Maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints

In this paper, the problem of maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints is studied. First of all, it is shown that the bipolar max-product Fuzzy Relation Inequality (FRI) system can equivalently be converted to a bipolar max-product...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 32; no. 1; pp. 337 - 350
Main Authors Aliannezhadi, Samaneh, Ardalan, Shadi Shahab, Abbasi Molai, Ali
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2017
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-151820

Cover

Loading…
Abstract In this paper, the problem of maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints is studied. First of all, it is shown that the bipolar max-product Fuzzy Relation Inequality (FRI) system can equivalently be converted to a bipolar max-product Fuzzy Relation Equation (FRE) system. Hence, the structure of feasible domain of the problem is determined in the case of the bipolar max-product FRE system. It is shown that its solution set is non-convex, in a general case. Some sufficient conditions are proposed for solution existence of its feasible domain. An algorithm is designed to solve the optimization problem with regard to the structure of its feasible domain and the properties of the objective function. Its importance is also illustrated by an application example in the area of economics and covering problem. Some numerical examples are given to illustrate the above points.
AbstractList In this paper, the problem of maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints is studied. First of all, it is shown that the bipolar max-product Fuzzy Relation Inequality (FRI) system can equivalently be converted to a bipolar max-product Fuzzy Relation Equation (FRE) system. Hence, the structure of feasible domain of the problem is determined in the case of the bipolar max-product FRE system. It is shown that its solution set is non-convex, in a general case. Some sufficient conditions are proposed for solution existence of its feasible domain. An algorithm is designed to solve the optimization problem with regard to the structure of its feasible domain and the properties of the objective function. Its importance is also illustrated by an application example in the area of economics and covering problem. Some numerical examples are given to illustrate the above points.
Author Ardalan, Shadi Shahab
Abbasi Molai, Ali
Aliannezhadi, Samaneh
Author_xml – sequence: 1
  givenname: Samaneh
  surname: Aliannezhadi
  fullname: Aliannezhadi, Samaneh
  organization: School of Mathematics and Computer Sciences
– sequence: 2
  givenname: Shadi Shahab
  surname: Ardalan
  fullname: Ardalan, Shadi Shahab
  organization: School of Mathematics and Computer Sciences
– sequence: 3
  givenname: Ali
  surname: Abbasi Molai
  fullname: Abbasi Molai, Ali
  organization: School of Mathematics and Computer Sciences
BookMark eNp1kE9LAzEQxYMo2FZPfoGAF0FW82c3mz1KsVqpeFDPSzbJlpTdpCa70vbTm3Y9iOhphuH3Zt68MTi2zmoALjC6oYTS26f57DXBGeYEHYER5nmW8ILlx7FHLE0wSdkpGIewQgjnGUEj0DyLjWnNztglFLB11rVGNHCpXas7byR01UrLznxqWPc2Ns7C0B9msHOwMmvXCA9bsUnW3qk-jut-t9tCrxtxoKWzofPC2C6cgZNaNEGff9cJeJ_dv00fk8XLw3x6t0gkKdIuUanANZdZzbCWWtNKKyUw53UlK1IQQgvFMlWnuSYUpYoxLRTCXKoUFyjq6ARcDnujpY9eh65cud7beLLERUGLnDGeRup6oKR3IXhdl2tvWuG3JUblPs5yH2c5xBlp_IuWpjt8uH-u-UdzNWiCWOofHv5AvwCYHImO
CitedBy_id crossref_primary_10_1155_2018_1610349
crossref_primary_10_1109_TFUZZ_2020_3021726
crossref_primary_10_1016_j_fss_2023_108835
crossref_primary_10_1016_j_fss_2019_08_012
crossref_primary_10_1016_j_fss_2024_109011
crossref_primary_10_1142_S0218488520500269
crossref_primary_10_1016_j_fss_2019_08_005
crossref_primary_10_1109_TFUZZ_2020_3029633
crossref_primary_10_1109_TFUZZ_2023_3305641
crossref_primary_10_1016_j_fss_2025_109363
crossref_primary_10_3233_JIFS_191565
Cites_doi 10.1016/S0165-0114(98)00471-0
10.1016/S0165-0114(85)80005-1
10.1142/S0218488594000195
10.1007/978-3-540-72950-1_56
10.1137/1018001
10.1007/s10700-007-9017-7
10.1007/s10700-012-9122-0
10.1016/0165-0114(88)90187-X
10.1007/978-1-4684-3848-2_6
10.1016/j.fss.2007.07.017
10.1016/S0165-0114(98)00417-5
10.1007/978-94-017-1650-5
10.1080/00207540410001691938
10.1016/0165-0114(80)90062-7
10.1016/j.cie.2008.08.015
10.1016/0165-0114(90)90024-Z
10.1016/j.cie.2014.03.024
10.1016/S0165-0114(97)00184-X
10.1080/03081078208934846
10.1016/j.mcm.2010.01.006
10.1016/j.fss.2004.09.010
10.1142/5683
10.1016/j.proeng.2012.06.400
10.1016/j.ins.2007.10.010
10.1016/j.ins.2011.06.009
10.1109/TFUZZ.2002.806322
10.1016/j.fss.2008.04.007
10.1016/j.mcm.2010.07.018
10.1016/0165-0114(91)90047-T
10.1016/j.mcm.2007.04.010
10.1016/j.ins.2011.04.011
10.1016/S0019-9958(76)90446-0
10.1007/s10700-005-4914-0
10.1007/s10700-008-9029-y
10.1007/s00500-013-1152-1
10.1016/j.cie.2011.09.012
10.1016/0165-0114(94)90005-1
10.1016/0165-0114(92)90076-G
10.1016/j.amc.2005.07.028
10.1109/TFUZZ.2002.800657
10.1007/s10700-009-9059-0
10.1016/0165-0114(92)90286-D
10.1016/0165-0114(79)90023-X
10.1016/j.amc.2005.05.043
10.1016/0165-0114(84)90026-5
10.1016/j.fss.2014.04.007
ContentType Journal Article
Copyright IOS Press and the authors. All rights reserved
Copyright IOS Press BV 2017
Copyright_xml – notice: IOS Press and the authors. All rights reserved
– notice: Copyright IOS Press BV 2017
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-151820
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
EndPage 350
ExternalDocumentID 10_3233_JIFS_151820
10.3233_JIFS-151820
GroupedDBID .4S
.DC
4.4
5GY
8VB
AAGLT
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EPL
EST
ESX
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-d4a1f8c5f61ecee3bedda188fbcb292239d65df47e2304d66ead018cd41908c53
ISSN 1064-1246
IngestDate Mon Jun 30 08:06:19 EDT 2025
Thu Jul 03 08:36:07 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Sun Jul 13 06:01:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords non-convex optimization
max-product composition
bipolar variables
Bipolar fuzzy relation equation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-d4a1f8c5f61ecee3bedda188fbcb292239d65df47e2304d66ead018cd41908c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1993976684
PQPubID 2046407
PageCount 14
ParticipantIDs proquest_journals_1993976684
crossref_primary_10_3233_JIFS_151820
crossref_citationtrail_10_3233_JIFS_151820
sage_journals_10_3233_JIFS_151820
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2017
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References 1987; 31
2002; 10
1982; 11
2006; 174
2011; 53
2008; 7
2006; 175
2012; 11
1992; 51
2003; 11
2014; 255
1994; 64
2009; 56
1976; 30
2001
2013; 10
1984; 13
1991; 40
2003; 3
2007; 6
2013; 234
1982; 8
1979; 2
1984; 18
2008; 159
2014; 18
1992; 49
2007; 4529
1985; 16
2012; 62
2004; 42
2005; 150
1990; 35
1985; 7
2006; 5
1995
2006; 19
1999; 103
1993
2004
2012; 38
1984; 8
1988; 25
1980; 4
2008; 47
2009; 8
2008; 178
2001; 119
1976; 18
2001; 118
2014; 72
1994; 2
2010; 51
e_1_3_2_26_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
Yang J.H. (e_1_3_2_60_2) 2005
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
Abbasi Molai A. (e_1_3_2_6_2) 2013; 10
Shi E.W. (e_1_3_2_49_2) 1987; 31
Gottwald S. (e_1_3_2_22_2) 2000
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
Sanchez E. (e_1_3_2_48_2) 1977
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
Pedrycz W. (e_1_3_2_39_2) 1982; 11
De B. (e_1_3_2_16_2) 2000
e_1_3_2_27_2
Di Nola A. (e_1_3_2_15_2) 1984; 8
e_1_3_2_29_2
Zhang H.T. (e_1_3_2_66_2) 2003; 3
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_23_2
Yang J.H. (e_1_3_2_61_2) 2005
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
Duffin R.J. (e_1_3_2_18_2) 1967
Peeva K. (e_1_3_2_42_2) 1994
e_1_3_2_38_2
e_1_3_2_8_2
Cao B.Y. (e_1_3_2_13_2) 1999
Wang P.Z. (e_1_3_2_54_2) 1984; 18
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Zener C. (e_1_3_2_69_2) 1971
Peeva K. (e_1_3_2_40_2) 1985; 7
Peeva K. (e_1_3_2_44_2) 2006; 19
References_xml – volume: 3
  start-page: 231
  year: 2003
  end-page: 233
  article-title: Programming problem with fuzzy relation inequality constraints
  publication-title: Journal of Liaoning Noramal University
– volume: 11
  start-page: 227
  year: 2012
  end-page: 240
  article-title: Fuzzy relational equations with minbiimplication composition
  publication-title: Fuzzy Optimization and Decision Making
– volume: 178
  start-page: 1293
  year: 2008
  end-page: 1308
  article-title: An algorithm for solving fuzzy relation equations with max-T composition operator
  publication-title: Information Sciences
– volume: 2
  start-page: 247
  year: 1994
  end-page: 256
  article-title: A rule-based method to calculate the widest solution sets of a max-min fuzzy relational equation, International Journal of Uncertainty
  publication-title: Fuzziness and Knowledge-Based Systems
– volume: 8
  start-page: 179
  year: 2009
  end-page: 229
  article-title: A survey on fuzzy relational equations, part I: Classification and solvability
  publication-title: Fuzzy Optimization and Decision Making
– volume: 103
  start-page: 107
  year: 1999
  end-page: 113
  article-title: Solving fuzzy relation equations with a linear objective function
  publication-title: Fuzzy Sets and Systems
– year: 2001
– volume: 234
  start-page: 3
  year: 2013
  end-page: 15
  article-title: Linear optimization with bipolar max-min constraints
  publication-title: Information Sciences
– year: 1993
  article-title: Fuzzy sets and fuzzy logic: The foundations of application-from a mathematical point of view, Wiesbaden: Vieweg
– volume: 10
  start-page: 47
  issue: 5
  year: 2013
  end-page: 61
  article-title: Linear objective function optimization with the max-product fuzzy relation inequality constraints
  publication-title: Iranian Journal of Fuzzy Systems
– year: 1995
  article-title: Fuzzy sets and fuzzy logic: Theory and applications, Upper Saddle River, NJ: Prentice Hall
– volume: 4
  start-page: 37
  year: 1980
  end-page: 51
  article-title: Latent connectives in human decision-making
  publication-title: Fuzzy Sets and Systems
– volume: 6
  start-page: 337
  year: 2007
  end-page: 349
  article-title: Monomial geometric programming with fuzzy relation equation constraints
  publication-title: Fuzzy Optimization and Decision Making
– volume: 8
  start-page: 235
  year: 1982
  end-page: 242
  article-title: Some procedures for selecting fuzzy set-theoretic operators
  publication-title: International Journal of General Systems
– volume: 19
  start-page: 169
  year: 2006
  end-page: 188
  article-title: Universal algorithm for solving fuzzy relational equations
  publication-title: Italian Journal of Pure and Applied Mathematics
– volume: 47
  start-page: 352
  year: 2008
  end-page: 362
  article-title: Optimizing the geometric programming problem with single-term exponents subject to max-min fuzzy relational equation constraints
  publication-title: Mathematical and Computer Modelling
– volume: 8
  start-page: 99
  year: 1984
  end-page: 145
  article-title: Fuzzy relation equations under triangular norms: A survey and new results
  publication-title: Stochastica
– volume: 4529
  start-page: 563
  year: 2007
  end-page: 572
  article-title: Posynomial fuzzy relation geometric programming
  publication-title: Lecture Notes in Computer Science
– volume: 2
  start-page: 167
  year: 1979
  end-page: 180
  article-title: On the suitability of minimum and product operators for intersection of fuzzy sets
  publication-title: Fuzzy Sets and Systems
– volume: 7
  start-page: 195
  year: 1985
  end-page: 202
  article-title: Systems of linear equations over a bounded chain
  publication-title: Acta Cybernetica
– year: 2004
  article-title: Fuzzy relational calculus: Theory, applications and software, NewJersey: World Scientific
– volume: 30
  start-page: 38
  year: 1976
  end-page: 48
  article-title: Resolution of composite fuzzy relation equation
  publication-title: Information and Control
– volume: 42
  start-page: 3253
  year: 2004
  end-page: 3269
  article-title: Fuzzy geometric programming approach to a fuzzy machining economics model
  publication-title: International Journal of Production Research
– volume: 18
  start-page: 1399
  year: 2014
  end-page: 1404
  article-title: Linear optimization with bipolar fuzzy relational equation constraints using the Lukasiewicz triangular norm
  publication-title: Soft Computing
– volume: 38
  start-page: 3462
  year: 2012
  end-page: 3476
  article-title: A posynomial geometric programming restricted to a system of fuzzy relation equations
  publication-title: Procedia Engineering
– volume: 53
  start-page: 55
  year: 2011
  end-page: 62
  article-title: Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations
  publication-title: Mathematical and Computer Modelling
– volume: 255
  start-page: 41
  year: 2014
  end-page: 51
  article-title: An algorithm for minimizing a linear objective function subject to fuzzy relation inequalities with additionmin composition
  publication-title: Fuzzy Sets and Systems
– volume: 18
  start-page: 67
  year: 1984
  end-page: 74
  article-title: How many lower solutions does a fuzzy relation equation have?
  publication-title: BUSEFAL
– volume: 62
  start-page: 256
  year: 2012
  end-page: 263
  article-title: The quadratic programming problem with fuzzy relation inequality constraints
  publication-title: Computers and Industrial Engineering
– volume: 16
  start-page: 53
  year: 1985
  end-page: 63
  article-title: Solutions of composite fuzzy relational equations with triangular Norms
  publication-title: Fuzzy Sets and Systems
– volume: 35
  start-page: 115
  year: 1990
  end-page: 120
  article-title: Fuzzy geometric programming with several objective functions
  publication-title: Fuzzy Sets and Systems
– volume: 5
  start-page: 33
  year: 2006
  end-page: 47
  article-title: An algorithm for solving optimization problems with one linear objective function and finitely many constraints of fuzzy relation inequalities
  publication-title: Fuzzy Optimization and Decision Making
– volume: 7
  start-page: 169
  year: 2008
  end-page: 214
  article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition
  publication-title: Fuzzy Optimization and Decision Making
– volume: 11
  start-page: 100
  year: 2003
  end-page: 108
  article-title: Matrix-pattern-based computer algorithm for solving fuzzy relation equations
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 31
  start-page: 32
  year: 1987
  end-page: 41
  article-title: The hypothesis on the number of lower solutions of a fuzzy relation equation
  publication-title: BUSEFAL
– volume: 49
  start-page: 339
  year: 1992
  end-page: 355
  article-title: Fuzzy linear systems
  publication-title: Fuzzy Sets and Systems
– volume: 25
  start-page: 191
  year: 1988
  end-page: 204
  article-title: The fuzzy relation equation with union or intersection preserving operator
  publication-title: Fuzzy Sets and Systems
– volume: 18
  start-page: 1
  year: 1976
  end-page: 51
  article-title: Geometric programming
  publication-title: SIAM Review
– volume: 13
  start-page: 65
  year: 1984
  end-page: 82
  article-title: Resolution of finite fuzzy relation equations
  publication-title: Fuzzy Sets and Systems
– volume: 119
  start-page: 1
  year: 2001
  end-page: 20
  article-title: Solving nonlinear optimization problems with fuzzy relation equation constraints
  publication-title: Fuzzy Sets and Systems
– volume: 234
  start-page: 44
  year: 2013
  end-page: 63
  article-title: Resolution of fuzzy relational equations - Method, algorithm and software with applications
  publication-title: Information Sciences
– volume: 72
  start-page: 306
  year: 2014
  end-page: 314
  article-title: A new algorithm for resolution of the quadratic programming problem with fuzzy relation inequality constraints
  publication-title: Computers and Industrial Engineering
– volume: 118
  start-page: 509
  year: 2001
  end-page: 517
  article-title: Optimization of fuzzy relation equations with max-product composition
  publication-title: Fuzzy Sets and Systems
– volume: 174
  start-page: 1321
  year: 2006
  end-page: 1328
  article-title: Numerical solution of fuzzy max-min systems
  publication-title: Applied Mathematics and Computation
– volume: 159
  start-page: 3347
  year: 2008
  end-page: 3359
  article-title: Reducing the search space of a linear fractional programming problem under fuzzy relational equations with max-Archimedean t-norm composition
  publication-title: Fuzzy Sets and Systems
– volume: 11
  start-page: 24
  year: 1982
  end-page: 32
  article-title: Fuzzy relational equations with triangular norms and their resolutions
  publication-title: BUSEFAL
– volume: 51
  start-page: 1240
  year: 2010
  end-page: 1250
  article-title: Fuzzy linear objective function optimization with fuzzy-valued max-product fuzzy relation inequality constraints
  publication-title: Mathematical and Computer Modelling
– volume: 51
  start-page: 67
  year: 1992
  end-page: 71
  article-title: Fuzzy programming technique to solve multi-objective geometric programming problems
  publication-title: Fuzzy Sets and Systems
– volume: 150
  start-page: 147
  year: 2005
  end-page: 162
  article-title: Minimizing a linear function under a fuzzy max-min relational equation constraint
  publication-title: Fuzzy Sets and Systems
– volume: 159
  start-page: 23
  year: 2008
  end-page: 39
  article-title: On the minimal solutions of max-min fuzzy relational equations
  publication-title: Fuzzy Sets and Systems
– volume: 10
  start-page: 552
  issue: 4
  year: 2002
  end-page: 558
  article-title: An accelerated approach for solving fuzzy relation equations with a linear objective function
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 64
  start-page: 39
  year: 1994
  end-page: 58
  article-title: A rule-based method to calculate exactly the widest solution sets of a max-min fuzzy relational inequality
  publication-title: Fuzzy Sets and Systems
– volume: 175
  start-page: 269
  year: 2006
  end-page: 276
  article-title: Iteration algorithm for solving Ax = b in max-min algebra
  publication-title: Applied Mathematics and Computation
– volume: 40
  start-page: 77
  year: 1991
  end-page: 106
  article-title: Processing in relational structures: Fuzzy relational equations
  publication-title: Fuzzy Sets and Systems
– volume: 56
  start-page: 1386
  year: 2009
  end-page: 1392
  article-title: Monomial geometric programming with fuzzy relation inequality constraints with maxproduct composition
  publication-title: Computers and Industrial Engineering
– volume: 10
  start-page: 47
  issue: 5
  year: 2013
  ident: e_1_3_2_6_2
  article-title: Linear objective function optimization with the max-product fuzzy relation inequality constraints
  publication-title: Iranian Journal of Fuzzy Systems
– ident: e_1_3_2_26_2
  doi: 10.1016/S0165-0114(98)00471-0
– ident: e_1_3_2_35_2
  doi: 10.1016/S0165-0114(85)80005-1
– start-page: 557
  volume-title: IEEE International Fuzzy Systems Conference Proceedings
  year: 2005
  ident: e_1_3_2_60_2
– ident: e_1_3_2_7_2
  doi: 10.1142/S0218488594000195
– ident: e_1_3_2_62_2
  doi: 10.1007/978-3-540-72950-1_56
– ident: e_1_3_2_45_2
  doi: 10.1137/1018001
– ident: e_1_3_2_63_2
  doi: 10.1007/s10700-007-9017-7
– ident: e_1_3_2_32_2
  doi: 10.1007/s10700-012-9122-0
– ident: e_1_3_2_27_2
  doi: 10.1016/0165-0114(88)90187-X
– ident: e_1_3_2_12_2
– ident: e_1_3_2_17_2
  doi: 10.1007/978-1-4684-3848-2_6
– ident: e_1_3_2_59_2
  doi: 10.1016/j.fss.2007.07.017
– ident: e_1_3_2_31_2
  doi: 10.1016/S0165-0114(98)00417-5
– volume: 11
  start-page: 24
  year: 1982
  ident: e_1_3_2_39_2
  article-title: Fuzzy relational equations with triangular norms and their resolutions
  publication-title: BUSEFAL
– start-page: 291
  volume-title: The Handbooks of Fuzzy Sets Series
  year: 2000
  ident: e_1_3_2_16_2
– ident: e_1_3_2_14_2
  doi: 10.1007/978-94-017-1650-5
– start-page: III1749
  volume-title: 1999 IEEE International Fuzzy Systems Conference Proceedings
  year: 1999
  ident: e_1_3_2_13_2
– ident: e_1_3_2_33_2
  doi: 10.1080/00207540410001691938
– ident: e_1_3_2_68_2
  doi: 10.1016/0165-0114(80)90062-7
– ident: e_1_3_2_46_2
  doi: 10.1016/j.cie.2008.08.015
– ident: e_1_3_2_53_2
  doi: 10.1016/0165-0114(90)90024-Z
– ident: e_1_3_2_4_2
  doi: 10.1016/j.cie.2014.03.024
– volume: 8
  start-page: 99
  year: 1984
  ident: e_1_3_2_15_2
  article-title: Fuzzy relation equations under triangular norms: A survey and new results
  publication-title: Stochastica
– ident: e_1_3_2_19_2
  doi: 10.1016/S0165-0114(97)00184-X
– ident: e_1_3_2_25_2
– ident: e_1_3_2_52_2
– ident: e_1_3_2_65_2
  doi: 10.1080/03081078208934846
– volume: 18
  start-page: 67
  year: 1984
  ident: e_1_3_2_54_2
  article-title: How many lower solutions does a fuzzy relation equation have?
  publication-title: BUSEFAL
– ident: e_1_3_2_3_2
  doi: 10.1016/j.mcm.2010.01.006
– ident: e_1_3_2_56_2
  doi: 10.1016/j.fss.2004.09.010
– volume: 31
  start-page: 32
  year: 1987
  ident: e_1_3_2_49_2
  article-title: The hypothesis on the number of lower solutions of a fuzzy relation equation
  publication-title: BUSEFAL
– ident: e_1_3_2_38_2
  doi: 10.1142/5683
– ident: e_1_3_2_50_2
  doi: 10.1016/j.proeng.2012.06.400
– ident: e_1_3_2_2_2
  doi: 10.1016/j.ins.2007.10.010
– ident: e_1_3_2_20_2
  doi: 10.1016/j.ins.2011.06.009
– volume: 7
  start-page: 195
  year: 1985
  ident: e_1_3_2_40_2
  article-title: Systems of linear equations over a bounded chain
  publication-title: Acta Cybernetica
– volume-title: Geometric programming theory and application
  year: 1967
  ident: e_1_3_2_18_2
– ident: e_1_3_2_28_2
  doi: 10.1109/TFUZZ.2002.806322
– ident: e_1_3_2_57_2
  doi: 10.1016/j.fss.2008.04.007
– ident: e_1_3_2_67_2
  doi: 10.1016/j.mcm.2010.07.018
– ident: e_1_3_2_36_2
  doi: 10.1016/0165-0114(91)90047-T
– volume-title: Engineering design by geometric programming
  year: 1971
  ident: e_1_3_2_69_2
– volume: 3
  start-page: 231
  year: 2003
  ident: e_1_3_2_66_2
  article-title: Programming problem with fuzzy relation inequality constraints
  publication-title: Journal of Liaoning Noramal University
– ident: e_1_3_2_58_2
  doi: 10.1016/j.mcm.2007.04.010
– start-page: 401
  volume-title: Generalized solvability behaviour for systems of fuzzy equations
  year: 2000
  ident: e_1_3_2_22_2
– ident: e_1_3_2_43_2
  doi: 10.1016/j.ins.2011.04.011
– ident: e_1_3_2_47_2
  doi: 10.1016/S0019-9958(76)90446-0
– volume: 19
  start-page: 169
  year: 2006
  ident: e_1_3_2_44_2
  article-title: Universal algorithm for solving fuzzy relational equations
  publication-title: Italian Journal of Pure and Applied Mathematics
– ident: e_1_3_2_23_2
  doi: 10.1007/s10700-005-4914-0
– ident: e_1_3_2_30_2
  doi: 10.1007/s10700-008-9029-y
– ident: e_1_3_2_34_2
  doi: 10.1007/s00500-013-1152-1
– ident: e_1_3_2_37_2
– start-page: 221
  volume-title: Solutions in composite fuzzy relation equations: Application to medical diagnosis in Brouwerian logic
  year: 1977
  ident: e_1_3_2_48_2
– ident: e_1_3_2_5_2
  doi: 10.1016/j.cie.2011.09.012
– start-page: 650
  volume-title: Proceedings of the 24th North American Fuzzy Information Processing Society
  year: 2005
  ident: e_1_3_2_61_2
– ident: e_1_3_2_8_2
  doi: 10.1016/0165-0114(94)90005-1
– ident: e_1_3_2_11_2
  doi: 10.1016/0165-0114(92)90076-G
– ident: e_1_3_2_9_2
  doi: 10.1016/j.amc.2005.07.028
– ident: e_1_3_2_55_2
  doi: 10.1109/TFUZZ.2002.800657
– ident: e_1_3_2_29_2
  doi: 10.1007/s10700-009-9059-0
– ident: e_1_3_2_41_2
  doi: 10.1016/0165-0114(92)90286-D
– start-page: 83
  volume-title: Fuzzy Optimization, Recent Advances
  year: 1994
  ident: e_1_3_2_42_2
– ident: e_1_3_2_51_2
  doi: 10.1016/0165-0114(79)90023-X
– ident: e_1_3_2_10_2
  doi: 10.1016/j.amc.2005.05.043
– ident: e_1_3_2_21_2
– ident: e_1_3_2_24_2
  doi: 10.1016/0165-0114(84)90026-5
– ident: e_1_3_2_64_2
  doi: 10.1016/j.fss.2014.04.007
SSID ssj0017520
Score 2.1484382
Snippet In this paper, the problem of maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints is studied. First of...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 337
SubjectTerms Fuzzy systems
Maximization
Title Maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints
URI https://journals.sagepub.com/doi/full/10.3233/JIFS-151820
https://www.proquest.com/docview/1993976684
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLMhIeyIKNM-mxwq2WlbtcthW6i2yHZtm1SQVTaXd_oH928zEzoOlQsDFihzXijxfx9-MZ8aEnI7AMuHKEbYMBpiSw9HR5Dm2Yo4ERDGpXMwdnl2G5wv_Yhkse727TtTSruQfxf5gXsn_SBX6QK6YJfsPkm0mhQ54BvlCCxKG9q9kPGM3aZbuqzxDK6syjGHFv8siw3uyhFXwa63PLNy-Kklvd1UfUk6ebtCutTJ2Y2904VcYt9_fmgSXAiPUscAsS029pwMsNm1KepYVivQE204ddHTfsIzlcmWN0aeSy_2KJWmLtASjKysvLPZju2K8eb1OrTGHvTYF9bNmaddL4QzveSm6AUg6wq8NWkK1C8TIBqZhimLrPrCk7GikL-uodXXrC20wqRWvp0vH3N8QPBcd1pOLr5MrG7hN5A7afa8-67_8Fk8W02k8P1vOH5BjF-wN0PDH4y-z6VVzIDUMXF3YwnyoTvXE6T91Jv-V3LQWSydIsOIt8yfksREVHWv0PCU9mT8jjzplKJ-TdYsjymiNI9rgiDY4ojWOqMERLQtqcEQ7OKIVDGiNI9rB0QuymJzNP5_b5hYOW7gjv7QTnzkqEoEKHQmMyuMySZgTRYoL7o6AXY6SMEiUP5R4vpCEIeimgYN3YgHXhN95L8lRXuTyFaEMCLZIXO4rpXwWRSyMHOEp5NjC84eiTz7UyxcLU6IeP24dg6mKax3jWsd6rfvktBm80ZVZDg87qeUQm7_uNsaoVeDhYeT3yXuUTefV71O8_vMUb8jDFvEn5Kj8sZNvgamW_J1B0U83XJyu
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+a+monomial+geometric+objective+function+subject+to+bipolar+max-product+fuzzy+relation+constraints&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Samaneh+Aliannezhadi&rft.au=Ardalan%2C+Shadi+Shahab&rft.au=Ali+Abbasi+Molai&rft.date=2017-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=32&rft.issue=1&rft.spage=337&rft_id=info:doi/10.3233%2FJIFS-151820&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon