Maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints
In this paper, the problem of maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints is studied. First of all, it is shown that the bipolar max-product Fuzzy Relation Inequality (FRI) system can equivalently be converted to a bipolar max-product...
Saved in:
Published in | Journal of intelligent & fuzzy systems Vol. 32; no. 1; pp. 337 - 350 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2017
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1064-1246 1875-8967 |
DOI | 10.3233/JIFS-151820 |
Cover
Loading…
Abstract | In this paper, the problem of maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints is studied. First of all, it is shown that the bipolar max-product Fuzzy Relation Inequality (FRI) system can equivalently be converted to a bipolar max-product Fuzzy Relation Equation (FRE) system. Hence, the structure of feasible domain of the problem is determined in the case of the bipolar max-product FRE system. It is shown that its solution set is non-convex, in a general case. Some sufficient conditions are proposed for solution existence of its feasible domain. An algorithm is designed to solve the optimization problem with regard to the structure of its feasible domain and the properties of the objective function. Its importance is also illustrated by an application example in the area of economics and covering problem. Some numerical examples are given to illustrate the above points. |
---|---|
AbstractList | In this paper, the problem of maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints is studied. First of all, it is shown that the bipolar max-product Fuzzy Relation Inequality (FRI) system can equivalently be converted to a bipolar max-product Fuzzy Relation Equation (FRE) system. Hence, the structure of feasible domain of the problem is determined in the case of the bipolar max-product FRE system. It is shown that its solution set is non-convex, in a general case. Some sufficient conditions are proposed for solution existence of its feasible domain. An algorithm is designed to solve the optimization problem with regard to the structure of its feasible domain and the properties of the objective function. Its importance is also illustrated by an application example in the area of economics and covering problem. Some numerical examples are given to illustrate the above points. |
Author | Ardalan, Shadi Shahab Abbasi Molai, Ali Aliannezhadi, Samaneh |
Author_xml | – sequence: 1 givenname: Samaneh surname: Aliannezhadi fullname: Aliannezhadi, Samaneh organization: School of Mathematics and Computer Sciences – sequence: 2 givenname: Shadi Shahab surname: Ardalan fullname: Ardalan, Shadi Shahab organization: School of Mathematics and Computer Sciences – sequence: 3 givenname: Ali surname: Abbasi Molai fullname: Abbasi Molai, Ali organization: School of Mathematics and Computer Sciences |
BookMark | eNp1kE9LAzEQxYMo2FZPfoGAF0FW82c3mz1KsVqpeFDPSzbJlpTdpCa70vbTm3Y9iOhphuH3Zt68MTi2zmoALjC6oYTS26f57DXBGeYEHYER5nmW8ILlx7FHLE0wSdkpGIewQgjnGUEj0DyLjWnNztglFLB11rVGNHCpXas7byR01UrLznxqWPc2Ns7C0B9msHOwMmvXCA9bsUnW3qk-jut-t9tCrxtxoKWzofPC2C6cgZNaNEGff9cJeJ_dv00fk8XLw3x6t0gkKdIuUanANZdZzbCWWtNKKyUw53UlK1IQQgvFMlWnuSYUpYoxLRTCXKoUFyjq6ARcDnujpY9eh65cud7beLLERUGLnDGeRup6oKR3IXhdl2tvWuG3JUblPs5yH2c5xBlp_IuWpjt8uH-u-UdzNWiCWOofHv5AvwCYHImO |
CitedBy_id | crossref_primary_10_1155_2018_1610349 crossref_primary_10_1109_TFUZZ_2020_3021726 crossref_primary_10_1016_j_fss_2023_108835 crossref_primary_10_1016_j_fss_2019_08_012 crossref_primary_10_1016_j_fss_2024_109011 crossref_primary_10_1142_S0218488520500269 crossref_primary_10_1016_j_fss_2019_08_005 crossref_primary_10_1109_TFUZZ_2020_3029633 crossref_primary_10_1109_TFUZZ_2023_3305641 crossref_primary_10_1016_j_fss_2025_109363 crossref_primary_10_3233_JIFS_191565 |
Cites_doi | 10.1016/S0165-0114(98)00471-0 10.1016/S0165-0114(85)80005-1 10.1142/S0218488594000195 10.1007/978-3-540-72950-1_56 10.1137/1018001 10.1007/s10700-007-9017-7 10.1007/s10700-012-9122-0 10.1016/0165-0114(88)90187-X 10.1007/978-1-4684-3848-2_6 10.1016/j.fss.2007.07.017 10.1016/S0165-0114(98)00417-5 10.1007/978-94-017-1650-5 10.1080/00207540410001691938 10.1016/0165-0114(80)90062-7 10.1016/j.cie.2008.08.015 10.1016/0165-0114(90)90024-Z 10.1016/j.cie.2014.03.024 10.1016/S0165-0114(97)00184-X 10.1080/03081078208934846 10.1016/j.mcm.2010.01.006 10.1016/j.fss.2004.09.010 10.1142/5683 10.1016/j.proeng.2012.06.400 10.1016/j.ins.2007.10.010 10.1016/j.ins.2011.06.009 10.1109/TFUZZ.2002.806322 10.1016/j.fss.2008.04.007 10.1016/j.mcm.2010.07.018 10.1016/0165-0114(91)90047-T 10.1016/j.mcm.2007.04.010 10.1016/j.ins.2011.04.011 10.1016/S0019-9958(76)90446-0 10.1007/s10700-005-4914-0 10.1007/s10700-008-9029-y 10.1007/s00500-013-1152-1 10.1016/j.cie.2011.09.012 10.1016/0165-0114(94)90005-1 10.1016/0165-0114(92)90076-G 10.1016/j.amc.2005.07.028 10.1109/TFUZZ.2002.800657 10.1007/s10700-009-9059-0 10.1016/0165-0114(92)90286-D 10.1016/0165-0114(79)90023-X 10.1016/j.amc.2005.05.043 10.1016/0165-0114(84)90026-5 10.1016/j.fss.2014.04.007 |
ContentType | Journal Article |
Copyright | IOS Press and the authors. All rights reserved Copyright IOS Press BV 2017 |
Copyright_xml | – notice: IOS Press and the authors. All rights reserved – notice: Copyright IOS Press BV 2017 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.3233/JIFS-151820 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1875-8967 |
EndPage | 350 |
ExternalDocumentID | 10_3233_JIFS_151820 10.3233_JIFS-151820 |
GroupedDBID | .4S .DC 4.4 5GY 8VB AAGLT ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EPL EST ESX HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-d4a1f8c5f61ecee3bedda188fbcb292239d65df47e2304d66ead018cd41908c53 |
ISSN | 1064-1246 |
IngestDate | Mon Jun 30 08:06:19 EDT 2025 Thu Jul 03 08:36:07 EDT 2025 Thu Apr 24 22:59:12 EDT 2025 Sun Jul 13 06:01:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | non-convex optimization max-product composition bipolar variables Bipolar fuzzy relation equation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-d4a1f8c5f61ecee3bedda188fbcb292239d65df47e2304d66ead018cd41908c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1993976684 |
PQPubID | 2046407 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1993976684 crossref_primary_10_3233_JIFS_151820 crossref_citationtrail_10_3233_JIFS_151820 sage_journals_10_3233_JIFS_151820 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: London |
PublicationTitle | Journal of intelligent & fuzzy systems |
PublicationYear | 2017 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | 1987; 31 2002; 10 1982; 11 2006; 174 2011; 53 2008; 7 2006; 175 2012; 11 1992; 51 2003; 11 2014; 255 1994; 64 2009; 56 1976; 30 2001 2013; 10 1984; 13 1991; 40 2003; 3 2007; 6 2013; 234 1982; 8 1979; 2 1984; 18 2008; 159 2014; 18 1992; 49 2007; 4529 1985; 16 2012; 62 2004; 42 2005; 150 1990; 35 1985; 7 2006; 5 1995 2006; 19 1999; 103 1993 2004 2012; 38 1984; 8 1988; 25 1980; 4 2008; 47 2009; 8 2008; 178 2001; 119 1976; 18 2001; 118 2014; 72 1994; 2 2010; 51 e_1_3_2_26_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 Yang J.H. (e_1_3_2_60_2) 2005 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 Abbasi Molai A. (e_1_3_2_6_2) 2013; 10 Shi E.W. (e_1_3_2_49_2) 1987; 31 Gottwald S. (e_1_3_2_22_2) 2000 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 Sanchez E. (e_1_3_2_48_2) 1977 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 Pedrycz W. (e_1_3_2_39_2) 1982; 11 De B. (e_1_3_2_16_2) 2000 e_1_3_2_27_2 Di Nola A. (e_1_3_2_15_2) 1984; 8 e_1_3_2_29_2 Zhang H.T. (e_1_3_2_66_2) 2003; 3 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_23_2 Yang J.H. (e_1_3_2_61_2) 2005 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 Duffin R.J. (e_1_3_2_18_2) 1967 Peeva K. (e_1_3_2_42_2) 1994 e_1_3_2_38_2 e_1_3_2_8_2 Cao B.Y. (e_1_3_2_13_2) 1999 Wang P.Z. (e_1_3_2_54_2) 1984; 18 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 Zener C. (e_1_3_2_69_2) 1971 Peeva K. (e_1_3_2_40_2) 1985; 7 Peeva K. (e_1_3_2_44_2) 2006; 19 |
References_xml | – volume: 3 start-page: 231 year: 2003 end-page: 233 article-title: Programming problem with fuzzy relation inequality constraints publication-title: Journal of Liaoning Noramal University – volume: 11 start-page: 227 year: 2012 end-page: 240 article-title: Fuzzy relational equations with minbiimplication composition publication-title: Fuzzy Optimization and Decision Making – volume: 178 start-page: 1293 year: 2008 end-page: 1308 article-title: An algorithm for solving fuzzy relation equations with max-T composition operator publication-title: Information Sciences – volume: 2 start-page: 247 year: 1994 end-page: 256 article-title: A rule-based method to calculate the widest solution sets of a max-min fuzzy relational equation, International Journal of Uncertainty publication-title: Fuzziness and Knowledge-Based Systems – volume: 8 start-page: 179 year: 2009 end-page: 229 article-title: A survey on fuzzy relational equations, part I: Classification and solvability publication-title: Fuzzy Optimization and Decision Making – volume: 103 start-page: 107 year: 1999 end-page: 113 article-title: Solving fuzzy relation equations with a linear objective function publication-title: Fuzzy Sets and Systems – year: 2001 – volume: 234 start-page: 3 year: 2013 end-page: 15 article-title: Linear optimization with bipolar max-min constraints publication-title: Information Sciences – year: 1993 article-title: Fuzzy sets and fuzzy logic: The foundations of application-from a mathematical point of view, Wiesbaden: Vieweg – volume: 10 start-page: 47 issue: 5 year: 2013 end-page: 61 article-title: Linear objective function optimization with the max-product fuzzy relation inequality constraints publication-title: Iranian Journal of Fuzzy Systems – year: 1995 article-title: Fuzzy sets and fuzzy logic: Theory and applications, Upper Saddle River, NJ: Prentice Hall – volume: 4 start-page: 37 year: 1980 end-page: 51 article-title: Latent connectives in human decision-making publication-title: Fuzzy Sets and Systems – volume: 6 start-page: 337 year: 2007 end-page: 349 article-title: Monomial geometric programming with fuzzy relation equation constraints publication-title: Fuzzy Optimization and Decision Making – volume: 8 start-page: 235 year: 1982 end-page: 242 article-title: Some procedures for selecting fuzzy set-theoretic operators publication-title: International Journal of General Systems – volume: 19 start-page: 169 year: 2006 end-page: 188 article-title: Universal algorithm for solving fuzzy relational equations publication-title: Italian Journal of Pure and Applied Mathematics – volume: 47 start-page: 352 year: 2008 end-page: 362 article-title: Optimizing the geometric programming problem with single-term exponents subject to max-min fuzzy relational equation constraints publication-title: Mathematical and Computer Modelling – volume: 8 start-page: 99 year: 1984 end-page: 145 article-title: Fuzzy relation equations under triangular norms: A survey and new results publication-title: Stochastica – volume: 4529 start-page: 563 year: 2007 end-page: 572 article-title: Posynomial fuzzy relation geometric programming publication-title: Lecture Notes in Computer Science – volume: 2 start-page: 167 year: 1979 end-page: 180 article-title: On the suitability of minimum and product operators for intersection of fuzzy sets publication-title: Fuzzy Sets and Systems – volume: 7 start-page: 195 year: 1985 end-page: 202 article-title: Systems of linear equations over a bounded chain publication-title: Acta Cybernetica – year: 2004 article-title: Fuzzy relational calculus: Theory, applications and software, NewJersey: World Scientific – volume: 30 start-page: 38 year: 1976 end-page: 48 article-title: Resolution of composite fuzzy relation equation publication-title: Information and Control – volume: 42 start-page: 3253 year: 2004 end-page: 3269 article-title: Fuzzy geometric programming approach to a fuzzy machining economics model publication-title: International Journal of Production Research – volume: 18 start-page: 1399 year: 2014 end-page: 1404 article-title: Linear optimization with bipolar fuzzy relational equation constraints using the Lukasiewicz triangular norm publication-title: Soft Computing – volume: 38 start-page: 3462 year: 2012 end-page: 3476 article-title: A posynomial geometric programming restricted to a system of fuzzy relation equations publication-title: Procedia Engineering – volume: 53 start-page: 55 year: 2011 end-page: 62 article-title: Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations publication-title: Mathematical and Computer Modelling – volume: 255 start-page: 41 year: 2014 end-page: 51 article-title: An algorithm for minimizing a linear objective function subject to fuzzy relation inequalities with additionmin composition publication-title: Fuzzy Sets and Systems – volume: 18 start-page: 67 year: 1984 end-page: 74 article-title: How many lower solutions does a fuzzy relation equation have? publication-title: BUSEFAL – volume: 62 start-page: 256 year: 2012 end-page: 263 article-title: The quadratic programming problem with fuzzy relation inequality constraints publication-title: Computers and Industrial Engineering – volume: 16 start-page: 53 year: 1985 end-page: 63 article-title: Solutions of composite fuzzy relational equations with triangular Norms publication-title: Fuzzy Sets and Systems – volume: 35 start-page: 115 year: 1990 end-page: 120 article-title: Fuzzy geometric programming with several objective functions publication-title: Fuzzy Sets and Systems – volume: 5 start-page: 33 year: 2006 end-page: 47 article-title: An algorithm for solving optimization problems with one linear objective function and finitely many constraints of fuzzy relation inequalities publication-title: Fuzzy Optimization and Decision Making – volume: 7 start-page: 169 year: 2008 end-page: 214 article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition publication-title: Fuzzy Optimization and Decision Making – volume: 11 start-page: 100 year: 2003 end-page: 108 article-title: Matrix-pattern-based computer algorithm for solving fuzzy relation equations publication-title: IEEE Transactions on Fuzzy Systems – volume: 31 start-page: 32 year: 1987 end-page: 41 article-title: The hypothesis on the number of lower solutions of a fuzzy relation equation publication-title: BUSEFAL – volume: 49 start-page: 339 year: 1992 end-page: 355 article-title: Fuzzy linear systems publication-title: Fuzzy Sets and Systems – volume: 25 start-page: 191 year: 1988 end-page: 204 article-title: The fuzzy relation equation with union or intersection preserving operator publication-title: Fuzzy Sets and Systems – volume: 18 start-page: 1 year: 1976 end-page: 51 article-title: Geometric programming publication-title: SIAM Review – volume: 13 start-page: 65 year: 1984 end-page: 82 article-title: Resolution of finite fuzzy relation equations publication-title: Fuzzy Sets and Systems – volume: 119 start-page: 1 year: 2001 end-page: 20 article-title: Solving nonlinear optimization problems with fuzzy relation equation constraints publication-title: Fuzzy Sets and Systems – volume: 234 start-page: 44 year: 2013 end-page: 63 article-title: Resolution of fuzzy relational equations - Method, algorithm and software with applications publication-title: Information Sciences – volume: 72 start-page: 306 year: 2014 end-page: 314 article-title: A new algorithm for resolution of the quadratic programming problem with fuzzy relation inequality constraints publication-title: Computers and Industrial Engineering – volume: 118 start-page: 509 year: 2001 end-page: 517 article-title: Optimization of fuzzy relation equations with max-product composition publication-title: Fuzzy Sets and Systems – volume: 174 start-page: 1321 year: 2006 end-page: 1328 article-title: Numerical solution of fuzzy max-min systems publication-title: Applied Mathematics and Computation – volume: 159 start-page: 3347 year: 2008 end-page: 3359 article-title: Reducing the search space of a linear fractional programming problem under fuzzy relational equations with max-Archimedean t-norm composition publication-title: Fuzzy Sets and Systems – volume: 11 start-page: 24 year: 1982 end-page: 32 article-title: Fuzzy relational equations with triangular norms and their resolutions publication-title: BUSEFAL – volume: 51 start-page: 1240 year: 2010 end-page: 1250 article-title: Fuzzy linear objective function optimization with fuzzy-valued max-product fuzzy relation inequality constraints publication-title: Mathematical and Computer Modelling – volume: 51 start-page: 67 year: 1992 end-page: 71 article-title: Fuzzy programming technique to solve multi-objective geometric programming problems publication-title: Fuzzy Sets and Systems – volume: 150 start-page: 147 year: 2005 end-page: 162 article-title: Minimizing a linear function under a fuzzy max-min relational equation constraint publication-title: Fuzzy Sets and Systems – volume: 159 start-page: 23 year: 2008 end-page: 39 article-title: On the minimal solutions of max-min fuzzy relational equations publication-title: Fuzzy Sets and Systems – volume: 10 start-page: 552 issue: 4 year: 2002 end-page: 558 article-title: An accelerated approach for solving fuzzy relation equations with a linear objective function publication-title: IEEE Transactions on Fuzzy Systems – volume: 64 start-page: 39 year: 1994 end-page: 58 article-title: A rule-based method to calculate exactly the widest solution sets of a max-min fuzzy relational inequality publication-title: Fuzzy Sets and Systems – volume: 175 start-page: 269 year: 2006 end-page: 276 article-title: Iteration algorithm for solving Ax = b in max-min algebra publication-title: Applied Mathematics and Computation – volume: 40 start-page: 77 year: 1991 end-page: 106 article-title: Processing in relational structures: Fuzzy relational equations publication-title: Fuzzy Sets and Systems – volume: 56 start-page: 1386 year: 2009 end-page: 1392 article-title: Monomial geometric programming with fuzzy relation inequality constraints with maxproduct composition publication-title: Computers and Industrial Engineering – volume: 10 start-page: 47 issue: 5 year: 2013 ident: e_1_3_2_6_2 article-title: Linear objective function optimization with the max-product fuzzy relation inequality constraints publication-title: Iranian Journal of Fuzzy Systems – ident: e_1_3_2_26_2 doi: 10.1016/S0165-0114(98)00471-0 – ident: e_1_3_2_35_2 doi: 10.1016/S0165-0114(85)80005-1 – start-page: 557 volume-title: IEEE International Fuzzy Systems Conference Proceedings year: 2005 ident: e_1_3_2_60_2 – ident: e_1_3_2_7_2 doi: 10.1142/S0218488594000195 – ident: e_1_3_2_62_2 doi: 10.1007/978-3-540-72950-1_56 – ident: e_1_3_2_45_2 doi: 10.1137/1018001 – ident: e_1_3_2_63_2 doi: 10.1007/s10700-007-9017-7 – ident: e_1_3_2_32_2 doi: 10.1007/s10700-012-9122-0 – ident: e_1_3_2_27_2 doi: 10.1016/0165-0114(88)90187-X – ident: e_1_3_2_12_2 – ident: e_1_3_2_17_2 doi: 10.1007/978-1-4684-3848-2_6 – ident: e_1_3_2_59_2 doi: 10.1016/j.fss.2007.07.017 – ident: e_1_3_2_31_2 doi: 10.1016/S0165-0114(98)00417-5 – volume: 11 start-page: 24 year: 1982 ident: e_1_3_2_39_2 article-title: Fuzzy relational equations with triangular norms and their resolutions publication-title: BUSEFAL – start-page: 291 volume-title: The Handbooks of Fuzzy Sets Series year: 2000 ident: e_1_3_2_16_2 – ident: e_1_3_2_14_2 doi: 10.1007/978-94-017-1650-5 – start-page: III1749 volume-title: 1999 IEEE International Fuzzy Systems Conference Proceedings year: 1999 ident: e_1_3_2_13_2 – ident: e_1_3_2_33_2 doi: 10.1080/00207540410001691938 – ident: e_1_3_2_68_2 doi: 10.1016/0165-0114(80)90062-7 – ident: e_1_3_2_46_2 doi: 10.1016/j.cie.2008.08.015 – ident: e_1_3_2_53_2 doi: 10.1016/0165-0114(90)90024-Z – ident: e_1_3_2_4_2 doi: 10.1016/j.cie.2014.03.024 – volume: 8 start-page: 99 year: 1984 ident: e_1_3_2_15_2 article-title: Fuzzy relation equations under triangular norms: A survey and new results publication-title: Stochastica – ident: e_1_3_2_19_2 doi: 10.1016/S0165-0114(97)00184-X – ident: e_1_3_2_25_2 – ident: e_1_3_2_52_2 – ident: e_1_3_2_65_2 doi: 10.1080/03081078208934846 – volume: 18 start-page: 67 year: 1984 ident: e_1_3_2_54_2 article-title: How many lower solutions does a fuzzy relation equation have? publication-title: BUSEFAL – ident: e_1_3_2_3_2 doi: 10.1016/j.mcm.2010.01.006 – ident: e_1_3_2_56_2 doi: 10.1016/j.fss.2004.09.010 – volume: 31 start-page: 32 year: 1987 ident: e_1_3_2_49_2 article-title: The hypothesis on the number of lower solutions of a fuzzy relation equation publication-title: BUSEFAL – ident: e_1_3_2_38_2 doi: 10.1142/5683 – ident: e_1_3_2_50_2 doi: 10.1016/j.proeng.2012.06.400 – ident: e_1_3_2_2_2 doi: 10.1016/j.ins.2007.10.010 – ident: e_1_3_2_20_2 doi: 10.1016/j.ins.2011.06.009 – volume: 7 start-page: 195 year: 1985 ident: e_1_3_2_40_2 article-title: Systems of linear equations over a bounded chain publication-title: Acta Cybernetica – volume-title: Geometric programming theory and application year: 1967 ident: e_1_3_2_18_2 – ident: e_1_3_2_28_2 doi: 10.1109/TFUZZ.2002.806322 – ident: e_1_3_2_57_2 doi: 10.1016/j.fss.2008.04.007 – ident: e_1_3_2_67_2 doi: 10.1016/j.mcm.2010.07.018 – ident: e_1_3_2_36_2 doi: 10.1016/0165-0114(91)90047-T – volume-title: Engineering design by geometric programming year: 1971 ident: e_1_3_2_69_2 – volume: 3 start-page: 231 year: 2003 ident: e_1_3_2_66_2 article-title: Programming problem with fuzzy relation inequality constraints publication-title: Journal of Liaoning Noramal University – ident: e_1_3_2_58_2 doi: 10.1016/j.mcm.2007.04.010 – start-page: 401 volume-title: Generalized solvability behaviour for systems of fuzzy equations year: 2000 ident: e_1_3_2_22_2 – ident: e_1_3_2_43_2 doi: 10.1016/j.ins.2011.04.011 – ident: e_1_3_2_47_2 doi: 10.1016/S0019-9958(76)90446-0 – volume: 19 start-page: 169 year: 2006 ident: e_1_3_2_44_2 article-title: Universal algorithm for solving fuzzy relational equations publication-title: Italian Journal of Pure and Applied Mathematics – ident: e_1_3_2_23_2 doi: 10.1007/s10700-005-4914-0 – ident: e_1_3_2_30_2 doi: 10.1007/s10700-008-9029-y – ident: e_1_3_2_34_2 doi: 10.1007/s00500-013-1152-1 – ident: e_1_3_2_37_2 – start-page: 221 volume-title: Solutions in composite fuzzy relation equations: Application to medical diagnosis in Brouwerian logic year: 1977 ident: e_1_3_2_48_2 – ident: e_1_3_2_5_2 doi: 10.1016/j.cie.2011.09.012 – start-page: 650 volume-title: Proceedings of the 24th North American Fuzzy Information Processing Society year: 2005 ident: e_1_3_2_61_2 – ident: e_1_3_2_8_2 doi: 10.1016/0165-0114(94)90005-1 – ident: e_1_3_2_11_2 doi: 10.1016/0165-0114(92)90076-G – ident: e_1_3_2_9_2 doi: 10.1016/j.amc.2005.07.028 – ident: e_1_3_2_55_2 doi: 10.1109/TFUZZ.2002.800657 – ident: e_1_3_2_29_2 doi: 10.1007/s10700-009-9059-0 – ident: e_1_3_2_41_2 doi: 10.1016/0165-0114(92)90286-D – start-page: 83 volume-title: Fuzzy Optimization, Recent Advances year: 1994 ident: e_1_3_2_42_2 – ident: e_1_3_2_51_2 doi: 10.1016/0165-0114(79)90023-X – ident: e_1_3_2_10_2 doi: 10.1016/j.amc.2005.05.043 – ident: e_1_3_2_21_2 – ident: e_1_3_2_24_2 doi: 10.1016/0165-0114(84)90026-5 – ident: e_1_3_2_64_2 doi: 10.1016/j.fss.2014.04.007 |
SSID | ssj0017520 |
Score | 2.1484382 |
Snippet | In this paper, the problem of maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints is studied. First of... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 337 |
SubjectTerms | Fuzzy systems Maximization |
Title | Maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints |
URI | https://journals.sagepub.com/doi/full/10.3233/JIFS-151820 https://www.proquest.com/docview/1993976684 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLMhIeyIKNM-mxwq2WlbtcthW6i2yHZtm1SQVTaXd_oH928zEzoOlQsDFihzXijxfx9-MZ8aEnI7AMuHKEbYMBpiSw9HR5Dm2Yo4ERDGpXMwdnl2G5wv_Yhkse727TtTSruQfxf5gXsn_SBX6QK6YJfsPkm0mhQ54BvlCCxKG9q9kPGM3aZbuqzxDK6syjGHFv8siw3uyhFXwa63PLNy-Kklvd1UfUk6ebtCutTJ2Y2904VcYt9_fmgSXAiPUscAsS029pwMsNm1KepYVivQE204ddHTfsIzlcmWN0aeSy_2KJWmLtASjKysvLPZju2K8eb1OrTGHvTYF9bNmaddL4QzveSm6AUg6wq8NWkK1C8TIBqZhimLrPrCk7GikL-uodXXrC20wqRWvp0vH3N8QPBcd1pOLr5MrG7hN5A7afa8-67_8Fk8W02k8P1vOH5BjF-wN0PDH4y-z6VVzIDUMXF3YwnyoTvXE6T91Jv-V3LQWSydIsOIt8yfksREVHWv0PCU9mT8jjzplKJ-TdYsjymiNI9rgiDY4ojWOqMERLQtqcEQ7OKIVDGiNI9rB0QuymJzNP5_b5hYOW7gjv7QTnzkqEoEKHQmMyuMySZgTRYoL7o6AXY6SMEiUP5R4vpCEIeimgYN3YgHXhN95L8lRXuTyFaEMCLZIXO4rpXwWRSyMHOEp5NjC84eiTz7UyxcLU6IeP24dg6mKax3jWsd6rfvktBm80ZVZDg87qeUQm7_uNsaoVeDhYeT3yXuUTefV71O8_vMUb8jDFvEn5Kj8sZNvgamW_J1B0U83XJyu |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+a+monomial+geometric+objective+function+subject+to+bipolar+max-product+fuzzy+relation+constraints&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Samaneh+Aliannezhadi&rft.au=Ardalan%2C+Shadi+Shahab&rft.au=Ali+Abbasi+Molai&rft.date=2017-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=32&rft.issue=1&rft.spage=337&rft_id=info:doi/10.3233%2FJIFS-151820&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |