Stopping power and range estimations in proton therapy based on prompt gamma timing: motion models and automated parameter optimization

Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation (PGT-SPE) may allow for reduction of safety margins in treatment planning. From Prompt-Gamma-Timing measurements, we reconstruct...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 69; no. 14; pp. 14 - 21
Main Authors Werner, Julius, Pennazio, Francesco, Schmid, Niklas, Fiorina, Elisa, Bersani, Davide, Cerello, Piergiorgio, Kasprzak, Jona, Mosco, Nicola, Ranjbar, Sahar, Sacchi, Roberto, Ferrero, Veronica, Rafecas, Magdalena
Format Journal Article
LanguageEnglish
Published England IOP Publishing 15.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation (PGT-SPE) may allow for reduction of safety margins in treatment planning. From Prompt-Gamma-Timing measurements, we reconstruct the spatiotemporal distribution of prompt gamma emissions, which is linked to the average motion of the primary particles. The stopping power is determined by fitting a model of the average particle motion. Here, we compare a previously published implementation of the particle motion model with an alternative formulation and present two formulations to automatically select the hyperparameters of our procedure. The performance was assessed using Monte-Carlo simulations of proton beams (60 MeV-219 MeV) impinging on a homogeneous PMMA phantom. The range was successfully determined within a standard deviation of 3 mm for proton beam energies from 70 MeV to 219 MeV. Stopping power estimates showed errors below 5% for beam energies above 160 MeV. At lower energies, the estimation performance degraded to unsatisfactory levels due to the short range of the protons. The new motion model improved the estimation performance by up to 5% for beam energies from 100 MeV to 150 MeV with mean errors ranging from 6% to 18%. The automated hyperparameter optimization matched the average error of previously reported manual selections, while significantly reducing the outliers. The data-driven hyperparameter optimization allowed for a reproducible and fast evaluation of our method. The updated motion model and evaluation at new beam energies bring us closer to applying PGT-SPE in more complex scenarios. Direct comparison of stopping power estimates between treatment planning and measurements during irradiation would offer a more direct verification than other secondary-particle-based techniques.
AbstractList Objective.Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation (PGT-SPE) may allow for reduction of safety margins in treatment planning.Approach.From Prompt-Gamma-Timing measurements, we reconstruct the spatiotemporal distribution of prompt gamma emissions, which is linked to the average motion of the primary particles. The stopping power is determined by fitting a model of the average particle motion. Here, we compare a previously published implementation of the particle motion model with an alternative formulation and present two formulations to automatically select the hyperparameters of our procedure. The performance was assessed using Monte-Carlo simulations of proton beams (60 MeV-219 MeV) impinging on a homogeneous PMMA phantom.Main results.The range was successfully determined within a standard deviation of 3 mm for proton beam energies from 70 MeV to 219 MeV. Stopping power estimates showed errors below 5% for beam energies above 160 MeV. At lower energies, the estimation performance degraded to unsatisfactory levels due to the short range of the protons. The new motion model improved the estimation performance by up to 5% for beam energies from 100 MeV to 150 MeV with mean errors ranging from 6% to 18%. The automated hyperparameter optimization matched the average error of previously reported manual selections, while significantly reducing the outliers.Significance.The data-driven hyperparameter optimization allowed for a reproducible and fast evaluation of our method. The updated motion model and evaluation at new beam energies bring us closer to applying PGT-SPE in more complex scenarios. Direct comparison of stopping power estimates between treatment planning and measurements during irradiation would offer a more direct verification than other secondary-particle-based techniques.Objective.Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation (PGT-SPE) may allow for reduction of safety margins in treatment planning.Approach.From Prompt-Gamma-Timing measurements, we reconstruct the spatiotemporal distribution of prompt gamma emissions, which is linked to the average motion of the primary particles. The stopping power is determined by fitting a model of the average particle motion. Here, we compare a previously published implementation of the particle motion model with an alternative formulation and present two formulations to automatically select the hyperparameters of our procedure. The performance was assessed using Monte-Carlo simulations of proton beams (60 MeV-219 MeV) impinging on a homogeneous PMMA phantom.Main results.The range was successfully determined within a standard deviation of 3 mm for proton beam energies from 70 MeV to 219 MeV. Stopping power estimates showed errors below 5% for beam energies above 160 MeV. At lower energies, the estimation performance degraded to unsatisfactory levels due to the short range of the protons. The new motion model improved the estimation performance by up to 5% for beam energies from 100 MeV to 150 MeV with mean errors ranging from 6% to 18%. The automated hyperparameter optimization matched the average error of previously reported manual selections, while significantly reducing the outliers.Significance.The data-driven hyperparameter optimization allowed for a reproducible and fast evaluation of our method. The updated motion model and evaluation at new beam energies bring us closer to applying PGT-SPE in more complex scenarios. Direct comparison of stopping power estimates between treatment planning and measurements during irradiation would offer a more direct verification than other secondary-particle-based techniques.
Abstract Objective. Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation (PGT-SPE) may allow for reduction of safety margins in treatment planning. Approach. From Prompt-Gamma-Timing measurements, we reconstruct the spatiotemporal distribution of prompt gamma emissions, which is linked to the average motion of the primary particles. The stopping power is determined by fitting a model of the average particle motion. Here, we compare a previously published implementation of the particle motion model with an alternative formulation and present two formulations to automatically select the hyperparameters of our procedure. The performance was assessed using Monte-Carlo simulations of proton beams (60 MeV–219 MeV) impinging on a homogeneous PMMA phantom. Main results. The range was successfully determined within a standard deviation of 3 mm for proton beam energies from 70 MeV to 219 MeV. Stopping power estimates showed errors below 5% for beam energies above 160 MeV. At lower energies, the estimation performance degraded to unsatisfactory levels due to the short range of the protons. The new motion model improved the estimation performance by up to 5% for beam energies from 100 MeV to 150 MeV with mean errors ranging from 6% to 18%. The automated hyperparameter optimization matched the average error of previously reported manual selections, while significantly reducing the outliers. Significance. The data-driven hyperparameter optimization allowed for a reproducible and fast evaluation of our method. The updated motion model and evaluation at new beam energies bring us closer to applying PGT-SPE in more complex scenarios. Direct comparison of stopping power estimates between treatment planning and measurements during irradiation would offer a more direct verification than other secondary-particle-based techniques.
Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation (PGT-SPE) may allow for reduction of safety margins in treatment planning. From Prompt-Gamma-Timing measurements, we reconstruct the spatiotemporal distribution of prompt gamma emissions, which is linked to the average motion of the primary particles. The stopping power is determined by fitting a model of the average particle motion. Here, we compare a previously published implementation of the particle motion model with an alternative formulation and present two formulations to automatically select the hyperparameters of our procedure. The performance was assessed using Monte-Carlo simulations of proton beams (60 MeV-219 MeV) impinging on a homogeneous PMMA phantom. The range was successfully determined within a standard deviation of 3 mm for proton beam energies from 70 MeV to 219 MeV. Stopping power estimates showed errors below 5% for beam energies above 160 MeV. At lower energies, the estimation performance degraded to unsatisfactory levels due to the short range of the protons. The new motion model improved the estimation performance by up to 5% for beam energies from 100 MeV to 150 MeV with mean errors ranging from 6% to 18%. The automated hyperparameter optimization matched the average error of previously reported manual selections, while significantly reducing the outliers. The data-driven hyperparameter optimization allowed for a reproducible and fast evaluation of our method. The updated motion model and evaluation at new beam energies bring us closer to applying PGT-SPE in more complex scenarios. Direct comparison of stopping power estimates between treatment planning and measurements during irradiation would offer a more direct verification than other secondary-particle-based techniques.
Author Fiorina, Elisa
Pennazio, Francesco
Sacchi, Roberto
Ferrero, Veronica
Rafecas, Magdalena
Kasprzak, Jona
Mosco, Nicola
Werner, Julius
Schmid, Niklas
Ranjbar, Sahar
Cerello, Piergiorgio
Bersani, Davide
Author_xml – sequence: 1
  givenname: Julius
  orcidid: 0000-0002-2389-0371
  surname: Werner
  fullname: Werner, Julius
  organization: Institute of Medical Engineering, Universität zu Lübeck , Lübeck, Germany
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0001-8323-0132
  surname: Pennazio
  fullname: Pennazio, Francesco
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Torino , Torino, Italy
– sequence: 3
  givenname: Niklas
  orcidid: 0000-0002-8068-6967
  surname: Schmid
  fullname: Schmid, Niklas
  organization: ETH Zürich Automatic Control Laboratory, Zürich, Switzerland
– sequence: 4
  givenname: Elisa
  orcidid: 0000-0002-8172-4283
  surname: Fiorina
  fullname: Fiorina, Elisa
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Torino , Torino, Italy
– sequence: 5
  givenname: Davide
  orcidid: 0009-0007-3773-4699
  surname: Bersani
  fullname: Bersani, Davide
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Pisa , Pisa, Italy
– sequence: 6
  givenname: Piergiorgio
  orcidid: 0000-0002-2443-5178
  surname: Cerello
  fullname: Cerello, Piergiorgio
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Torino , Torino, Italy
– sequence: 7
  givenname: Jona
  orcidid: 0000-0002-2075-3232
  surname: Kasprzak
  fullname: Kasprzak, Jona
  organization: Institute of Medical Engineering, Universität zu Lübeck , Lübeck, Germany
– sequence: 8
  givenname: Nicola
  orcidid: 0000-0001-6091-2130
  surname: Mosco
  fullname: Mosco, Nicola
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Torino , Torino, Italy
– sequence: 9
  givenname: Sahar
  orcidid: 0009-0000-9998-4094
  surname: Ranjbar
  fullname: Ranjbar, Sahar
  organization: Università degli Studi di Torino Dipartimento di Fisica, Torino, Italy
– sequence: 10
  givenname: Roberto
  orcidid: 0000-0001-7794-0170
  surname: Sacchi
  fullname: Sacchi, Roberto
  organization: Università degli Studi di Torino Dipartimento di Fisica, Torino, Italy
– sequence: 11
  givenname: Veronica
  orcidid: 0000-0003-3900-6680
  surname: Ferrero
  fullname: Ferrero, Veronica
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Torino , Torino, Italy
– sequence: 12
  givenname: Magdalena
  orcidid: 0000-0001-5691-7756
  surname: Rafecas
  fullname: Rafecas, Magdalena
  organization: Institute of Medical Engineering, Universität zu Lübeck , Lübeck, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38941994$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOHDEQRa2IKAwke1bISxbpYLcfbbNDiDwklCxC1pZ7bA-Nxg9stxD8QH477hnCKopkq6TSvbeqzhE4CDFYAE4w-oSREOeYcNxxxtG5NszQ8Q1YvbYOwAohgjuJGTsER6XcI4Sx6Ok7cEiEpFhKugK_f9aY0hQ2MMVHm6EOBmYdNhbaUiev6xRDgVOAKccaA6x3Nuv0BEddrIFx1_epwo32XsPmaFEX0MfF14qx27LL1HONLa15ks7a29pmxbTon3cz3oO3Tm-L_fBSj8Gvz9e3V1-7mx9fvl1d3nTrXtLa2YELzoSgkmDpCKNoMIZRIwYhe-HEqJ0ZsROOr_mge8p5-3bEIyJEOsHIMTjb57a9H-Z2o_JTWdvtVgcb56IIGghnBGPZpGgvXedYSrZOpdyI5CeFkVrwq4W1WlirPf5mOX1Jn0dvzavhL-8m-LgXTDGp-zjn0I79X97ZP-TJj4pLhWl7329Rr5Jx5A_7HqC-
CODEN PHMBA7
Cites_doi 10.1002/mp.16637
10.18434/T4NC7P
10.1093/jicru_os25.2.48
10.1118/1.598116
10.1088/0031-9155/57/11/R99
10.1088/0031-9155/59/18/5399
10.1088/1748-0221/17/11/C11013
10.1088/1361-6560/ab176d
10.3389/fphy.2022.932950
10.5170/CERN-2005-010
10.1088/1361-6560/ac03ca
10.1109/NSSMICRTSD49126.2023.10337908
10.1016/j.radonc.2023.109675
10.1118/1.4928397
10.1016/j.nds.2014.07.049
10.1109/TNS.2011.2164579
10.3389/fphy.2022.971767
10.1088/1361-6560/ac5765
ContentType Journal Article
Copyright 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1088/1361-6560/ad5d4b
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 10_1088_1361_6560_ad5d4b
38941994
pmbad5d4b
Genre Journal Article
GrantInformation_xml – fundername: Deutscher Akademischer Austauschdienst
  grantid: mobility fellowship within the IFI programme
  funderid: http://dx.doi.org/10.13039/501100001655
– fundername: Deutsche Forschungsgemeinschaft
  grantid: Cluster of Excellence EXC 2167 (Project no. 39088; Grant PROSIT no. 516587313
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Commissione Scientifica Nazionale 5, Instituto Nazionale di Fisica Nucleare
  grantid: Young Investigators Grant MERLINO no. 23246/21
  funderid: http://dx.doi.org/10.13039/501100022413
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
UCJ
W28
XPP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c294t-e768658849319f35407dd54d878928f8bafdb1f8f6c67a2466246eb1b0339f853
IEDL.DBID O3W
ISSN 0031-9155
1361-6560
IngestDate Mon Jul 15 18:02:42 EDT 2024
Wed Jul 17 13:00:29 EDT 2024
Wed Oct 23 09:52:51 EDT 2024
Sun Aug 18 17:50:26 EDT 2024
Tue Aug 20 22:16:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords proton therapy
optimization
treatment verification
range monitoring
Monte-Carlo simulations
stopping power
prompt gamma timing
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-e768658849319f35407dd54d878928f8bafdb1f8f6c67a2466246eb1b0339f853
Notes PMB-116284.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8172-4283
0009-0000-9998-4094
0009-0007-3773-4699
0000-0002-2443-5178
0000-0002-2389-0371
0000-0001-8323-0132
0000-0002-2075-3232
0000-0001-6091-2130
0000-0002-8068-6967
0000-0001-7794-0170
0000-0001-5691-7756
0000-0003-3900-6680
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6560/ad5d4b
PMID 38941994
PQID 3073653119
PQPubID 23479
PageCount 8
ParticipantIDs iop_journals_10_1088_1361_6560_ad5d4b
pubmed_primary_38941994
proquest_miscellaneous_3073653119
crossref_primary_10_1088_1361_6560_ad5d4b
PublicationCentury 2000
PublicationDate 2024-Jul-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Berger (pmbad5d4bbib2) 1993; os-25
Boyd (pmbad5d4bbib5) 2004
Ferrero (pmbad5d4bbib9) 2022a; 17
Jacquet (pmbad5d4bbib12) 2021; 66
Golnik (pmbad5d4bbib11) 2014; 59
Mirandola (pmbad5d4bbib13) 2015; 42
Schellhammer (pmbad5d4bbib17) 2022; 10
Ferrero (pmbad5d4bbib10) 2022b; 10
Vignati (pmbad5d4bbib19) 2023; 50
Paganetti (pmbad5d4bbib14) 2012; 57
Peters (pmbad5d4bbib16) 2023; 184
Ferrari (pmbad5d4bbib7) 2005
Ferrero (pmbad5d4bbib8) 2023
Pennazio (pmbad5d4bbib15) 2022; 67
Tong (pmbad5d4bbib18) 2011; 58
Bortfeld (pmbad5d4bbib4) 1997; 24
Böhlen (pmbad5d4bbib3) 2014; 120
Campi (pmbad5d4bbib6) 2018
Werner (pmbad5d4bbib20) 2019; 64
Berger (pmbad5d4bbib1) 2005
References_xml – volume: 50
  start-page: 5817
  year: 2023
  ident: pmbad5d4bbib19
  article-title: Calibration method and performance of a time-of-flight detector to measure absolute beam energy in proton therapy
  publication-title: Med. Phys.
  doi: 10.1002/mp.16637
  contributor:
    fullname: Vignati
– year: 2005
  ident: pmbad5d4bbib1
  doi: 10.18434/T4NC7P
  contributor:
    fullname: Berger
– volume: os-25
  start-page: 48
  year: 1993
  ident: pmbad5d4bbib2
  article-title: ICRU report 49: stopping powers and ranges for protons and alpha particles
  publication-title: J. Int. Comm. Radiat. Units Meas.
  doi: 10.1093/jicru_os25.2.48
  contributor:
    fullname: Berger
– volume: 24
  start-page: 2024
  year: 1997
  ident: pmbad5d4bbib4
  article-title: An analytical approximation of the Bragg curve for therapeutic proton beams
  publication-title: Med. Phys.
  doi: 10.1118/1.598116
  contributor:
    fullname: Bortfeld
– volume: 57
  start-page: R99
  year: 2012
  ident: pmbad5d4bbib14
  article-title: Range uncertainties in proton therapy and the role of Monte Carlo simulations
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/11/R99
  contributor:
    fullname: Paganetti
– volume: 59
  start-page: 5399
  year: 2014
  ident: pmbad5d4bbib11
  article-title: Range assessment in particle therapy based on prompt γ-ray timing measurements
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/18/5399
  contributor:
    fullname: Golnik
– volume: 17
  year: 2022a
  ident: pmbad5d4bbib9
  article-title: The MERLINO project: characterization of LaBr3:Ce detectors for stopping power monitoring in proton therapy
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/17/11/C11013
  contributor:
    fullname: Ferrero
– volume: 64
  year: 2019
  ident: pmbad5d4bbib20
  article-title: Processing of prompt gamma-ray timing data for proton range measurements at a clinical beam delivery
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab176d
  contributor:
    fullname: Werner
– volume: 10
  year: 2022
  ident: pmbad5d4bbib17
  article-title: Multivariate statistical modelling to improve particle treatment verification: implications for prompt gamma-ray timing
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2022.932950
  contributor:
    fullname: Schellhammer
– year: 2005
  ident: pmbad5d4bbib7
  doi: 10.5170/CERN-2005-010
  contributor:
    fullname: Ferrari
– volume: 66
  year: 2021
  ident: pmbad5d4bbib12
  article-title: A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac03ca
  contributor:
    fullname: Jacquet
– start-page: 154
  year: 2004
  ident: pmbad5d4bbib5
  contributor:
    fullname: Boyd
– start-page: 1
  year: 2023
  ident: pmbad5d4bbib8
  article-title: Proton therapy treatment verification: a spatio-temporal emission reconstruction with experimental data
  doi: 10.1109/NSSMICRTSD49126.2023.10337908
  contributor:
    fullname: Ferrero
– volume: 184
  year: 2023
  ident: pmbad5d4bbib16
  article-title: Consensus guide on CT-based prediction of stopping-power ratio using a Hounsfield look-up table for proton therapy
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2023.109675
  contributor:
    fullname: Peters
– volume: 42
  start-page: 5287
  year: 2015
  ident: pmbad5d4bbib13
  article-title: Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy
  publication-title: Med. Phys.
  doi: 10.1118/1.4928397
  contributor:
    fullname: Mirandola
– volume: 120
  start-page: 211
  year: 2014
  ident: pmbad5d4bbib3
  article-title: The FLUKA code: developments and challenges for high energy and medical applications
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2014.07.049
  contributor:
    fullname: Böhlen
– start-page: 1
  year: 2018
  ident: pmbad5d4bbib6
  contributor:
    fullname: Campi
– volume: 58
  start-page: 2264
  year: 2011
  ident: pmbad5d4bbib18
  article-title: Properties and mitigation of edge artifacts in PSF-based PET reconstruction
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2011.2164579
  contributor:
    fullname: Tong
– volume: 10
  year: 2022b
  ident: pmbad5d4bbib10
  article-title: Estimating the stopping power distribution during proton therapy: a proof of concept
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2022.971767
  contributor:
    fullname: Ferrero
– volume: 67
  year: 2022
  ident: pmbad5d4bbib15
  article-title: Proton therapy monitoring: spatiotemporal emission reconstruction with prompt gamma timing and implementation with PET detectors
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac5765
  contributor:
    fullname: Pennazio
SSID ssj0011824
Score 2.4940388
Snippet Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power...
Abstract Objective. Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like...
Objective.Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms Automation
Gamma Rays
Monte Carlo Method
Monte-Carlo simulations
optimization
Phantoms, Imaging
prompt gamma timing
proton therapy
Proton Therapy - methods
Radiotherapy Planning, Computer-Assisted - methods
range monitoring
stopping power
Time Factors
treatment verification
Title Stopping power and range estimations in proton therapy based on prompt gamma timing: motion models and automated parameter optimization
URI https://iopscience.iop.org/article/10.1088/1361-6560/ad5d4b
https://www.ncbi.nlm.nih.gov/pubmed/38941994
https://www.proquest.com/docview/3073653119/abstract/
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxUxEA49FcUX0Xo7XkoEffAh9uxuNpvok4ilCm0FW-xbyPXgw17o7nnoL_BvO5NsDxRUhF1YQjYbMpuZL5nMN4S8Lk0UFoA5k7FWjAtrmWq8Z9aHKKrguEgb-scn4uicf72oL3bIh20sTD_Mqv8dPGai4DyE84E4eVBUomDIGXNgfO25XZBbYHUTOjqtfmxdCACcMwVzVTAkQZ99lH9q4YZNWsB3_w43k9k5vE_uzXiRfsy9e0B2QrdHbucMkld75M7x7BuHwnSY040Pya_vU4-0C2s6YA40ajpPLzGIgCKlRo5VHOnPjiJJQ9_RHIN1RdGiedqn8naY6Nq0raET5v1av6c53w9NqXPG1KbZTD20Bu8ggXiLB2toP2D9HNv5iJwffj77dMTmhAvMlYpPLMDaQ2DkqoKJGXFHCMRWcy8bGF8ZpTXR2yLKKJxoTMmFgBuUvV1VlYpg-B-T3a7vwlNCXaFCEZs6eMl5bKJyrnawGhLeAcZZhSV5ez3kesi8Gjr5w6XUKB6N4tFZPEvyBmSi58k1_qPeqxv1htZqoWBxA9fJ2arUg49Q51qyGiYSekdMF_rNqFHZCdBIhVqSJ1nk257B_8WRRPnZf_bkOblbAvjBPeCifkF2p8tNeAngZbL7ZPHl9Nt--lV_A16X6jU
link.rule.ids 315,786,790,27955,27956,38898,38923,53875,53901
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoERUXBAXKQgtGggMHs5vEcezeUGFVHl2QaEVvVvxacchDTfbQX8DfZsZOK1UChJRIkTVxrIw9D4_nG0Je5XUQBgxzJkOpGBfGMFU5x4zzQRTechE39E9W4viMfzovz6c6pzEXpusn0f8WHhNQcPqF04E4Oc8KkTHEjJnXrnTczHsXtsjtEr13mNBfix_XYQQwnhMMc5ExBEKf4pR_6uWGXtqCb__d5IyqZ3mf3JtsRvoujfABueXbXXInVZG83CU7J1N8HBrjgU47PCS_vo8dQi-saY910GjdOnqBiQQUYTVSvuJAf7YUgRq6lqY8rEuKWs3RLrY3_UjXddPUdMTaX-tDmmr-0Fg-Z4h91puxg97gHQQRb_BwDe16pE_5nY_I2fLD6dExm4ouMJsrPjIP_ofA7FUFizPgrhCwruROVlLlMkhTB2eyIIOwoqpzLgTcIPDNoihUAOX_mGy3XeufEGoz5bNQld5JzkMVlLWlBY9IOAt2zsLPyJurX677hK2hY0xcSo3s0cgendgzI6-BJ3paYMM_6F7eoOsbo4UCBweu1eki1zBZgOaKsxoWE0ZI6tZ3m0GjwBMglTI1I3uJ5dcjA8uOI5Dy0_8cyQuy8-39Un_5uPr8jNzNwRbCLeGs3Cfb48XGH4AtM5rncb7-Blto7SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stopping+power+and+range+estimations+in+proton+therapy+based+on+prompt+gamma+timing%3A+motion+models+and+automated+parameter+optimization&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Werner%2C+Julius&rft.au=Pennazio%2C+Francesco&rft.au=Schmid%2C+Niklas&rft.au=Fiorina%2C+Elisa&rft.date=2024-07-15&rft.eissn=1361-6560&rft.volume=69&rft.issue=14&rft_id=info:doi/10.1088%2F1361-6560%2Fad5d4b&rft_id=info%3Apmid%2F38941994&rft.externalDocID=38941994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon