Hybrid Deep Reinforcement Learning for Enhancing Localization and Communication Efficiency in RIS-Aided Cooperative ISAC Systems
In this article, we propose a novel framework that combines simultaneous localization and communication (SLAC) using a reconfigurable intelligent surface (RIS) aided integrated sensing and communication (ISAC) systems. Our primary focus is on enhancing resource efficiency in such systems. We introdu...
Saved in:
Published in | IEEE internet of things journal Vol. 11; no. 18; pp. 29494 - 29510 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we propose a novel framework that combines simultaneous localization and communication (SLAC) using a reconfigurable intelligent surface (RIS) aided integrated sensing and communication (ISAC) systems. Our primary focus is on enhancing resource efficiency in such systems. We introduce Cloud Radio Access Networks (C-RAN) that facilitate collaboration between multiple base stations (BSs), enhancing cooperation benefits for both communication and sensing capabilities. To evaluate localization performance, we formulate an optimization problem to minimize the squared position error bound (SPEB) that reflects the system functional performance by optimizing the transmit beamformer, phase shift and subcarrier assignment under certain constraints. Moreover, in order to adjust the phase shift of the RIS, we propose a RIS-aided cooperative ISAC SLAC protocol. This approach utilizes the measurements collected to refine the location and velocity estimates of the agent, as well as to reconstruct the environmental map with enhanced accuracy. However, the high dimensionality of the decision space makes the problem computationally intensive and challenging to navigate using gradient-based or exhaustive search methods. To efficiently tackle these issues, we construct a framework based on Markov decision processes (MDPs) and address it by introducing a novel algorithm called hybrid deep reinforcement learning (HDRL) algorithm. We validate our proposed algorithm through various simulations, demonstrating its effectiveness in improving system performance by comparing with the baseline schemes. |
---|---|
AbstractList | In this article, we propose a novel framework that combines simultaneous localization and communication (SLAC) using a reconfigurable intelligent surface (RIS) aided integrated sensing and communication (ISAC) systems. Our primary focus is on enhancing resource efficiency in such systems. We introduce Cloud Radio Access Networks (C-RAN) that facilitate collaboration between multiple base stations (BSs), enhancing cooperation benefits for both communication and sensing capabilities. To evaluate localization performance, we formulate an optimization problem to minimize the squared position error bound (SPEB) that reflects the system functional performance by optimizing the transmit beamformer, phase shift and subcarrier assignment under certain constraints. Moreover, in order to adjust the phase shift of the RIS, we propose a RIS-aided cooperative ISAC SLAC protocol. This approach utilizes the measurements collected to refine the location and velocity estimates of the agent, as well as to reconstruct the environmental map with enhanced accuracy. However, the high dimensionality of the decision space makes the problem computationally intensive and challenging to navigate using gradient-based or exhaustive search methods. To efficiently tackle these issues, we construct a framework based on Markov decision processes (MDPs) and address it by introducing a novel algorithm called hybrid deep reinforcement learning (HDRL) algorithm. We validate our proposed algorithm through various simulations, demonstrating its effectiveness in improving system performance by comparing with the baseline schemes. |
Author | Duong, Trung Q. Singh, Keshav Huang, Wan-Jen Saikia, Prajwalita |
Author_xml | – sequence: 1 givenname: Prajwalita orcidid: 0000-0001-8469-8263 surname: Saikia fullname: Saikia, Prajwalita email: d103070002@nsysu.edu.tw organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 2 givenname: Keshav orcidid: 0000-0001-9028-4518 surname: Singh fullname: Singh, Keshav email: keshav.singh@mail.nsysu.edu.tw organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 3 givenname: Wan-Jen orcidid: 0000-0002-3423-0408 surname: Huang fullname: Huang, Wan-Jen email: wanjen.huang@g-mail.nsysu.edu.tw organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 4 givenname: Trung Q. orcidid: 0000-0002-4703-4836 surname: Duong fullname: Duong, Trung Q. email: tduong@mun.ca organization: Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada |
BookMark | eNp9kE9LwzAYh4MoOKcfQPAQ8NyZP23SHsecbjIQnJ5LmrzRyJrMtBPmyY9u63YYHjy9eX88T0J-Z-jYBw8IXVIyopQUNw_zx-cRIywd8ZRSmuVHaMA4k0kqBDs-OJ-ii6Z5J4R0WkYLMUDfs20VncG3AGv8BM7bEDXU4Fu8ABW986-4i_DUvymv-20RtFq5L9W64LHyBk9CXW-807tkaq3TDrzeYufx03yZjJ2BngpriB3zCXi-HE_wctu0UDfn6MSqVQMX-zlEL3fT58ksWTzezyfjRaJZkbYJMJJLZitpUiOkUVYSRozOjK4IJ1lqKhCCgpWgpZIsy4WoeGFTzjSVeSb4EF3v7l3H8LGBpi3fwyb67smSkyLPc8Zl0VFyR-kYmiaCLbVrfz_WRuVWJSVl33jZN172jZf7xjuT_jHX0dUqbv91rnaOA4ADPssYZZL_ANDvjsI |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_3390_s25020388 crossref_primary_10_1109_OJCOMS_2024_3515933 crossref_primary_10_1007_s11432_024_4205_8 crossref_primary_10_3390_drones8120717 crossref_primary_10_4108_eetinis_v12i2_6780 crossref_primary_10_1145_3715334 |
Cites_doi | 10.1109/COMST.2019.2916583 10.1109/JIOT.2019.2921159 10.1109/JSTSP.2022.3195671 10.1109/TIV.2023.3335277 10.1109/OJCOMS.2023.3292052 10.1109/tiv.2023.3275632 10.1109/WCNC51071.2022.9771626 10.1109/LWC.2022.3193706 10.1109/JIOT.2021.3103320 10.1109/LCOMM.2020.3025320 10.1109/JSAC.2022.3155543 10.1109/TIV.2023.3298607 10.1109/ICC40277.2020.9148744 10.1109/VTCSpring.2017.8108564 10.1109/SAM53842.2022.9827863 10.1109/ICCWorkshops53468.2022.9814522 10.1109/SAM53842.2022.9827815 10.1016/j.sigpro.2020.107701 10.1109/TSP.2020.2996155 10.1109/APUSNCURSINRSM.2017.8072468 10.1109/WCNC55385.2023.10119087 10.1109/TWC.2018.2855167 10.1109/VTC2022-Spring54318.2022.9860587 10.1109/TCCN.2023.3319543 10.1109/TCOMM.2021.3051897 10.1109/TSP.2021.3101644 10.1109/JSAC.2023.3240714 10.1109/ACCESS.2015.2422266 10.1109/WCNC.2007.564 10.1109/LCOMM.2022.3195062 10.1109/TCCN.2020.2992604 10.1109/LWC.2023.3285391 10.1109/TCOMM.2023.3332856 10.1109/ACCESS.2020.3041007 10.1109/GLOBECOM46510.2021.9685930 10.1109/MCOM.006.2200480 10.1109/twc.2024.3353336 10.1109/TWC.2016.2578336 10.1109/COMST.2021.3122519 10.23919/ICN.2022.0007 10.1109/MNET.2015.7064897 10.1109/TWC.2023.3260304 10.1109/MVT.2023.3320405 10.1109/WCNC55385.2023.10118939 10.1109/OJCOMS.2024.3353770 10.1109/ACCESS.2022.3154388 10.1109/GLOBECOM54140.2023.10437873 10.1109/TWC.2023.3307455 10.1109/TVT.2021.3075497 10.1109/JPROC.2008.2008853 10.1109/JSTSP.2022.3172788 10.1109/JIOT.2023.3235618 10.1109/ACCESS.2022.3186510 10.1109/COMST.2022.3151028 10.1109/JCS54387.2022.9743516 10.1109/WCSP49889.2020.9299780 10.1109/LCOMM.2022.3159525 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2024.3411158 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 29510 |
ExternalDocumentID | 10_1109_JIOT_2024_3411158 10552127 |
Genre | orig-research |
GrantInformation_xml | – fundername: Canada Excellence Research Chair (CERC) Program grantid: CERC-2022-00109 – fundername: National Science and Technology Council; National Science and Technology Council of Taiwan grantid: NSTC 113-2218-E-110-008; NSTC 113-2218-E-110-009 funderid: 10.13039/100020595 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-e20872fb7d4d67daf7020dc5dcb03054dbe661ef7ec7a725866b39f432c178563 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Sun Aug 10 10:21:52 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Tue Jul 01 00:38:09 EDT 2025 Wed Aug 27 02:02:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-e20872fb7d4d67daf7020dc5dcb03054dbe661ef7ec7a725866b39f432c178563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9028-4518 0000-0002-3423-0408 0000-0001-8469-8263 0000-0002-4703-4836 |
PQID | 3098882379 |
PQPubID | 2040421 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3098882379 ieee_primary_10552127 crossref_citationtrail_10_1109_JIOT_2024_3411158 crossref_primary_10_1109_JIOT_2024_3411158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-15 |
PublicationDateYYYYMMDD | 2024-09-15 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 (ref54) 1994 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Zhang (ref15) 2020; 176 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 Liu (ref28) 2022; 16 |
References_xml | – ident: ref53 doi: 10.1109/COMST.2019.2916583 – ident: ref56 doi: 10.1109/JIOT.2019.2921159 – ident: ref24 doi: 10.1109/JSTSP.2022.3195671 – ident: ref11 doi: 10.1109/TIV.2023.3335277 – ident: ref31 doi: 10.1109/OJCOMS.2023.3292052 – ident: ref52 doi: 10.1109/tiv.2023.3275632 – volume-title: Front Matter and Index year: 1994 ident: ref54 – ident: ref22 doi: 10.1109/WCNC51071.2022.9771626 – ident: ref42 doi: 10.1109/LWC.2022.3193706 – ident: ref3 doi: 10.1109/JIOT.2021.3103320 – ident: ref32 doi: 10.1109/LCOMM.2020.3025320 – ident: ref19 doi: 10.1109/JSAC.2022.3155543 – ident: ref49 doi: 10.1109/TIV.2023.3298607 – ident: ref34 doi: 10.1109/ICC40277.2020.9148744 – ident: ref20 doi: 10.1109/VTCSpring.2017.8108564 – ident: ref30 doi: 10.1109/SAM53842.2022.9827863 – ident: ref21 doi: 10.1109/ICCWorkshops53468.2022.9814522 – ident: ref48 doi: 10.1109/SAM53842.2022.9827815 – volume: 176 year: 2020 ident: ref15 article-title: Array resource allocation for radar and communication integration network publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107701 – ident: ref18 doi: 10.1109/TSP.2020.2996155 – ident: ref39 doi: 10.1109/APUSNCURSINRSM.2017.8072468 – ident: ref23 doi: 10.1109/WCNC55385.2023.10119087 – ident: ref14 doi: 10.1109/TWC.2018.2855167 – ident: ref50 doi: 10.1109/VTC2022-Spring54318.2022.9860587 – ident: ref7 doi: 10.1109/TCCN.2023.3319543 – ident: ref26 doi: 10.1109/TCOMM.2021.3051897 – ident: ref44 doi: 10.1109/TSP.2021.3101644 – ident: ref51 doi: 10.1109/JSAC.2023.3240714 – ident: ref8 doi: 10.1109/ACCESS.2015.2422266 – ident: ref17 doi: 10.1109/WCNC.2007.564 – ident: ref29 doi: 10.1109/LCOMM.2022.3195062 – ident: ref55 doi: 10.1109/TCCN.2020.2992604 – ident: ref35 doi: 10.1109/LWC.2023.3285391 – ident: ref13 doi: 10.1109/TCOMM.2023.3332856 – ident: ref57 doi: 10.1109/ACCESS.2020.3041007 – ident: ref41 doi: 10.1109/GLOBECOM46510.2021.9685930 – ident: ref46 doi: 10.1109/MCOM.006.2200480 – ident: ref40 doi: 10.1109/twc.2024.3353336 – ident: ref45 doi: 10.1109/TWC.2016.2578336 – ident: ref38 doi: 10.1109/COMST.2021.3122519 – ident: ref25 doi: 10.23919/ICN.2022.0007 – ident: ref9 doi: 10.1109/MNET.2015.7064897 – ident: ref47 doi: 10.1109/TWC.2023.3260304 – ident: ref27 doi: 10.1109/MVT.2023.3320405 – ident: ref1 doi: 10.1109/WCNC55385.2023.10118939 – ident: ref36 doi: 10.1109/OJCOMS.2024.3353770 – ident: ref58 doi: 10.1109/ACCESS.2022.3154388 – ident: ref5 doi: 10.1109/GLOBECOM54140.2023.10437873 – ident: ref43 doi: 10.1109/TWC.2023.3307455 – ident: ref37 doi: 10.1109/TVT.2021.3075497 – ident: ref16 doi: 10.1109/JPROC.2008.2008853 – volume: 16 start-page: 995 issue: 5 year: 2022 ident: ref28 article-title: Joint transmit waveform and passive beamforming design for RIS-aided DFRC systems publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2022.3172788 – ident: ref6 doi: 10.1109/JIOT.2023.3235618 – ident: ref33 doi: 10.1109/ACCESS.2022.3186510 – ident: ref2 doi: 10.1109/COMST.2022.3151028 – ident: ref4 doi: 10.1109/JCS54387.2022.9743516 – ident: ref12 doi: 10.1109/WCSP49889.2020.9299780 – ident: ref10 doi: 10.1109/LCOMM.2022.3159525 |
SSID | ssj0001105196 |
Score | 2.407203 |
Snippet | In this article, we propose a novel framework that combines simultaneous localization and communication (SLAC) using a reconfigurable intelligent surface (RIS)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29494 |
SubjectTerms | Algorithms Array signal processing Base stations Beamforming Communication Deep learning Hybrid deep reinforcement learning (HDRL) integrated sensing and communication (ISAC) Internet of Things Localization Location awareness Machine learning Markov processes Performance evaluation Phase shift Position errors Position measurement Position sensing Radar Radio equipment Reconfigurable intelligent surfaces Resource efficiency squared position error bound (SPEB) Wireless communication |
Title | Hybrid Deep Reinforcement Learning for Enhancing Localization and Communication Efficiency in RIS-Aided Cooperative ISAC Systems |
URI | https://ieeexplore.ieee.org/document/10552127 https://www.proquest.com/docview/3098882379 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExfKUkTZ5AMnpLRZHMc5VlDUVixSoVJvUWJPoAKlFaQHOPHpeByHVSBuSWRHlmY8m_3eEHIEwos8D7MTH0s3GYSOyF3hgODY4sQNcong5ItL3h-z4SScWLC6wcIAgLl8Bm18NGf5aiYXWCrrYDNHZCRfJss6c6vAWh8FFQ-jEW5PLj037gwHVzc6A_RZW5tqHfmIL77HNFP5YYGNWzlrkMt6QdVtkvv2osza8uUbV-O_V7xO1myASbuVRmyQJSg2SaNu3kDtXt4ir_1nBGvRU4A5HYEhUJWmVkgt5-ot1Z9or7hDSg79do5uz8I2aVoo-gVcQnuGjAKRnHRa0NHg2ulOFeCo2RwqfnE6uO6eUEuS3iTjs97NSd-x7Rgc6cesdMB3ReTnWaSY4pFK80iHmkqGSmZoNZjKQDt7yCOQURr5oeA8C-KcBb7UyhDyYJusFLMCdghlEtDUcN9TkvFACcEhjWWW6nApDxRrEbcWVCItVzm2zHhITM7ixgnKNkHZJla2LXL8PmVeEXX8NbiJsvo0sBJTi-zX6pDYvfyUBG4sBHL6xLu_TNsjq_h3vEbihftkpXxcwIGOVcrs0OjoG-OF5lA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1PT9RAFH9BOOgFRDGuos4BLyZd2ul0Oj1w2MCSLSyYwJJwq-3MqxJJdyO7MXjyi_BV_GzOm86iQPRGwq1tZtpk5tf3b977PYANVFEaReSdcArdVJgEqg5VgEpSi5MwrjUVJx8cysGJ2DtNThfg6roWBhFd8hl26dKd5ZuxnlGobJOaORIjuc-h3MfL79ZDu9jKd-x2vud8tz_aHgS-iUCgeSamAfJQpbyuUiOMTE1Zp9ZAMjoxuiKsC1OhVVFYp6jTMuWJkrKKs1rEXFPjehnb9z6CJWtoJLwtD_sTwonI_pH-rDQKs829_OPI-pxcdK1ysLaWuqHtXPuWOzLfKbLdFfg1X4I2f-VrdzatuvrHLXbIB7tGT2HZm9Cs12J-FRaweQYr8_YUzEur5_BzcEnlaGwHccKO0FHEahcNZZ5V9jOzj1i_-UKkI_ZuSIrdF6aysjHsRvkM6zu6DapVZWcNO8qPg96ZQRo1nmDLoM7y49428zTwa3ByL-vwAhabcYMvgQmNJEwlj4wWMjZKSSwzXZXWIKxjIzoQzoFRaM_GTk1BzgvnlYVZQVgqCEuFx1IHPlxPmbRUJP8bvEbY-GtgC4sOrM_hV3hpdVHEYaYUsRZlr_4x7R08HowOhsUwP9x_DU_oS5Q0EyXrsDj9NsM31jKbVm_d_8Hg032D7TdX-kOo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Deep+Reinforcement+Learning+for+Enhancing+Localization+and+Communication+Efficiency+in+RIS-Aided+Cooperative+ISAC+Systems&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Saikia%2C+Prajwalita&rft.au=Singh%2C+Keshav&rft.au=Huang%2C+Wan-Jen&rft.au=Duong%2C+Trung+Q.&rft.date=2024-09-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=11&rft.issue=18&rft.spage=29494&rft.epage=29510&rft_id=info:doi/10.1109%2FJIOT.2024.3411158&rft.externalDocID=10552127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |