyfKYm74x3IamSE2KuJurxEZ5EupIGmRFmus-z7W2MsL_3oP7MkIkp8r04ZdFTId6bKYhn5cB4ndOt9ChwFOUUK32EvD5-QB_mX-PacPHsNaSUbY31551WHHlBjxaalG4Aevt4Z-xN22H6rdP4OJkPJy4-gOLBuxrTpEcNnC1T-oqmU9CYAfVZVmz8TWaK6ZLy0788_5V1VhGtLNBN58hYWZ7TU11FVUzY4PpJYU3nsLZnUj0GayWVemeA7MJuptWW5OIQqoEjUsRKqdSq3Uaycj14F0nxMy0TcxplsZVhs4MSTxbkngPdhaLb-a9O_697BPtxmIJNdz2L6rp96w9v5lArY21UtrFVnItiLZxpHJIb1wRq6IH291eZq0VmGV_dHbz_59fwYPR6fFRdjSeHG7BQ0ElFj47aBtW62njXiDxqfOXXtsYfLtr9f4NwX8VQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxFbF06r7UEGF0GR3k8sKIm3To9fqeYiFvkjc7IcUalLvEsR_zb_OmVxyHii-9THJkofZ2fn9ZnY-AHa1T9WIOx9wz00gEx0FhUOvVUU2stY4kRYUh3w_TY7P5Ml5fL4Bv_paGEqr7G1ia6htZShGvofAjdBF-Ljnu7SIWTZ-e_U9oAlSdNPaj9NYqsip-_kD3bfFm0mGe_2c8_HRp8PjoJswEBiuZB04xD8jjZKxt1pqQQOZbBiHZmRMaCPjU5MiBhcqsaJIIi2kQYakQz0KC62tFPjfG7A5Iq9oAJsHR9PZx1WEhzpuplG4LAoUQoV0Jx1xPFMJVW6vwWA7LeAvMGgRbnwX7nTUlO0vdWkLNly5DbfXGhZuw1ZnChbsRdev-uU9-DybjKeufs1Exj4UFNdhmavbFK-StSkJ7KS6KGs2-YbGi-nSsln7fHhZNZYRCW3Q6WdIn9l-U1OVRdUsWDa_oGDHfTi7Fpk-gEFZle4hMJug82m1NQn3UiVoanyknEqt1qmQwg3hVS_E3HQtzWmyxmWOrg1JPF-T-BB2V4uvlp08_r3sgHZjtYTab7cvqvnXvDvNOUcdjrVS2sVWhpoTiQuR2CHZcT5Wfgg7_V7mnU1Y5H80-NH_Pz-Dm6ja-bvJ9PQx3OJUb9GmCu3AoJ437gmyoLp42qkbgy_XreG_ATYAGtU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PIFNet%3A+3D+Object+Detection+Using+Joint+Image+and+Point+Cloud+Features+for+Autonomous+Driving&rft.jtitle=Applied+sciences&rft.au=Wenqi+Zheng&rft.au=Han+Xie&rft.au=Yunfan+Chen&rft.au=Jeongjin+Roh&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=7&rft.spage=3686&rft_id=info:doi/10.3390%2Fapp12073686&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e385a99ae5d40a284670976661ef59f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon