Sequential detection of an unknown transient change profile by the finite moving average test

The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change detection, which assumes that the post-change period is infinitely long, sometimes it is necessary to detect a change with a priori upper-bounded...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 44; no. 3; pp. 293 - 325
Main Author Nikiforov, Igor
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change detection, which assumes that the post-change period is infinitely long, sometimes it is necessary to detect a change with a priori upper-bounded (usually short) detection delay. All detections that exceed the required time to alert are assumed missed. We relax the assumption that the profile of a transient change is known. New versions of the FMA test are designed by using the generalized likelihood ratio (GLR) test in the Gaussian mean case. A Gaussian linear model with transient changes and nuisance parameters is also considered. These new quadratic FMA tests are compared to each other and with the FMA test based on a priori known transient change profile by their operating characteristics.
AbstractList The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change detection, which assumes that the post-change period is infinitely long, sometimes it is necessary to detect a change with a priori upper-bounded (usually short) detection delay. All detections that exceed the required time to alert are assumed missed. We relax the assumption that the profile of a transient change is known. New versions of the FMA test are designed by using the generalized likelihood ratio (GLR) test in the Gaussian mean case. A Gaussian linear model with transient changes and nuisance parameters is also considered. These new quadratic FMA tests are compared to each other and with the FMA test based on a priori known transient change profile by their operating characteristics.
The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change detection, which assumes that the post-change period is infinitely long, sometimes it is necessary to detect a change with an \emph{a priori} upper-bounded (usually short) detection delay. All detections that exceed the required time to alert are assumed missed. We relax the assumption that the profile of a transient change is known. New versions of the FMA test are designed by using the generalized likelihood ratio (GLR) test in the Gaussian mean case. A Gaussian linear model with transient changes and nuisance parameters is also considered. These new quadratic FMA tests are compared to each other and with the FMA test based on the \emph{a priori} known transient change profile by their operating characteristics.
Author Nikiforov, Igor
Author_xml – sequence: 1
  givenname: Igor
  orcidid: 0000-0001-7051-9308
  surname: Nikiforov
  fullname: Nikiforov, Igor
  organization: LIST3N, Université de Technologie de Troyes
BackLink https://utt.hal.science/hal-05047267$$DView record in HAL
BookMark eNp9kEFLwzAYhoMouE1_gpCrh84kTZP25hjqhIEH9Sjha5ts0S6ZSbaxf-_KpkdPH3w8z3t4hujceacRuqFkTElJ7ojkkldcjBlhxZjxKhdFdYYGtMhZxqkU52jQM1kPXaJhjJ-E0JISOUAfr_p7o12y0OFWJ90k6x32BoPDG_fl_M7hFMBFe4BwswS30HgdvLGdxvUep6XGxjqbNF75rXULDFsd4AAlHdMVujDQRX19uiP0_vjwNp1l85en5-lknjWs4ilrBVDaEmC1yHORt1yYupVFzU1T80obYcqy5CUHUwnBS6gY1LQxktdSaFHSfIRuj7tL6NQ62BWEvfJg1WwyV_2PFIRLJuS2Z4sj2wQfY9DmT6BE9T3Vb0_V91Snngfv_uhZZ3xYwc6HrlUJ9p0P5lCosVHl_0_8ACVpfys
Cites_doi 10.1109/ISIT.2019.8849248
10.1080/07474946.2013.774621
10.21236/ADA230068
10.3182/20060829-4-CN-2909.00042
10.1016/j.nucengdes.2020.110733
10.1109/AERO.2005.1559517
10.1109/TSP.2005.857060
10.1007/s11009-019-09769-7
10.1109/TSP.2022.3158008
10.1080/07474946.2020.1767406
10.1016/j.automatica.2005.02.004
10.1080/07474946.2023.2211126
10.1214/aos/1176324466
10.1109/TSP.2021.3071016
10.1109/78.301849
10.1080/07474946.2023.2171056
10.1002/1099-1115(200011)14:7<683::AID-ACS616>3.0.CO;2-Z
10.2307/1990256
10.1016/S1367-5788(02)00029-9
10.1109/MAES.2017.160047
10.1080/07474946.2012.719443
10.1214/aoms/1177698701
10.1109/78.863080
10.1080/07474946.2014.916927
10.1109/TSP.2017.2788416
ContentType Journal Article
Copyright 2025 Taylor & Francis Group, LLC 2025
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2025 Taylor & Francis Group, LLC 2025
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1080/07474946.2025.2493659
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1532-4176
EndPage 325
ExternalDocumentID oai_HAL_hal_05047267v1
10_1080_07474946_2025_2493659
2493659
Genre Research Article
GrantInformation_xml – fundername: Université de Technologie de Troyes, France
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
07G
1TA
1XC
AAIKQ
AAKBW
ACAGQ
ACGEE
ACTCW
AEUMN
AFFNX
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMVHM
AMXXU
BCCOT
BPLKW
C06
CAG
COF
CRFIH
DGEBU
DMQIW
DWIFK
EJD
IVXBP
NUSFT
NY~
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ID FETCH-LOGICAL-c294t-d6a11d0a2b63363d46fbd75b4fcb49ef6f888484af96648a92ab1cf74b76e6813
ISSN 0747-4946
IngestDate Sun Aug 24 06:10:39 EDT 2025
Wed Aug 06 19:22:29 EDT 2025
Fri Aug 01 04:00:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Transient change detection
Finite moving average test
Sequential detection
Unknown change profile
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-d6a11d0a2b63363d46fbd75b4fcb49ef6f888484af96648a92ab1cf74b76e6813
ORCID 0000-0001-7051-9308
PageCount 33
ParticipantIDs hal_primary_oai_HAL_hal_05047267v1
informaworld_taylorfrancis_310_1080_07474946_2025_2493659
crossref_primary_10_1080_07474946_2025_2493659
PublicationCentury 2000
PublicationDate 7/3/2025
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 7/3/2025
  day: 03
PublicationDecade 2020
PublicationTitle Sequential analysis
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_5_29_1
e_1_3_5_28_1
e_1_3_5_27_1
e_1_3_5_26_1
e_1_3_5_25_1
e_1_3_5_24_1
e_1_3_5_23_1
e_1_3_5_22_1
Borovkov A. A. (e_1_3_5_4_1) 1998
e_1_3_5_3_1
e_1_3_5_2_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_5_1
e_1_3_5_7_1
e_1_3_5_6_1
e_1_3_5_18_1
Guépié B. K. (e_1_3_5_13_1) 2017; 63
e_1_3_5_16_1
e_1_3_5_14_1
e_1_3_5_11_1
e_1_3_5_12_1
Lehmann E. L. (e_1_3_5_15_1) 2005
e_1_3_5_19_1
Mathai A. M. (e_1_3_5_17_1) 1992
e_1_3_5_32_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_14_1
  doi: 10.1109/ISIT.2019.8849248
– ident: e_1_3_5_23_1
  doi: 10.1080/07474946.2013.774621
– ident: e_1_3_5_5_1
  doi: 10.21236/ADA230068
– ident: e_1_3_5_11_1
  doi: 10.3182/20060829-4-CN-2909.00042
– volume-title: Quadratic Forms in Random Variables: Theory and Applications. Statistics: Textbooks and Monographs
  year: 1992
  ident: e_1_3_5_17_1
– ident: e_1_3_5_24_1
– ident: e_1_3_5_20_1
  doi: 10.1016/j.nucengdes.2020.110733
– ident: e_1_3_5_31_1
  doi: 10.1109/AERO.2005.1559517
– ident: e_1_3_5_32_1
  doi: 10.1109/TSP.2005.857060
– ident: e_1_3_5_22_1
  doi: 10.1007/s11009-019-09769-7
– ident: e_1_3_5_7_1
  doi: 10.1109/TSP.2022.3158008
– ident: e_1_3_5_21_1
  doi: 10.1080/07474946.2020.1767406
– volume-title: Testing Statistical Hypotheses
  year: 2005
  ident: e_1_3_5_15_1
– ident: e_1_3_5_10_1
  doi: 10.1016/j.automatica.2005.02.004
– volume: 63
  start-page: 3039
  issue: 5
  year: 2017
  ident: e_1_3_5_13_1
  article-title: Detecting a Suddenly Arriving Dynamic Profile of Finite Duration
  publication-title: IEEE Transactions on Information Theory
– ident: e_1_3_5_27_1
  doi: 10.1080/07474946.2023.2211126
– volume-title: Mathematical Statistics
  year: 1998
  ident: e_1_3_5_4_1
– ident: e_1_3_5_26_1
  doi: 10.1214/aos/1176324466
– ident: e_1_3_5_28_1
  doi: 10.1109/TSP.2021.3071016
– ident: e_1_3_5_18_1
– ident: e_1_3_5_25_1
  doi: 10.1109/78.301849
– ident: e_1_3_5_16_1
  doi: 10.1080/07474946.2023.2171056
– ident: e_1_3_5_2_1
  doi: 10.1002/1099-1115(200011)14:7<683::AID-ACS616>3.0.CO;2-Z
– ident: e_1_3_5_29_1
  doi: 10.2307/1990256
– ident: e_1_3_5_3_1
  doi: 10.1016/S1367-5788(02)00029-9
– ident: e_1_3_5_6_1
  doi: 10.1109/MAES.2017.160047
– ident: e_1_3_5_12_1
  doi: 10.1080/07474946.2012.719443
– ident: e_1_3_5_9_1
  doi: 10.1214/aoms/1177698701
– ident: e_1_3_5_30_1
  doi: 10.1109/78.863080
– ident: e_1_3_5_19_1
  doi: 10.1080/07474946.2014.916927
– ident: e_1_3_5_8_1
  doi: 10.1109/TSP.2017.2788416
SSID ssj0018107
Score 2.3275793
Snippet The paper addresses the sequential transient change detection (TCD) by using the finite moving average (FMA) test. Unlike the conventional quickest change...
SourceID hal
crossref
informaworld
SourceType Open Access Repository
Index Database
Publisher
StartPage 293
SubjectTerms Finite moving average test
Mathematics
sequential detection
Statistics
transient change detection
unknown change profile
Title Sequential detection of an unknown transient change profile by the finite moving average test
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2025.2493659
https://utt.hal.science/hal-05047267
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBab9NIeSp90-0KU3oIXyZJl-RhKy1KSXJpALsVIltQX8ZbEG2h-fWYs2es0ITS9mMUskqz5NBqNZr4h5D03lS9dwTLmucpgv-aZ8dxlTOUh6Ib5pncN7B-o5ZH8fFwcz2Z7k6ildWcXzcWNeSX_I1V4B3LFLNk7SHZsFF7Ab5AvPEHC8PwnGX_p46A7dHo73_lmsP5gza5b9Ja1WAKiPcOcx5Tiu5OKdPdmJ0Ak_ECjc-ckOhYMTAEG8XTDpdPPax2ZxGKyudD4hcldq_Ne23xbnU79CHnRx5yKibqBg0Umq-QQ9IM6zDPJY4WWQV9GvsaECzFVfrHWYdpHRUxovqaiU0wj9IadLXAoCzgDCpWYwa9QYv-1VY0BhHxgNk3N1NhMnZrZIvdyODSg1hPsYLxT0jwmzw_fOeRzIdP6TaO5Yqlsfe_jZKdsthM75PAReZgOEHQ3ouExmfn2CXmwP7Lvnj0lXzfioiMu6CpQ09KECzrigkZc0IQLav9QaIpGXNCIC5pwQREXz8jRp4-HH5ZZKqORNXklu8wpw7ljJrdKCCWcVMG6srAyNFZWPqigtZZamgBHX6lNlRvLm1BKWyqvNBfPyXa7av0LjIODBRwY98GBWSiV1aUzhWCeWanA-JyTxTBl9e_IllLfKqo5eQcTO_4Xuc6Xu3s1vmMFEpmq8pzPSTWd97rrfVkhFp6pxa0dvLzriF6R-5vV8Zpsd6dr_wbszs6-7eF0CYybeuE
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgECY-DurBt3F9EuO1KxRK26Mxblbd3Ytr4sU0UCAatWu0a6K_Xoa2m9VEL17bDi0wMI9-84HQMZWpiXVEAmKoCJy9poE0VAdEhNYmOTG5Tw30B6J7wy9vo9upWhiAVUIMbSuiCL9Xw-KGZHQDiTsB0neeckAYhFHbBRBMROksmo9SEYOuMzKY_ElIaFUy7UQCkGmqeH5r5pt9mr336MhpDtMp69NZQXnz3RXo5LE9LlU7__xB6fi_jq2i5do5xaeVNq2hGVOso6X-hNn1bQPdXXvstdsXnrA2pQdyFXhksSzwuIAMXYFLsH9QZ4mrsmJcHwyO1Qd2TWH7AI4ufvbJDCzdYnKbGnY-b7mJbjrnw7NuUB_REORhystAC0mpJjJUgjHBNBdW6ThS3OaKp8YK6yJsnnBpXVjFE5mGUtHcxlzFwoiEsi00V4wKsw0YK6ccllBjtXM5uFBJrGXEiCGKC-fYtFC7mZjspWLiyGhDcFqPWwbjltXj1kJHbvomzwKPdve0l8E1EgFJpojfaQul07OblT5PYqtDTTL25wt2_iF7iBa6w34v610MrnbRItzyIGC2h-bK17HZd65OqQ68Ln8B7jHwug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5uguiDd3Feg_jambRp2j4OdUydQ1DBFylJk6CoVVwn6K83J23HFPRlr22TNsnJufU7XxA6pCLRkQqJRzTlnrXX1BOaKo9w35g4IzpzqYHLAe_dsvO7sEYTDitYJcTQpiSKcLoaNvebMjUi7gg431nCAGDgh20bPwQ8TBpolkOhJVRxkMH4R0JMy4pp28SDNnURz1_d_DBPjQcHjpykMJ0wPt0lJOvPLjEnT-1RIdvZ1y9Gx6nGtYwWK9cUd0pZWkEzOl9FC5djXtfhGrq_dshrqxWesdKFg3Hl-NVgkeNRDvm5HBdg_aDKEpdFxbg6FhzLT2y7wuYR3Fz84lIZWNitZFUath5vsY5uu6c3xz2vOqDBy_yEFZ7iglJFhC95EPBAMW6kikLJTCZZog03Nr5mMRPGBlUsFokvJM1MxGTENY9psIGa-WuuNwFhZUXDEKqNsg4H4zKOlAgDoolk3Lo1LdSu1yV9K3k4UlrTm1bzlsK8pdW8tdCBXb3xs8Ci3ev0U7hGQqDI5NEHbaFkcnHTwmVJTHmkSRr8-4KtKdruo7mrk27aPxtcbKN5uOMQwMEOahbvI71r_ZxC7jlJ_gb9me9e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+detection+of+an+unknown+transient+change+profile+by+the+finite+moving+average+test&rft.jtitle=Sequential+analysis&rft.au=Nikiforov%2C+Igor&rft.date=2025-07-03&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=44&rft.issue=3&rft.spage=293&rft.epage=325&rft_id=info:doi/10.1080%2F07474946.2025.2493659&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2025_2493659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon