Hybrid Deep Reinforcement Learning for Enhancing Localization and Communication Efficiency in RIS-Aided Cooperative ISAC Systems

In this article, we propose a novel framework that combines simultaneous localization and communication (SLAC) using a reconfigurable intelligent surface (RIS) aided integrated sensing and communication (ISAC) systems. Our primary focus is on enhancing resource efficiency in such systems. We introdu...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 11; no. 18; pp. 29494 - 29510
Main Authors Saikia, Prajwalita, Singh, Keshav, Huang, Wan-Jen, Duong, Trung Q.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we propose a novel framework that combines simultaneous localization and communication (SLAC) using a reconfigurable intelligent surface (RIS) aided integrated sensing and communication (ISAC) systems. Our primary focus is on enhancing resource efficiency in such systems. We introduce Cloud Radio Access Networks (C-RAN) that facilitate collaboration between multiple base stations (BSs), enhancing cooperation benefits for both communication and sensing capabilities. To evaluate localization performance, we formulate an optimization problem to minimize the squared position error bound (SPEB) that reflects the system functional performance by optimizing the transmit beamformer, phase shift and subcarrier assignment under certain constraints. Moreover, in order to adjust the phase shift of the RIS, we propose a RIS-aided cooperative ISAC SLAC protocol. This approach utilizes the measurements collected to refine the location and velocity estimates of the agent, as well as to reconstruct the environmental map with enhanced accuracy. However, the high dimensionality of the decision space makes the problem computationally intensive and challenging to navigate using gradient-based or exhaustive search methods. To efficiently tackle these issues, we construct a framework based on Markov decision processes (MDPs) and address it by introducing a novel algorithm called hybrid deep reinforcement learning (HDRL) algorithm. We validate our proposed algorithm through various simulations, demonstrating its effectiveness in improving system performance by comparing with the baseline schemes.
AbstractList In this article, we propose a novel framework that combines simultaneous localization and communication (SLAC) using a reconfigurable intelligent surface (RIS) aided integrated sensing and communication (ISAC) systems. Our primary focus is on enhancing resource efficiency in such systems. We introduce Cloud Radio Access Networks (C-RAN) that facilitate collaboration between multiple base stations (BSs), enhancing cooperation benefits for both communication and sensing capabilities. To evaluate localization performance, we formulate an optimization problem to minimize the squared position error bound (SPEB) that reflects the system functional performance by optimizing the transmit beamformer, phase shift and subcarrier assignment under certain constraints. Moreover, in order to adjust the phase shift of the RIS, we propose a RIS-aided cooperative ISAC SLAC protocol. This approach utilizes the measurements collected to refine the location and velocity estimates of the agent, as well as to reconstruct the environmental map with enhanced accuracy. However, the high dimensionality of the decision space makes the problem computationally intensive and challenging to navigate using gradient-based or exhaustive search methods. To efficiently tackle these issues, we construct a framework based on Markov decision processes (MDPs) and address it by introducing a novel algorithm called hybrid deep reinforcement learning (HDRL) algorithm. We validate our proposed algorithm through various simulations, demonstrating its effectiveness in improving system performance by comparing with the baseline schemes.
Author Duong, Trung Q.
Singh, Keshav
Huang, Wan-Jen
Saikia, Prajwalita
Author_xml – sequence: 1
  givenname: Prajwalita
  orcidid: 0000-0001-8469-8263
  surname: Saikia
  fullname: Saikia, Prajwalita
  email: d103070002@nsysu.edu.tw
  organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 2
  givenname: Keshav
  orcidid: 0000-0001-9028-4518
  surname: Singh
  fullname: Singh, Keshav
  email: keshav.singh@mail.nsysu.edu.tw
  organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 3
  givenname: Wan-Jen
  orcidid: 0000-0002-3423-0408
  surname: Huang
  fullname: Huang, Wan-Jen
  email: wanjen.huang@g-mail.nsysu.edu.tw
  organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 4
  givenname: Trung Q.
  orcidid: 0000-0002-4703-4836
  surname: Duong
  fullname: Duong, Trung Q.
  email: tduong@mun.ca
  organization: Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
BookMark eNp9kE9LwzAYh4MoOKcfQPAQ8NyZP23SHsecbjIQnJ5LmrzRyJrMtBPmyY9u63YYHjy9eX88T0J-Z-jYBw8IXVIyopQUNw_zx-cRIywd8ZRSmuVHaMA4k0kqBDs-OJ-ii6Z5J4R0WkYLMUDfs20VncG3AGv8BM7bEDXU4Fu8ABW986-4i_DUvymv-20RtFq5L9W64LHyBk9CXW-807tkaq3TDrzeYufx03yZjJ2BngpriB3zCXi-HE_wctu0UDfn6MSqVQMX-zlEL3fT58ksWTzezyfjRaJZkbYJMJJLZitpUiOkUVYSRozOjK4IJ1lqKhCCgpWgpZIsy4WoeGFTzjSVeSb4EF3v7l3H8LGBpi3fwyb67smSkyLPc8Zl0VFyR-kYmiaCLbVrfz_WRuVWJSVl33jZN172jZf7xjuT_jHX0dUqbv91rnaOA4ADPssYZZL_ANDvjsI
CODEN IITJAU
CitedBy_id crossref_primary_10_3390_s25020388
crossref_primary_10_1109_OJCOMS_2024_3515933
crossref_primary_10_1007_s11432_024_4205_8
crossref_primary_10_3390_drones8120717
crossref_primary_10_4108_eetinis_v12i2_6780
crossref_primary_10_1145_3715334
Cites_doi 10.1109/COMST.2019.2916583
10.1109/JIOT.2019.2921159
10.1109/JSTSP.2022.3195671
10.1109/TIV.2023.3335277
10.1109/OJCOMS.2023.3292052
10.1109/tiv.2023.3275632
10.1109/WCNC51071.2022.9771626
10.1109/LWC.2022.3193706
10.1109/JIOT.2021.3103320
10.1109/LCOMM.2020.3025320
10.1109/JSAC.2022.3155543
10.1109/TIV.2023.3298607
10.1109/ICC40277.2020.9148744
10.1109/VTCSpring.2017.8108564
10.1109/SAM53842.2022.9827863
10.1109/ICCWorkshops53468.2022.9814522
10.1109/SAM53842.2022.9827815
10.1016/j.sigpro.2020.107701
10.1109/TSP.2020.2996155
10.1109/APUSNCURSINRSM.2017.8072468
10.1109/WCNC55385.2023.10119087
10.1109/TWC.2018.2855167
10.1109/VTC2022-Spring54318.2022.9860587
10.1109/TCCN.2023.3319543
10.1109/TCOMM.2021.3051897
10.1109/TSP.2021.3101644
10.1109/JSAC.2023.3240714
10.1109/ACCESS.2015.2422266
10.1109/WCNC.2007.564
10.1109/LCOMM.2022.3195062
10.1109/TCCN.2020.2992604
10.1109/LWC.2023.3285391
10.1109/TCOMM.2023.3332856
10.1109/ACCESS.2020.3041007
10.1109/GLOBECOM46510.2021.9685930
10.1109/MCOM.006.2200480
10.1109/twc.2024.3353336
10.1109/TWC.2016.2578336
10.1109/COMST.2021.3122519
10.23919/ICN.2022.0007
10.1109/MNET.2015.7064897
10.1109/TWC.2023.3260304
10.1109/MVT.2023.3320405
10.1109/WCNC55385.2023.10118939
10.1109/OJCOMS.2024.3353770
10.1109/ACCESS.2022.3154388
10.1109/GLOBECOM54140.2023.10437873
10.1109/TWC.2023.3307455
10.1109/TVT.2021.3075497
10.1109/JPROC.2008.2008853
10.1109/JSTSP.2022.3172788
10.1109/JIOT.2023.3235618
10.1109/ACCESS.2022.3186510
10.1109/COMST.2022.3151028
10.1109/JCS54387.2022.9743516
10.1109/WCSP49889.2020.9299780
10.1109/LCOMM.2022.3159525
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2024.3411158
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 29510
ExternalDocumentID 10_1109_JIOT_2024_3411158
10552127
Genre orig-research
GrantInformation_xml – fundername: Canada Excellence Research Chair (CERC) Program
  grantid: CERC-2022-00109
– fundername: National Science and Technology Council; National Science and Technology Council of Taiwan
  grantid: NSTC 113-2218-E-110-008; NSTC 113-2218-E-110-009
  funderid: 10.13039/100020595
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-e20872fb7d4d67daf7020dc5dcb03054dbe661ef7ec7a725866b39f432c178563
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Aug 10 10:21:52 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Tue Jul 01 00:38:09 EDT 2025
Wed Aug 27 02:02:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 18
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-e20872fb7d4d67daf7020dc5dcb03054dbe661ef7ec7a725866b39f432c178563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9028-4518
0000-0002-3423-0408
0000-0001-8469-8263
0000-0002-4703-4836
PQID 3098882379
PQPubID 2040421
PageCount 17
ParticipantIDs proquest_journals_3098882379
ieee_primary_10552127
crossref_citationtrail_10_1109_JIOT_2024_3411158
crossref_primary_10_1109_JIOT_2024_3411158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
(ref54) 1994
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Zhang (ref15) 2020; 176
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
Liu (ref28) 2022; 16
References_xml – ident: ref53
  doi: 10.1109/COMST.2019.2916583
– ident: ref56
  doi: 10.1109/JIOT.2019.2921159
– ident: ref24
  doi: 10.1109/JSTSP.2022.3195671
– ident: ref11
  doi: 10.1109/TIV.2023.3335277
– ident: ref31
  doi: 10.1109/OJCOMS.2023.3292052
– ident: ref52
  doi: 10.1109/tiv.2023.3275632
– volume-title: Front Matter and Index
  year: 1994
  ident: ref54
– ident: ref22
  doi: 10.1109/WCNC51071.2022.9771626
– ident: ref42
  doi: 10.1109/LWC.2022.3193706
– ident: ref3
  doi: 10.1109/JIOT.2021.3103320
– ident: ref32
  doi: 10.1109/LCOMM.2020.3025320
– ident: ref19
  doi: 10.1109/JSAC.2022.3155543
– ident: ref49
  doi: 10.1109/TIV.2023.3298607
– ident: ref34
  doi: 10.1109/ICC40277.2020.9148744
– ident: ref20
  doi: 10.1109/VTCSpring.2017.8108564
– ident: ref30
  doi: 10.1109/SAM53842.2022.9827863
– ident: ref21
  doi: 10.1109/ICCWorkshops53468.2022.9814522
– ident: ref48
  doi: 10.1109/SAM53842.2022.9827815
– volume: 176
  year: 2020
  ident: ref15
  article-title: Array resource allocation for radar and communication integration network
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107701
– ident: ref18
  doi: 10.1109/TSP.2020.2996155
– ident: ref39
  doi: 10.1109/APUSNCURSINRSM.2017.8072468
– ident: ref23
  doi: 10.1109/WCNC55385.2023.10119087
– ident: ref14
  doi: 10.1109/TWC.2018.2855167
– ident: ref50
  doi: 10.1109/VTC2022-Spring54318.2022.9860587
– ident: ref7
  doi: 10.1109/TCCN.2023.3319543
– ident: ref26
  doi: 10.1109/TCOMM.2021.3051897
– ident: ref44
  doi: 10.1109/TSP.2021.3101644
– ident: ref51
  doi: 10.1109/JSAC.2023.3240714
– ident: ref8
  doi: 10.1109/ACCESS.2015.2422266
– ident: ref17
  doi: 10.1109/WCNC.2007.564
– ident: ref29
  doi: 10.1109/LCOMM.2022.3195062
– ident: ref55
  doi: 10.1109/TCCN.2020.2992604
– ident: ref35
  doi: 10.1109/LWC.2023.3285391
– ident: ref13
  doi: 10.1109/TCOMM.2023.3332856
– ident: ref57
  doi: 10.1109/ACCESS.2020.3041007
– ident: ref41
  doi: 10.1109/GLOBECOM46510.2021.9685930
– ident: ref46
  doi: 10.1109/MCOM.006.2200480
– ident: ref40
  doi: 10.1109/twc.2024.3353336
– ident: ref45
  doi: 10.1109/TWC.2016.2578336
– ident: ref38
  doi: 10.1109/COMST.2021.3122519
– ident: ref25
  doi: 10.23919/ICN.2022.0007
– ident: ref9
  doi: 10.1109/MNET.2015.7064897
– ident: ref47
  doi: 10.1109/TWC.2023.3260304
– ident: ref27
  doi: 10.1109/MVT.2023.3320405
– ident: ref1
  doi: 10.1109/WCNC55385.2023.10118939
– ident: ref36
  doi: 10.1109/OJCOMS.2024.3353770
– ident: ref58
  doi: 10.1109/ACCESS.2022.3154388
– ident: ref5
  doi: 10.1109/GLOBECOM54140.2023.10437873
– ident: ref43
  doi: 10.1109/TWC.2023.3307455
– ident: ref37
  doi: 10.1109/TVT.2021.3075497
– ident: ref16
  doi: 10.1109/JPROC.2008.2008853
– volume: 16
  start-page: 995
  issue: 5
  year: 2022
  ident: ref28
  article-title: Joint transmit waveform and passive beamforming design for RIS-aided DFRC systems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2022.3172788
– ident: ref6
  doi: 10.1109/JIOT.2023.3235618
– ident: ref33
  doi: 10.1109/ACCESS.2022.3186510
– ident: ref2
  doi: 10.1109/COMST.2022.3151028
– ident: ref4
  doi: 10.1109/JCS54387.2022.9743516
– ident: ref12
  doi: 10.1109/WCSP49889.2020.9299780
– ident: ref10
  doi: 10.1109/LCOMM.2022.3159525
SSID ssj0001105196
Score 2.407203
Snippet In this article, we propose a novel framework that combines simultaneous localization and communication (SLAC) using a reconfigurable intelligent surface (RIS)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29494
SubjectTerms Algorithms
Array signal processing
Base stations
Beamforming
Communication
Deep learning
Hybrid deep reinforcement learning (HDRL)
integrated sensing and communication (ISAC)
Internet of Things
Localization
Location awareness
Machine learning
Markov processes
Performance evaluation
Phase shift
Position errors
Position measurement
Position sensing
Radar
Radio equipment
Reconfigurable intelligent surfaces
Resource efficiency
squared position error bound (SPEB)
Wireless communication
Title Hybrid Deep Reinforcement Learning for Enhancing Localization and Communication Efficiency in RIS-Aided Cooperative ISAC Systems
URI https://ieeexplore.ieee.org/document/10552127
https://www.proquest.com/docview/3098882379
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExfKUkTZ5AMnpLRZHMc5VlDUVixSoVJvUWJPoAKlFaQHOPHpeByHVSBuSWRHlmY8m_3eEHIEwos8D7MTH0s3GYSOyF3hgODY4sQNcong5ItL3h-z4SScWLC6wcIAgLl8Bm18NGf5aiYXWCrrYDNHZCRfJss6c6vAWh8FFQ-jEW5PLj037gwHVzc6A_RZW5tqHfmIL77HNFP5YYGNWzlrkMt6QdVtkvv2osza8uUbV-O_V7xO1myASbuVRmyQJSg2SaNu3kDtXt4ir_1nBGvRU4A5HYEhUJWmVkgt5-ot1Z9or7hDSg79do5uz8I2aVoo-gVcQnuGjAKRnHRa0NHg2ulOFeCo2RwqfnE6uO6eUEuS3iTjs97NSd-x7Rgc6cesdMB3ReTnWaSY4pFK80iHmkqGSmZoNZjKQDt7yCOQURr5oeA8C-KcBb7UyhDyYJusFLMCdghlEtDUcN9TkvFACcEhjWWW6nApDxRrEbcWVCItVzm2zHhITM7ixgnKNkHZJla2LXL8PmVeEXX8NbiJsvo0sBJTi-zX6pDYvfyUBG4sBHL6xLu_TNsjq_h3vEbihftkpXxcwIGOVcrs0OjoG-OF5lA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1PT9RAFH9BOOgFRDGuos4BLyZd2ul0Oj1w2MCSLSyYwJJwq-3MqxJJdyO7MXjyi_BV_GzOm86iQPRGwq1tZtpk5tf3b977PYANVFEaReSdcArdVJgEqg5VgEpSi5MwrjUVJx8cysGJ2DtNThfg6roWBhFd8hl26dKd5ZuxnlGobJOaORIjuc-h3MfL79ZDu9jKd-x2vud8tz_aHgS-iUCgeSamAfJQpbyuUiOMTE1Zp9ZAMjoxuiKsC1OhVVFYp6jTMuWJkrKKs1rEXFPjehnb9z6CJWtoJLwtD_sTwonI_pH-rDQKs829_OPI-pxcdK1ysLaWuqHtXPuWOzLfKbLdFfg1X4I2f-VrdzatuvrHLXbIB7tGT2HZm9Cs12J-FRaweQYr8_YUzEur5_BzcEnlaGwHccKO0FHEahcNZZ5V9jOzj1i_-UKkI_ZuSIrdF6aysjHsRvkM6zu6DapVZWcNO8qPg96ZQRo1nmDLoM7y49428zTwa3ByL-vwAhabcYMvgQmNJEwlj4wWMjZKSSwzXZXWIKxjIzoQzoFRaM_GTk1BzgvnlYVZQVgqCEuFx1IHPlxPmbRUJP8bvEbY-GtgC4sOrM_hV3hpdVHEYaYUsRZlr_4x7R08HowOhsUwP9x_DU_oS5Q0EyXrsDj9NsM31jKbVm_d_8Hg032D7TdX-kOo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Deep+Reinforcement+Learning+for+Enhancing+Localization+and+Communication+Efficiency+in+RIS-Aided+Cooperative+ISAC+Systems&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Saikia%2C+Prajwalita&rft.au=Singh%2C+Keshav&rft.au=Huang%2C+Wan-Jen&rft.au=Duong%2C+Trung+Q.&rft.date=2024-09-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=11&rft.issue=18&rft.spage=29494&rft.epage=29510&rft_id=info:doi/10.1109%2FJIOT.2024.3411158&rft.externalDocID=10552127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon