Make Segment Anything Model Perfect on Shadow Detection
Compared to models pretrained on ImageNet, the segment anything model (SAM) has been trained on a massive segmentation corpus, excelling in both generalization ability and boundary localization. However, these strengths are still insufficient to enhance shadow detection without additional training,...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 61; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compared to models pretrained on ImageNet, the segment anything model (SAM) has been trained on a massive segmentation corpus, excelling in both generalization ability and boundary localization. However, these strengths are still insufficient to enhance shadow detection without additional training, and it raises the question: do we still need precise manual annotations to fine-tune SAM for high detection accuracy? This article proposes an annotation-free framework for deep unsupervised shadow detection (USD) by leveraging SAM's capabilities. The key lies in how to exploit the abilities acquired from a large-scale corpus and utilize them to improve downstream tasks. Instead of directly fine-tuning SAM, we propose a prompt-like tuning method to inject task-specific cues into SAM in a lightweight manner, namely, ShadowSAM. This adaptation manner can ensure a good fitting when training data are limited. Moreover, considering that the pseudo labels used in our framework are generated by traditional USD approaches and may contain severe label noises, we propose an illumination and texture-guided updating (ITU) strategy to selectively boost the quality of pseudo masks. To further improve the model's robustness, we design a mask diversity index (MDI) to establish easy-to-hard subsets for incremental curriculum learning. Extensive experiments on benchmark datasets (i.e., SBU, UCF, ISTD, and CUHK-Shadow) demonstrate that our unsupervised solution can achieve comparable performance to state-of-the-art (SOTA) fully supervised methods. Our code is available at this repository. |
---|---|
AbstractList | Compared to models pretrained on ImageNet, the segment anything model (SAM) has been trained on a massive segmentation corpus, excelling in both generalization ability and boundary localization. However, these strengths are still insufficient to enhance shadow detection without additional training, and it raises the question: do we still need precise manual annotations to fine-tune SAM for high detection accuracy? This article proposes an annotation-free framework for deep unsupervised shadow detection (USD) by leveraging SAM’s capabilities. The key lies in how to exploit the abilities acquired from a large-scale corpus and utilize them to improve downstream tasks. Instead of directly fine-tuning SAM, we propose a prompt-like tuning method to inject task-specific cues into SAM in a lightweight manner, namely, ShadowSAM. This adaptation manner can ensure a good fitting when training data are limited. Moreover, considering that the pseudo labels used in our framework are generated by traditional USD approaches and may contain severe label noises, we propose an illumination and texture-guided updating (ITU) strategy to selectively boost the quality of pseudo masks. To further improve the model’s robustness, we design a mask diversity index (MDI) to establish easy-to-hard subsets for incremental curriculum learning. Extensive experiments on benchmark datasets (i.e., SBU, UCF, ISTD, and CUHK-Shadow) demonstrate that our unsupervised solution can achieve comparable performance to state-of-the-art (SOTA) fully supervised methods. Our code is available at this repository. |
Author | Mao, Xiaoyang Qin, Hongshuai Chen, Xiao-Diao Wu, Xiantao Yang, Wenya Wu, Wen |
Author_xml | – sequence: 1 givenname: Xiao-Diao orcidid: 0000-0002-7523-7657 surname: Chen fullname: Chen, Xiao-Diao email: xiaodiao@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Wen orcidid: 0000-0003-0919-3948 surname: Wu fullname: Wu, Wen email: wuwen.hdu.cs@gmail.com organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Wenya orcidid: 0000-0002-7041-1302 surname: Yang fullname: Yang, Wenya email: yangwenya@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Hongshuai surname: Qin fullname: Qin, Hongshuai email: qinhongshuai@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 5 givenname: Xiantao surname: Wu fullname: Wu, Xiantao email: xiantao.hdu.cs@gmail.com organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 6 givenname: Xiaoyang orcidid: 0000-0001-9531-3197 surname: Mao fullname: Mao, Xiaoyang email: mao@yamanashi.ac.jp organization: Department of Computer Science and Engineering, University of Yamanashi, Kofu, Japan |
BookMark | eNpNkE1rAjEQhkOxULX9AYUeAj2vzeduchRbbUFpqfYc1uxE12pisyvFf9-IHgoDA8PzzjBPD3V88IDQPSUDSol-Wkw-5wNGGB9wzhmTxRXqUilVRnIhOqhLqM4zpjS7Qb2m2RBChaRFFxWz8hvwHFY78C0e-mO7rv0Kz0IFW_wB0YFtcfB4vi6r8IufoU2DOvhbdO3KbQN3l95HX-OXxeg1m75P3kbDaWaZFm0GxApeEWsVLIlwjFqbCqBynC-1VLQShcxdrjmXllVCalcooiFXXCmZC95Hj-e9-xh-DtC0ZhMO0aeTJn0jCdGM8kTRM2VjaJoIzuxjvSvj0VBiTn7MyY85-TEXPynzcM7UAPCP5zSJEfwPnkZhaQ |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TII_2024_3376726 |
Cites_doi | 10.1109/VS-GAMES.2017.8056589 10.1109/TGRS.2022.3203808 10.1109/ICCV48922.2021.00950 10.1109/ICCV48922.2021.00417 10.1109/IJCNN48605.2020.9207304 10.1007/978-3-030-01231-1_8 10.1109/CVPR.2018.00847 10.3390/rs14020320 10.1109/CVPR.2011.5995725 10.1109/TGRS.2008.2004629 10.1109/ICCV.2011.6126331 10.1109/CVPR.2018.00778 10.1007/978-3-031-19827-4_41 10.1109/TGRS.2022.3144165 10.1016/j.cviu.2021.103341 10.1109/TIP.2022.3222904 10.1016/j.cag.2022.04.003 10.1109/TPAMI.2022.3225323 10.1109/ICCV51070.2023.00371 10.1109/TGRS.2014.2306233 10.1109/TGRS.2006.869980 10.1016/j.patcog.2006.09.017 10.1145/2070781.2024191 10.1109/ICASSP.2009.4959698 10.1109/CVPR.2014.360 10.1007/s00371-021-02095-5 10.1109/CVPR52729.2023.00701 10.18653/v1/2021.acl-long.353 10.1109/tnnls.2023.3262599 10.1109/CVPR.2013.153 10.1109/CVPR52729.2023.01813 10.1109/TCSVT.2023.3263903 10.1007/978-3-030-01216-8_41 10.1109/TNNLS.2021.3109872 10.1109/TPAMI.2022.3179526 10.1109/TGRS.2021.3095166 10.1007/978-3-319-46466-4_49 10.1109/TGRS.2013.2288500 10.1109/CVPR.2017.634 10.1145/1553374.1553380 10.1109/TPAMI.2017.2691703 10.1109/CVPR.2010.5540209 10.3390/s23187884 10.1109/ICCV.2013.370 10.1016/j.cviu.2010.04.003 10.1007/978-1-4615-0913-4_11 10.1109/CVPR.2009.5206848 10.3390/rs15184466 10.1016/j.jvcir.2022.103596 10.1016/j.patcog.2011.10.001 10.1109/TIP.2017.2712283 10.1109/CVPR52688.2022.00423 10.1109/ICCV.2017.483 10.1109/TIP.2021.3049331 10.1007/978-3-030-58580-8_41 10.1109/ICCV48922.2021.00466 10.1016/j.patcog.2022.108982 10.1109/ICCV.2013.209 10.1109/TGRS.2010.2096515 10.1109/CVPR52729.2023.02310 10.1145/3503161.3547904 10.1109/CVPR.2019.00531 10.1109/TIP.2015.2465159 10.1016/j.patcog.2022.108777 10.1109/CVPR42600.2020.00565 10.1109/CVPR.2018.00192 10.18653/v1/2021.emnlp-main.243 10.1109/TGRS.2013.2262722 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2023.3332257 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TGRS_2023_3332257 10315174 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972120 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 XFK Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c294t-e0c43d0cc8eb04f21cc1cceedf33b9581d4756f69335c2d459f7809e683885643 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Oct 10 19:31:33 EDT 2024 Fri Aug 23 02:59:03 EDT 2024 Wed Jun 26 19:24:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-e0c43d0cc8eb04f21cc1cceedf33b9581d4756f69335c2d459f7809e683885643 |
ORCID | 0000-0002-7523-7657 0000-0002-7041-1302 0000-0003-0919-3948 0000-0001-9531-3197 |
PQID | 2895009213 |
PQPubID | 85465 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2023_3332257 proquest_journals_2895009213 ieee_primary_10315174 |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Radford (ref23) ref17 ref16 ref19 ref18 Hendrycks (ref66) 2016 ref51 ref50 Zhang (ref75) 2023 ref46 ref45 ref47 Zoph (ref49); 33 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref81 ref40 Cai (ref28); 33 ref80 ref35 Sohn (ref48); 33 ref79 ref34 ref78 ref37 ref36 ref31 ref30 ref33 ref77 ref32 ref76 ref2 ref1 ref39 Tan (ref65) ref38 Jie (ref74) 2023 ref70 ref73 ref68 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 Bommasani (ref24) 2021 ref21 Lee (ref42); 3 Dosovitskiy (ref71) ref27 ref29 Guo (ref72) ref60 ref62 ref61 Arpit (ref41) |
References_xml | – ident: ref10 doi: 10.1109/VS-GAMES.2017.8056589 – year: 2023 ident: ref74 article-title: When SAM meets shadow detection publication-title: arXiv:2305.11513 contributor: fullname: Jie – ident: ref7 doi: 10.1109/TGRS.2022.3203808 – volume: 33 start-page: 596 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref48 article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence contributor: fullname: Sohn – ident: ref25 doi: 10.1109/ICCV48922.2021.00950 – ident: ref26 doi: 10.1109/ICCV48922.2021.00417 – ident: ref46 doi: 10.1109/IJCNN48605.2020.9207304 – ident: ref56 doi: 10.1007/978-3-030-01231-1_8 – ident: ref29 doi: 10.1109/CVPR.2018.00847 – ident: ref6 doi: 10.3390/rs14020320 – year: 2021 ident: ref24 article-title: On the opportunities and risks of foundation models publication-title: arXiv:2108.07258 contributor: fullname: Bommasani – volume: 33 start-page: 3833 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref49 article-title: Rethinking pre-training and self-training contributor: fullname: Zoph – ident: ref53 doi: 10.1109/CVPR.2011.5995725 – ident: ref37 doi: 10.1109/TGRS.2008.2004629 – ident: ref52 doi: 10.1109/ICCV.2011.6126331 – ident: ref55 doi: 10.1109/CVPR.2018.00778 – ident: ref33 doi: 10.1007/978-3-031-19827-4_41 – ident: ref14 doi: 10.1109/TGRS.2022.3144165 – ident: ref17 doi: 10.1016/j.cviu.2021.103341 – ident: ref76 doi: 10.1109/TIP.2022.3222904 – ident: ref19 doi: 10.1016/j.cag.2022.04.003 – ident: ref50 doi: 10.1109/TPAMI.2022.3225323 – ident: ref22 doi: 10.1109/ICCV51070.2023.00371 – ident: ref8 doi: 10.1109/TGRS.2014.2306233 – ident: ref63 doi: 10.1109/TGRS.2006.869980 – ident: ref36 doi: 10.1016/j.patcog.2006.09.017 – ident: ref1 doi: 10.1145/2070781.2024191 – year: 2023 ident: ref75 article-title: Customized segment anything model for medical image segmentation publication-title: arXiv:2304.13785 contributor: fullname: Zhang – ident: ref38 doi: 10.1109/ICASSP.2009.4959698 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref72 article-title: SegNeXt: Rethinking convolutional attention design for semantic segmentation contributor: fullname: Guo – ident: ref81 doi: 10.1109/CVPR.2014.360 – ident: ref21 doi: 10.1007/s00371-021-02095-5 – start-page: 8748 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref23 article-title: Learning transferable visual models from natural language supervision contributor: fullname: Radford – ident: ref35 doi: 10.1109/CVPR52729.2023.00701 – ident: ref31 doi: 10.18653/v1/2021.acl-long.353 – ident: ref12 doi: 10.1109/tnnls.2023.3262599 – ident: ref80 doi: 10.1109/CVPR.2013.153 – ident: ref44 doi: 10.1109/CVPR52729.2023.01813 – ident: ref18 doi: 10.1109/TCSVT.2023.3263903 – ident: ref58 doi: 10.1007/978-3-030-01216-8_41 – ident: ref11 doi: 10.1109/TNNLS.2021.3109872 – ident: ref73 doi: 10.1109/TPAMI.2022.3179526 – year: 2016 ident: ref66 article-title: Gaussian error linear units (GELUs) publication-title: arXiv:1606.08415 contributor: fullname: Hendrycks – ident: ref13 doi: 10.1109/TGRS.2021.3095166 – ident: ref68 doi: 10.1007/978-3-319-46466-4_49 – ident: ref40 doi: 10.1109/TGRS.2013.2288500 – ident: ref64 doi: 10.1109/CVPR.2017.634 – ident: ref47 doi: 10.1145/1553374.1553380 – ident: ref54 doi: 10.1109/TPAMI.2017.2691703 – ident: ref69 doi: 10.1109/CVPR.2010.5540209 – ident: ref27 doi: 10.3390/s23187884 – ident: ref79 doi: 10.1109/ICCV.2013.370 – ident: ref2 doi: 10.1016/j.cviu.2010.04.003 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref71 article-title: An image is worth 16✗16 words: Transformers for image recognition at scale contributor: fullname: Dosovitskiy – ident: ref4 doi: 10.1007/978-1-4615-0913-4_11 – volume: 33 start-page: 11285 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref28 article-title: TinyTL: Reduce memory, not parameters for efficient on-device learning contributor: fullname: Cai – ident: ref34 doi: 10.1109/CVPR.2009.5206848 – ident: ref15 doi: 10.3390/rs15184466 – start-page: 6105 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref65 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks contributor: fullname: Tan – ident: ref20 doi: 10.1016/j.jvcir.2022.103596 – ident: ref5 doi: 10.1016/j.patcog.2011.10.001 – ident: ref3 doi: 10.1109/TIP.2017.2712283 – ident: ref43 doi: 10.1109/CVPR52688.2022.00423 – ident: ref57 doi: 10.1109/ICCV.2017.483 – start-page: 233 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref41 article-title: A closer look at memorization in deep networks contributor: fullname: Arpit – ident: ref60 doi: 10.1109/TIP.2021.3049331 – ident: ref30 doi: 10.1007/978-3-030-58580-8_41 – volume: 3 start-page: 896 issue: 2 volume-title: Proc. Int. Conf. Mach. Learn. Workshop ident: ref42 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks contributor: fullname: Lee – ident: ref61 doi: 10.1109/ICCV48922.2021.00466 – ident: ref67 doi: 10.1016/j.patcog.2022.108982 – ident: ref78 doi: 10.1109/ICCV.2013.209 – ident: ref39 doi: 10.1109/TGRS.2010.2096515 – ident: ref45 doi: 10.1109/CVPR52729.2023.02310 – ident: ref62 doi: 10.1145/3503161.3547904 – ident: ref59 doi: 10.1109/CVPR.2019.00531 – ident: ref77 doi: 10.1109/TIP.2015.2465159 – ident: ref51 doi: 10.1016/j.patcog.2022.108777 – ident: ref16 doi: 10.1109/CVPR42600.2020.00565 – ident: ref70 doi: 10.1109/CVPR.2018.00192 – ident: ref32 doi: 10.18653/v1/2021.emnlp-main.243 – ident: ref9 doi: 10.1109/TGRS.2013.2262722 |
SSID | ssj0014517 |
Score | 2.494646 |
Snippet | Compared to models pretrained on ImageNet, the segment anything model (SAM) has been trained on a massive segmentation corpus, excelling in both generalization... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Annotations Curriculum Curriculum learning Detection Feature extraction Image segmentation Labels Lighting Localization noisy label segment anything model (SAM) Segments shadow detection Shadows Task analysis Training Training data Tuning unsupervised learning |
Title | Make Segment Anything Model Perfect on Shadow Detection |
URI | https://ieeexplore.ieee.org/document/10315174 https://www.proquest.com/docview/2895009213 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sQdCDj1qxWmUPnoSkSTabZI9FrUVoEdtCb2GzmShUUmlTRH-9u5tUqiIIOeSQLMt8k8zsvD6ASz2SJfUZWqErNIVZmlicIVpUBpkyoEiTTIcGBsOgP_Hvp2xaNaubXhhENMVnaOtbk8tP53KlQ2UdQ0mgXOga1ELOy2atr5SBz9yqNzqw1CnCq1KYrsM747vHka15wm1KtQKH34yQYVX59Ss29qW3D8P1zsqykpm9KhJbfvwY2vjvrR_AXuVpkm6pGoewhXkDdjfmDzZg29R_yuURhAMxQzLCJ70M6ebvhY5MEc2U9kIecKGLPsg8J6Nnkc7fyA0WpoQrb8Kkdzu-7lsVp4IlPe4XFjrSp6kjZYSJ42eeK6W6lKHMKE04U96rHzIFE6eUSU-hyLMwcjgGEY0iptyXY6jn8xxPgCjPjwkhM0GF9FOBUZAGwsmSQHqCBpHTgqu1kOPXcnRGbI4cDo81IrFGJK4QaUFTC23jwVJeLWivcYmrr2sZK3iZHhbl0tM_XjuDHb16GStpQ71YrPBceQ9FcmG05hO88r8h |
link.rule.ids | 315,783,787,799,4033,27937,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH64IOrBpSpWq87Bk5CYZDJZjuJWlxaxFbyFyeRFQUmlTRH99c6bpOKCIOSQQ5bhfS9537wVYJ9asmS-QCt0JY0wy1IrFogWV0GuDSjyNCfXQKcbtO_8y3txXxerm1oYRDTJZ2jTqYnlZwM1JlfZoRlJoCn0NMwKIhZVudZn0MAXbl0dHVh6H-HVQUzXiQ_757c9myaF25yTCoffzJCZq_LrZ2wszNkydCdrqxJLnuxxmdrq_Ufbxn8vfgWWaq7JjirlWIUpLBqw-KUDYQPmTAaoGq1B2JFPyHr4QI9hR8VbSb4pRrPSntkNDintgw0K1nuU2eCVnWBpkriKdbg7O-0ft616qoKlvNgvLXSUzzNHqQhTx889Vyl9aFOZc57GQvNXPxQaqJhzoTyNY5yHkRNjEPEoEprAbMBMMShwE5jmfkJKlUsulZ9JjIIskE6eBsqTPIicJhxMhJy8VM0zErPpcOKEEEkIkaRGpAnrJLQvF1byakJrgktSf1-jRMMrqF2Uy7f-uG0P5tv9znVyfdG92oYFelPlOWnBTDkc447mEmW6azToA_Avwm4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Make+Segment+Anything+Model+Perfect+on+Shadow+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chen%2C+Xiao-Diao&rft.au=Wu%2C+Wen&rft.au=Yang%2C+Wenya&rft.au=Qin%2C+Hongshuai&rft.date=2023&rft.pub=IEEE&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2023.3332257&rft.externalDocID=10315174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |