Sequential detection of an unknown transient change profile by the finite moving average test
The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change detection, which assumes that the post-change period is infinitely long, sometimes it is necessary to detect a change with a priori upper-bounded...
Saved in:
Published in | Sequential analysis Vol. 44; no. 3; pp. 293 - 325 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
03.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change detection, which assumes that the post-change period is infinitely long, sometimes it is necessary to detect a change with a priori upper-bounded (usually short) detection delay. All detections that exceed the required time to alert are assumed missed. We relax the assumption that the profile of a transient change is known. New versions of the FMA test are designed by using the generalized likelihood ratio (GLR) test in the Gaussian mean case. A Gaussian linear model with transient changes and nuisance parameters is also considered. These new quadratic FMA tests are compared to each other and with the FMA test based on a priori known transient change profile by their operating characteristics. |
---|---|
AbstractList | The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change detection, which assumes that the post-change period is infinitely long, sometimes it is necessary to detect a change with a priori upper-bounded (usually short) detection delay. All detections that exceed the required time to alert are assumed missed. We relax the assumption that the profile of a transient change is known. New versions of the FMA test are designed by using the generalized likelihood ratio (GLR) test in the Gaussian mean case. A Gaussian linear model with transient changes and nuisance parameters is also considered. These new quadratic FMA tests are compared to each other and with the FMA test based on a priori known transient change profile by their operating characteristics. The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change detection, which assumes that the post-change period is infinitely long, sometimes it is necessary to detect a change with an \emph{a priori} upper-bounded (usually short) detection delay. All detections that exceed the required time to alert are assumed missed. We relax the assumption that the profile of a transient change is known. New versions of the FMA test are designed by using the generalized likelihood ratio (GLR) test in the Gaussian mean case. A Gaussian linear model with transient changes and nuisance parameters is also considered. These new quadratic FMA tests are compared to each other and with the FMA test based on the \emph{a priori} known transient change profile by their operating characteristics. |
Author | Nikiforov, Igor |
Author_xml | – sequence: 1 givenname: Igor orcidid: 0000-0001-7051-9308 surname: Nikiforov fullname: Nikiforov, Igor organization: LIST3N, Université de Technologie de Troyes |
BackLink | https://utt.hal.science/hal-05047267$$DView record in HAL |
BookMark | eNp9kEFLwzAYhoMouE1_gpCrh84kTZP25hjqhIEH9Sjha5ts0S6ZSbaxf-_KpkdPH3w8z3t4hujceacRuqFkTElJ7ojkkldcjBlhxZjxKhdFdYYGtMhZxqkU52jQM1kPXaJhjJ-E0JISOUAfr_p7o12y0OFWJ90k6x32BoPDG_fl_M7hFMBFe4BwswS30HgdvLGdxvUep6XGxjqbNF75rXULDFsd4AAlHdMVujDQRX19uiP0_vjwNp1l85en5-lknjWs4ilrBVDaEmC1yHORt1yYupVFzU1T80obYcqy5CUHUwnBS6gY1LQxktdSaFHSfIRuj7tL6NQ62BWEvfJg1WwyV_2PFIRLJuS2Z4sj2wQfY9DmT6BE9T3Vb0_V91Snngfv_uhZZ3xYwc6HrlUJ9p0P5lCosVHl_0_8ACVpfys |
Cites_doi | 10.1109/ISIT.2019.8849248 10.1080/07474946.2013.774621 10.21236/ADA230068 10.3182/20060829-4-CN-2909.00042 10.1016/j.nucengdes.2020.110733 10.1109/AERO.2005.1559517 10.1109/TSP.2005.857060 10.1007/s11009-019-09769-7 10.1109/TSP.2022.3158008 10.1080/07474946.2020.1767406 10.1016/j.automatica.2005.02.004 10.1080/07474946.2023.2211126 10.1214/aos/1176324466 10.1109/TSP.2021.3071016 10.1109/78.301849 10.1080/07474946.2023.2171056 10.1002/1099-1115(200011)14:7<683::AID-ACS616>3.0.CO;2-Z 10.2307/1990256 10.1016/S1367-5788(02)00029-9 10.1109/MAES.2017.160047 10.1080/07474946.2012.719443 10.1214/aoms/1177698701 10.1109/78.863080 10.1080/07474946.2014.916927 10.1109/TSP.2017.2788416 |
ContentType | Journal Article |
Copyright | 2025 Taylor & Francis Group, LLC 2025 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2025 Taylor & Francis Group, LLC 2025 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1080/07474946.2025.2493659 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1532-4176 |
EndPage | 325 |
ExternalDocumentID | oai_HAL_hal_05047267v1 10_1080_07474946_2025_2493659 2493659 |
Genre | Research Article |
GrantInformation_xml | – fundername: Université de Technologie de Troyes, France |
GroupedDBID | .7F .QJ 0BK 0R~ 123 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 07G 1TA 1XC AAIKQ AAKBW ACAGQ ACGEE ACTCW AEUMN AFFNX AGCQS AGLEN AGROQ AHMOU ALCKM AMEWO AMVHM AMXXU BCCOT BPLKW C06 CAG COF CRFIH DGEBU DMQIW DWIFK EJD IVXBP NUSFT NY~ QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q |
ID | FETCH-LOGICAL-c294t-d6a11d0a2b63363d46fbd75b4fcb49ef6f888484af96648a92ab1cf74b76e6813 |
ISSN | 0747-4946 |
IngestDate | Sun Aug 24 06:10:39 EDT 2025 Wed Aug 06 19:22:29 EDT 2025 Fri Aug 01 04:00:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Transient change detection Finite moving average test Sequential detection Unknown change profile |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-d6a11d0a2b63363d46fbd75b4fcb49ef6f888484af96648a92ab1cf74b76e6813 |
ORCID | 0000-0001-7051-9308 |
PageCount | 33 |
ParticipantIDs | hal_primary_oai_HAL_hal_05047267v1 informaworld_taylorfrancis_310_1080_07474946_2025_2493659 crossref_primary_10_1080_07474946_2025_2493659 |
PublicationCentury | 2000 |
PublicationDate | 7/3/2025 |
PublicationDateYYYYMMDD | 2025-07-03 |
PublicationDate_xml | – month: 07 year: 2025 text: 7/3/2025 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Sequential analysis |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_5_29_1 e_1_3_5_28_1 e_1_3_5_27_1 e_1_3_5_26_1 e_1_3_5_25_1 e_1_3_5_24_1 e_1_3_5_23_1 e_1_3_5_22_1 Borovkov A. A. (e_1_3_5_4_1) 1998 e_1_3_5_3_1 e_1_3_5_2_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_5_1 e_1_3_5_7_1 e_1_3_5_6_1 e_1_3_5_18_1 Guépié B. K. (e_1_3_5_13_1) 2017; 63 e_1_3_5_16_1 e_1_3_5_14_1 e_1_3_5_11_1 e_1_3_5_12_1 Lehmann E. L. (e_1_3_5_15_1) 2005 e_1_3_5_19_1 Mathai A. M. (e_1_3_5_17_1) 1992 e_1_3_5_32_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_14_1 doi: 10.1109/ISIT.2019.8849248 – ident: e_1_3_5_23_1 doi: 10.1080/07474946.2013.774621 – ident: e_1_3_5_5_1 doi: 10.21236/ADA230068 – ident: e_1_3_5_11_1 doi: 10.3182/20060829-4-CN-2909.00042 – volume-title: Quadratic Forms in Random Variables: Theory and Applications. Statistics: Textbooks and Monographs year: 1992 ident: e_1_3_5_17_1 – ident: e_1_3_5_24_1 – ident: e_1_3_5_20_1 doi: 10.1016/j.nucengdes.2020.110733 – ident: e_1_3_5_31_1 doi: 10.1109/AERO.2005.1559517 – ident: e_1_3_5_32_1 doi: 10.1109/TSP.2005.857060 – ident: e_1_3_5_22_1 doi: 10.1007/s11009-019-09769-7 – ident: e_1_3_5_7_1 doi: 10.1109/TSP.2022.3158008 – ident: e_1_3_5_21_1 doi: 10.1080/07474946.2020.1767406 – volume-title: Testing Statistical Hypotheses year: 2005 ident: e_1_3_5_15_1 – ident: e_1_3_5_10_1 doi: 10.1016/j.automatica.2005.02.004 – volume: 63 start-page: 3039 issue: 5 year: 2017 ident: e_1_3_5_13_1 article-title: Detecting a Suddenly Arriving Dynamic Profile of Finite Duration publication-title: IEEE Transactions on Information Theory – ident: e_1_3_5_27_1 doi: 10.1080/07474946.2023.2211126 – volume-title: Mathematical Statistics year: 1998 ident: e_1_3_5_4_1 – ident: e_1_3_5_26_1 doi: 10.1214/aos/1176324466 – ident: e_1_3_5_28_1 doi: 10.1109/TSP.2021.3071016 – ident: e_1_3_5_18_1 – ident: e_1_3_5_25_1 doi: 10.1109/78.301849 – ident: e_1_3_5_16_1 doi: 10.1080/07474946.2023.2171056 – ident: e_1_3_5_2_1 doi: 10.1002/1099-1115(200011)14:7<683::AID-ACS616>3.0.CO;2-Z – ident: e_1_3_5_29_1 doi: 10.2307/1990256 – ident: e_1_3_5_3_1 doi: 10.1016/S1367-5788(02)00029-9 – ident: e_1_3_5_6_1 doi: 10.1109/MAES.2017.160047 – ident: e_1_3_5_12_1 doi: 10.1080/07474946.2012.719443 – ident: e_1_3_5_9_1 doi: 10.1214/aoms/1177698701 – ident: e_1_3_5_30_1 doi: 10.1109/78.863080 – ident: e_1_3_5_19_1 doi: 10.1080/07474946.2014.916927 – ident: e_1_3_5_8_1 doi: 10.1109/TSP.2017.2788416 |
SSID | ssj0018107 |
Score | 2.3275793 |
Snippet | The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change... |
SourceID | hal crossref informaworld |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 293 |
SubjectTerms | Finite moving average test Mathematics sequential detection Statistics transient change detection unknown change profile |
Title | Sequential detection of an unknown transient change profile by the finite moving average test |
URI | https://www.tandfonline.com/doi/abs/10.1080/07474946.2025.2493659 https://utt.hal.science/hal-05047267 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBab9NIeSp90-0KU3oIXyZJl-RhKy1KSXJpALsVIltQX8ZbEG2h-fWYs2es0ITS9mMUskqz5NBqNZr4h5D03lS9dwTLmucpgv-aZ8dxlTOUh6Ib5pncN7B-o5ZH8fFwcz2Z7k6ildWcXzcWNeSX_I1V4B3LFLNk7SHZsFF7Ab5AvPEHC8PwnGX_p46A7dHo73_lmsP5gza5b9Ja1WAKiPcOcx5Tiu5OKdPdmJ0Ak_ECjc-ckOhYMTAEG8XTDpdPPax2ZxGKyudD4hcldq_Ne23xbnU79CHnRx5yKibqBg0Umq-QQ9IM6zDPJY4WWQV9GvsaECzFVfrHWYdpHRUxovqaiU0wj9IadLXAoCzgDCpWYwa9QYv-1VY0BhHxgNk3N1NhMnZrZIvdyODSg1hPsYLxT0jwmzw_fOeRzIdP6TaO5Yqlsfe_jZKdsthM75PAReZgOEHQ3ouExmfn2CXmwP7Lvnj0lXzfioiMu6CpQ09KECzrigkZc0IQLav9QaIpGXNCIC5pwQREXz8jRp4-HH5ZZKqORNXklu8wpw7ljJrdKCCWcVMG6srAyNFZWPqigtZZamgBHX6lNlRvLm1BKWyqvNBfPyXa7av0LjIODBRwY98GBWSiV1aUzhWCeWanA-JyTxTBl9e_IllLfKqo5eQcTO_4Xuc6Xu3s1vmMFEpmq8pzPSTWd97rrfVkhFp6pxa0dvLzriF6R-5vV8Zpsd6dr_wbszs6-7eF0CYybeuE |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgECY-DurBt3F9EuO1KxRK26Mxblbd3Ytr4sU0UCAatWu0a6K_Xoa2m9VEL17bDi0wMI9-84HQMZWpiXVEAmKoCJy9poE0VAdEhNYmOTG5Tw30B6J7wy9vo9upWhiAVUIMbSuiCL9Xw-KGZHQDiTsB0neeckAYhFHbBRBMROksmo9SEYOuMzKY_ElIaFUy7UQCkGmqeH5r5pt9mr336MhpDtMp69NZQXnz3RXo5LE9LlU7__xB6fi_jq2i5do5xaeVNq2hGVOso6X-hNn1bQPdXXvstdsXnrA2pQdyFXhksSzwuIAMXYFLsH9QZ4mrsmJcHwyO1Qd2TWH7AI4ufvbJDCzdYnKbGnY-b7mJbjrnw7NuUB_REORhystAC0mpJjJUgjHBNBdW6ThS3OaKp8YK6yJsnnBpXVjFE5mGUtHcxlzFwoiEsi00V4wKsw0YK6ccllBjtXM5uFBJrGXEiCGKC-fYtFC7mZjspWLiyGhDcFqPWwbjltXj1kJHbvomzwKPdve0l8E1EgFJpojfaQul07OblT5PYqtDTTL25wt2_iF7iBa6w34v610MrnbRItzyIGC2h-bK17HZd65OqQ68Ln8B7jHwug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5uguiDd3Feg_jambRp2j4OdUydQ1DBFylJk6CoVVwn6K83J23HFPRlr22TNsnJufU7XxA6pCLRkQqJRzTlnrXX1BOaKo9w35g4IzpzqYHLAe_dsvO7sEYTDitYJcTQpiSKcLoaNvebMjUi7gg431nCAGDgh20bPwQ8TBpolkOhJVRxkMH4R0JMy4pp28SDNnURz1_d_DBPjQcHjpykMJ0wPt0lJOvPLjEnT-1RIdvZ1y9Gx6nGtYwWK9cUd0pZWkEzOl9FC5djXtfhGrq_dshrqxWesdKFg3Hl-NVgkeNRDvm5HBdg_aDKEpdFxbg6FhzLT2y7wuYR3Fz84lIZWNitZFUath5vsY5uu6c3xz2vOqDBy_yEFZ7iglJFhC95EPBAMW6kikLJTCZZog03Nr5mMRPGBlUsFokvJM1MxGTENY9psIGa-WuuNwFhZUXDEKqNsg4H4zKOlAgDoolk3Lo1LdSu1yV9K3k4UlrTm1bzlsK8pdW8tdCBXb3xs8Ci3ev0U7hGQqDI5NEHbaFkcnHTwmVJTHmkSRr8-4KtKdruo7mrk27aPxtcbKN5uOMQwMEOahbvI71r_ZxC7jlJ_gb9me9e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+detection+of+an+unknown+transient+change+profile+by+the+finite+moving+average+test&rft.jtitle=Sequential+analysis&rft.au=Nikiforov%2C+Igor&rft.date=2025-07-03&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=44&rft.issue=3&rft.spage=293&rft.epage=325&rft_id=info:doi/10.1080%2F07474946.2025.2493659&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2025_2493659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon |