Heterogeneous Sensor Data Acquisition and Federated Learning for Resource Constrained IoT Devices - A validation
This paper focused on applying federated learning to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor data from vision sensor, digital ambient sensor and passive infrared sensor is done in a distributed manner and the data processing using fed...
Saved in:
Published in | IEEE sensors journal Vol. 23; no. 15; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper focused on applying federated learning to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor data from vision sensor, digital ambient sensor and passive infrared sensor is done in a distributed manner and the data processing using federated learning on Raspberry Pi edge nodes. The system uses edge nodes to train the respective machine learning models using federated learning without sending data to a centralized server. Instead, results from the training on multiple edge nodes are aggregated at the central node to produce a final machine-learning model. Each edge node deploys the aggregated model to recognize the subjects in the smart home environment and trigger an alert in case unknown subjects are identified. Linear regression model for temperature prediction and logistic regression model for humidity prediction using the ambient parameters are also trained in a federated way on the same edge nodes. The developed system uses the federated learning Flower framework for training the models. The obtained validation accuracy was 66% for the machine learning models that were built on the resource constraint server and edge clients through the federated learning. The developed system can be used in environments where communication bandwidth is limited, or data privacy concerns exist. |
---|---|
AbstractList | This paper focused on applying federated learning to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor data from vision sensor, digital ambient sensor and passive infrared sensor is done in a distributed manner and the data processing using federated learning on Raspberry Pi edge nodes. The system uses edge nodes to train the respective machine learning models using federated learning without sending data to a centralized server. Instead, results from the training on multiple edge nodes are aggregated at the central node to produce a final machine-learning model. Each edge node deploys the aggregated model to recognize the subjects in the smart home environment and trigger an alert in case unknown subjects are identified. Linear regression model for temperature prediction and logistic regression model for humidity prediction using the ambient parameters are also trained in a federated way on the same edge nodes. The developed system uses the federated learning Flower framework for training the models. The obtained validation accuracy was 66% for the machine learning models that were built on the resource constraint server and edge clients through the federated learning. The developed system can be used in environments where communication bandwidth is limited, or data privacy concerns exist. This article focused on applying federated learning (FL) to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor data from vision sensor, digital ambient sensor, and passive infrared sensor (PIR) is done in a distributed manner and the data processing using FL on Raspberry Pi edge nodes. The system uses edge nodes to train the respective machine learning (ML) models using FL without sending data to a centralized server. Instead, results from the training on multiple edge nodes are aggregated at the central node to produce a final machine-learning model. Each edge node deploys the aggregated model to recognize the subjects in the smart home environment and trigger an alert in case unknown subjects are identified. Linear regression model for temperature prediction and logistic regression model for humidity prediction using the ambient parameters are also trained in a federated way on the same edge nodes. The developed system uses the FL Flower framework for training the models. The obtained validation accuracy was 66% for the ML models that were built on the resource constraint server and edge clients through the FL. The developed system can be used in environments, where communication bandwidth is limited or data privacy concerns exist. |
Author | Suryadevara, N.K. Negi, Atul Rudraraju, Srinivasa Raju |
Author_xml | – sequence: 1 givenname: Srinivasa Raju orcidid: 0000-0001-8826-8308 surname: Rudraraju fullname: Rudraraju, Srinivasa Raju – sequence: 2 givenname: N.K. surname: Suryadevara fullname: Suryadevara, N.K. – sequence: 3 givenname: Atul surname: Negi fullname: Negi, Atul |
BookMark | eNp9UM9PwjAYbQwmAvoHmHho4nnYdt26HQmIYIgmgom3peu-kRJsoe1I_O_dhIPx4Ol9h_fje2-AesYaQOiWkhGlJH94Xj2-jBhh8ShmmUgycoH6NEmyiAqe9bo7JhGPxccVGni_JYTmIhF9tJ9DAGc3YMA2Hq_AeOvwVAaJx-rQaK-DtgZLU-EZVOBkgAovQTqjzQbXLfcNvG2cAjyxxgcntWkZC7vGUzhqBR5HeIyPcqcr2Vldo8ta7jzcnHGI3meP68k8Wr4-LSbjZaRYzkNUcSZYXWeUKqXyUpEOgOY1KaUoE16WkFZVKhJSx5CXkjCQScUUVXUqCRHxEN2ffPfOHhrwodi2b5o2smAZ5zlhgvOWRU8s5az3Dupi7_SndF8FJUU3bNENW3TDFudhW434o1E6_HTr2u_-Vd6dlBoAfiXRlArG42_gjond |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1016_j_jer_2025_03_003 |
Cites_doi | 10.1109/TNSE.2021.3131246 10.1016/j.ipm.2022.103061 10.3390/s22020450 10.1109/JSEN.2019.2939182 10.1109/ICCE50685.2021.9427748 10.1109/TPDS.2022.3222509 10.1109/TSP.2022.3153135 10.1109/PAAP54281.2021.9720450 10.1109/JIOT.2021.3095077 10.1016/j.neuri.2021.100035 10.1109/JIOT.2016.2619369 10.1109/JIOT.2016.2579198 10.53347/rid-57190 10.1007/978-1-4842-0958-5_7 10.1109/TII.2021.3098010 10.1016/j.procs.2019.12.120 10.1109/MIC.2017.39 10.1109/ACCESS.2020.2991734 10.1007/978-3-642-35289-8_25 10.1117/12.2628053 10.1109/TNSE.2022.3144699 10.1109/ICCE.2019.8661909 10.1007/978-1-4302-0148-9_3 10.1109/SPICSCON48833.2019.9065100 10.1016/j.hcc.2021.100008 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2023.3287580 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2023_3287580 10161724 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-d4272ff811ccc9bc0ccc9e19f0ba7b54bbe6dd6750f3e9ba02ea5d2c1cf6a0073 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:23:13 EDT 2025 Tue Jul 01 04:27:11 EDT 2025 Thu Apr 24 22:56:49 EDT 2025 Wed Aug 27 02:56:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-d4272ff811ccc9bc0ccc9e19f0ba7b54bbe6dd6750f3e9ba02ea5d2c1cf6a0073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8826-8308 0000-0002-7786-9500 0000-0001-5707-130X |
PQID | 2844902744 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2844902744 crossref_primary_10_1109_JSEN_2023_3287580 crossref_citationtrail_10_1109_JSEN_2023_3287580 ieee_primary_10161724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Sun (ref11) 2021 ref13 ref12 ref15 (ref33) 2022 ref37 Wang (ref21) 2021 ref36 ref10 Bai (ref24) 2021 ref2 (ref31) 2023 ref1 (ref41) 2022 (ref35) 2022 ref38 Patel (ref39) 2021 Young (ref40) 2022 (ref32) 2023 (ref17) 2022 O’Shea (ref14) 2015 ref23 ref26 ref25 (ref42) 2022 ref22 ref44 ref43 (ref34) 2023 ref28 (ref19) 2022 ref27 ref29 ref8 ref7 Beutel (ref16) 2020 (ref30) 2023 ref9 ref4 ref3 ref6 ref5 (ref18) 2022 Gadler (ref20) 2023 |
References_xml | – ident: ref22 doi: 10.1109/TNSE.2021.3131246 – ident: ref9 doi: 10.1016/j.ipm.2022.103061 – ident: ref26 doi: 10.3390/s22020450 – ident: ref29 doi: 10.1109/JSEN.2019.2939182 – ident: ref25 doi: 10.1109/ICCE50685.2021.9427748 – year: 2021 ident: ref21 article-title: Implementation of federated learning on Raspberry Pi boards – ident: ref15 doi: 10.1109/TPDS.2022.3222509 – ident: ref13 doi: 10.1109/TSP.2022.3153135 – ident: ref10 doi: 10.1109/PAAP54281.2021.9720450 – ident: ref8 doi: 10.1109/JIOT.2021.3095077 – ident: ref38 doi: 10.1016/j.neuri.2021.100035 – ident: ref1 doi: 10.1109/JIOT.2016.2619369 – ident: ref2 doi: 10.1109/JIOT.2016.2579198 – year: 2015 ident: ref14 article-title: An introduction to convolutional neural networks publication-title: arXiv:1511.08458 – volume-title: gRPC documentation year: 2023 ident: ref31 – ident: ref37 doi: 10.53347/rid-57190 – volume-title: RPi Documentation—Camera year: 2022 ident: ref17 – year: 2021 ident: ref24 article-title: Federated face recognition publication-title: arXiv:2105.02501 – ident: ref44 doi: 10.1007/978-1-4842-0958-5_7 – volume-title: Rain in Australia year: 2022 ident: ref40 – ident: ref27 doi: 10.1109/TII.2021.3098010 – volume-title: Face Recognition Dataset year: 2021 ident: ref39 – ident: ref4 doi: 10.1016/j.procs.2019.12.120 – ident: ref6 doi: 10.1109/MIC.2017.39 – ident: ref5 doi: 10.1109/ACCESS.2020.2991734 – ident: ref12 doi: 10.1007/978-3-642-35289-8_25 – ident: ref36 doi: 10.1117/12.2628053 – ident: ref23 doi: 10.1109/TNSE.2022.3144699 – volume-title: Flower A Friendly Federated Learning Framework year: 2023 ident: ref30 – ident: ref3 doi: 10.1109/ICCE.2019.8661909 – volume-title: TensorFlow year: 2023 ident: ref32 – volume-title: Data Preprocessing With Python Pandas year: 2022 ident: ref41 – volume-title: Scikit-Learn Documentation year: 2022 ident: ref35 – volume-title: Federated Learning of a Recurrent Neural Network on Raspberry PIS year: 2023 ident: ref20 – year: 2020 ident: ref16 article-title: Flower: A friendly federated learning research framework publication-title: arXiv:2007.14390 – year: 2021 ident: ref11 article-title: Decentralized federated averaging publication-title: arXiv:2104.11375 – volume-title: CNN With TensorFlow and Keras year: 2022 ident: ref33 – volume-title: PIR Sensor year: 2022 ident: ref19 – volume-title: Implementing a CNN in TensorFlow & Keras year: 2023 ident: ref34 – ident: ref43 doi: 10.1007/978-1-4302-0148-9_3 – ident: ref28 doi: 10.1109/SPICSCON48833.2019.9065100 – volume-title: DHT Sensor year: 2022 ident: ref18 – volume-title: Easy Guide to Data Preprocessing in Python year: 2022 ident: ref42 – ident: ref7 doi: 10.1016/j.hcc.2021.100008 |
SSID | ssj0019757 |
Score | 2.3844242 |
Snippet | This paper focused on applying federated learning to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor... This article focused on applying federated learning (FL) to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Computational modeling Constraints Data acquisition Data processing Edge computing Face recognition Federated learning Fog computing Home environment Intelligent sensors Internet of Things Machine learning Nodes Regression models Sensor data acquisition Sensors Servers Smart buildings Smart home environment Smart houses Training |
Title | Heterogeneous Sensor Data Acquisition and Federated Learning for Resource Constrained IoT Devices - A validation |
URI | https://ieeexplore.ieee.org/document/10161724 https://www.proquest.com/docview/2844902744 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VLqUHSoGqy0s-9FQpwUmch4-rwmpBYi-AtLfIHjsFgTYUkgP8ejyOF61ateKURLIjS9_YM-OZ-Qbge1U1OQlKxLnRkRBWRNK4_ViYBjPVOIWPdN9xMSum1-J8ns9DsbqvhbHW-uQzG9Orj-WbFnu6KjsmT9MpXLEGa85zG4q13kIGsvS0nm4H80hk5TyEMBMuj88vT2cx9QmPM-cg5EQBuaKEfFeVv45ir18mn2G2XNmQVnIX952O8eUP0sZ3L30LNoOlycaDaHyBD3axDZ9W-Ae34WNogX7zvAMPU0qMaZ082bZ_YpfOvW0f2YnqFBvj7_52yO1iamHYhAgonI1qWGBn_cWc6cuWkQBGTUB96wk34qy9YifWH0csYmPmBPt2aOO0C9eT06uf0yi0Y4gwlaKLjEjLtGmqJEFEqZHTwyay4VqVOhda28I4nHPeZFZqxVOrcpNigk2hKCL4FdYX7cJ-A-a-MS00mkpJUapMaZWIVNtUVhViVY2AL_GpMXCV07rva--zcFkTpDVBWgdIR_DjbcrDQNTxv8G7BNHKwAGdERwspaAOe_mpdgpcSM-kuPePafuwQX8f8gIPYL177O2hs1U6feRl9BUQ0uYX |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RONAeCqVUbEupDz1VSnAS58PHFbBaKOyFRdpbZI-dFhVtKCSH9tfX43jRqlWrnpJItmLpjT0znpk3AB-rqslJUCLOjY6EsCKSxu3HwjSYqcYpfKT7jqtZMb0RF4t8EYrVfS2MtdYnn9mYXn0s37TY01XZMXmaTuGKZ7DlFH-eDOVaT0EDWXpiT7eHeSSychGCmAmXxxfXZ7OYOoXHmXMRciKBXFNDvq_KH4ex1zCTHZit1jYklnyL-07H-PM32sb_XvwuvAy2JhsPwvEKNuxyD16sMRDuwXZogv71x2u4n1JqTOskyrb9I7t2Dm77wE5Vp9gYv_e3Q3YXU0vDJkRB4axUwwI_6xfmjF-2igUwagPqm0-4EeftnJ1afyCxiI2ZE-3boZHTPtxMzuYn0yg0ZIgwlaKLjEjLtGmqJEFEqZHTwyay4VqVOhda28I4pHPeZFZqxVOrcpNigk2hKCb4BjaX7dIeAHPfmBYaTaWkKFWmtEpEqm0qqwqxqkbAV_jUGNjKad13tfdauKwJ0pogrQOkI_j0NOV-oOr41-B9gmht4IDOCA5XUlCH3fxYOxUupOdSfPuXaR9gezq_uqwvz2ef38Fz-tOQJXgIm91Db987y6XTR15efwE2vOlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Sensor+Data+Acquisition+and+Federated+Learning+for+Resource+Constrained+IoT+Devices+-+A+validation&rft.jtitle=IEEE+sensors+journal&rft.au=Rudraraju%2C+Srinivasa+Raju&rft.au=Suryadevara%2C+N.K.&rft.au=Negi%2C+Atul&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2023.3287580&rft.externalDocID=10161724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |