Heterogeneous Sensor Data Acquisition and Federated Learning for Resource Constrained IoT Devices - A validation

This paper focused on applying federated learning to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor data from vision sensor, digital ambient sensor and passive infrared sensor is done in a distributed manner and the data processing using fed...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 15; p. 1
Main Authors Rudraraju, Srinivasa Raju, Suryadevara, N.K., Negi, Atul
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper focused on applying federated learning to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor data from vision sensor, digital ambient sensor and passive infrared sensor is done in a distributed manner and the data processing using federated learning on Raspberry Pi edge nodes. The system uses edge nodes to train the respective machine learning models using federated learning without sending data to a centralized server. Instead, results from the training on multiple edge nodes are aggregated at the central node to produce a final machine-learning model. Each edge node deploys the aggregated model to recognize the subjects in the smart home environment and trigger an alert in case unknown subjects are identified. Linear regression model for temperature prediction and logistic regression model for humidity prediction using the ambient parameters are also trained in a federated way on the same edge nodes. The developed system uses the federated learning Flower framework for training the models. The obtained validation accuracy was 66% for the machine learning models that were built on the resource constraint server and edge clients through the federated learning. The developed system can be used in environments where communication bandwidth is limited, or data privacy concerns exist.
AbstractList This paper focused on applying federated learning to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor data from vision sensor, digital ambient sensor and passive infrared sensor is done in a distributed manner and the data processing using federated learning on Raspberry Pi edge nodes. The system uses edge nodes to train the respective machine learning models using federated learning without sending data to a centralized server. Instead, results from the training on multiple edge nodes are aggregated at the central node to produce a final machine-learning model. Each edge node deploys the aggregated model to recognize the subjects in the smart home environment and trigger an alert in case unknown subjects are identified. Linear regression model for temperature prediction and logistic regression model for humidity prediction using the ambient parameters are also trained in a federated way on the same edge nodes. The developed system uses the federated learning Flower framework for training the models. The obtained validation accuracy was 66% for the machine learning models that were built on the resource constraint server and edge clients through the federated learning. The developed system can be used in environments where communication bandwidth is limited, or data privacy concerns exist.
This article focused on applying federated learning (FL) to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor data from vision sensor, digital ambient sensor, and passive infrared sensor (PIR) is done in a distributed manner and the data processing using FL on Raspberry Pi edge nodes. The system uses edge nodes to train the respective machine learning (ML) models using FL without sending data to a centralized server. Instead, results from the training on multiple edge nodes are aggregated at the central node to produce a final machine-learning model. Each edge node deploys the aggregated model to recognize the subjects in the smart home environment and trigger an alert in case unknown subjects are identified. Linear regression model for temperature prediction and logistic regression model for humidity prediction using the ambient parameters are also trained in a federated way on the same edge nodes. The developed system uses the FL Flower framework for training the models. The obtained validation accuracy was 66% for the ML models that were built on the resource constraint server and edge clients through the FL. The developed system can be used in environments, where communication bandwidth is limited or data privacy concerns exist.
Author Suryadevara, N.K.
Negi, Atul
Rudraraju, Srinivasa Raju
Author_xml – sequence: 1
  givenname: Srinivasa Raju
  orcidid: 0000-0001-8826-8308
  surname: Rudraraju
  fullname: Rudraraju, Srinivasa Raju
– sequence: 2
  givenname: N.K.
  surname: Suryadevara
  fullname: Suryadevara, N.K.
– sequence: 3
  givenname: Atul
  surname: Negi
  fullname: Negi, Atul
BookMark eNp9UM9PwjAYbQwmAvoHmHho4nnYdt26HQmIYIgmgom3peu-kRJsoe1I_O_dhIPx4Ol9h_fje2-AesYaQOiWkhGlJH94Xj2-jBhh8ShmmUgycoH6NEmyiAqe9bo7JhGPxccVGni_JYTmIhF9tJ9DAGc3YMA2Hq_AeOvwVAaJx-rQaK-DtgZLU-EZVOBkgAovQTqjzQbXLfcNvG2cAjyxxgcntWkZC7vGUzhqBR5HeIyPcqcr2Vldo8ta7jzcnHGI3meP68k8Wr4-LSbjZaRYzkNUcSZYXWeUKqXyUpEOgOY1KaUoE16WkFZVKhJSx5CXkjCQScUUVXUqCRHxEN2ffPfOHhrwodi2b5o2smAZ5zlhgvOWRU8s5az3Dupi7_SndF8FJUU3bNENW3TDFudhW434o1E6_HTr2u_-Vd6dlBoAfiXRlArG42_gjond
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_jer_2025_03_003
Cites_doi 10.1109/TNSE.2021.3131246
10.1016/j.ipm.2022.103061
10.3390/s22020450
10.1109/JSEN.2019.2939182
10.1109/ICCE50685.2021.9427748
10.1109/TPDS.2022.3222509
10.1109/TSP.2022.3153135
10.1109/PAAP54281.2021.9720450
10.1109/JIOT.2021.3095077
10.1016/j.neuri.2021.100035
10.1109/JIOT.2016.2619369
10.1109/JIOT.2016.2579198
10.53347/rid-57190
10.1007/978-1-4842-0958-5_7
10.1109/TII.2021.3098010
10.1016/j.procs.2019.12.120
10.1109/MIC.2017.39
10.1109/ACCESS.2020.2991734
10.1007/978-3-642-35289-8_25
10.1117/12.2628053
10.1109/TNSE.2022.3144699
10.1109/ICCE.2019.8661909
10.1007/978-1-4302-0148-9_3
10.1109/SPICSCON48833.2019.9065100
10.1016/j.hcc.2021.100008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3287580
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3287580
10161724
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-d4272ff811ccc9bc0ccc9e19f0ba7b54bbe6dd6750f3e9ba02ea5d2c1cf6a0073
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:23:13 EDT 2025
Tue Jul 01 04:27:11 EDT 2025
Thu Apr 24 22:56:49 EDT 2025
Wed Aug 27 02:56:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-d4272ff811ccc9bc0ccc9e19f0ba7b54bbe6dd6750f3e9ba02ea5d2c1cf6a0073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8826-8308
0000-0002-7786-9500
0000-0001-5707-130X
PQID 2844902744
PQPubID 75733
PageCount 1
ParticipantIDs proquest_journals_2844902744
crossref_primary_10_1109_JSEN_2023_3287580
crossref_citationtrail_10_1109_JSEN_2023_3287580
ieee_primary_10161724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Sun (ref11) 2021
ref13
ref12
ref15
(ref33) 2022
ref37
Wang (ref21) 2021
ref36
ref10
Bai (ref24) 2021
ref2
(ref31) 2023
ref1
(ref41) 2022
(ref35) 2022
ref38
Patel (ref39) 2021
Young (ref40) 2022
(ref32) 2023
(ref17) 2022
O’Shea (ref14) 2015
ref23
ref26
ref25
(ref42) 2022
ref22
ref44
ref43
(ref34) 2023
ref28
(ref19) 2022
ref27
ref29
ref8
ref7
Beutel (ref16) 2020
(ref30) 2023
ref9
ref4
ref3
ref6
ref5
(ref18) 2022
Gadler (ref20) 2023
References_xml – ident: ref22
  doi: 10.1109/TNSE.2021.3131246
– ident: ref9
  doi: 10.1016/j.ipm.2022.103061
– ident: ref26
  doi: 10.3390/s22020450
– ident: ref29
  doi: 10.1109/JSEN.2019.2939182
– ident: ref25
  doi: 10.1109/ICCE50685.2021.9427748
– year: 2021
  ident: ref21
  article-title: Implementation of federated learning on Raspberry Pi boards
– ident: ref15
  doi: 10.1109/TPDS.2022.3222509
– ident: ref13
  doi: 10.1109/TSP.2022.3153135
– ident: ref10
  doi: 10.1109/PAAP54281.2021.9720450
– ident: ref8
  doi: 10.1109/JIOT.2021.3095077
– ident: ref38
  doi: 10.1016/j.neuri.2021.100035
– ident: ref1
  doi: 10.1109/JIOT.2016.2619369
– ident: ref2
  doi: 10.1109/JIOT.2016.2579198
– year: 2015
  ident: ref14
  article-title: An introduction to convolutional neural networks
  publication-title: arXiv:1511.08458
– volume-title: gRPC documentation
  year: 2023
  ident: ref31
– ident: ref37
  doi: 10.53347/rid-57190
– volume-title: RPi Documentation—Camera
  year: 2022
  ident: ref17
– year: 2021
  ident: ref24
  article-title: Federated face recognition
  publication-title: arXiv:2105.02501
– ident: ref44
  doi: 10.1007/978-1-4842-0958-5_7
– volume-title: Rain in Australia
  year: 2022
  ident: ref40
– ident: ref27
  doi: 10.1109/TII.2021.3098010
– volume-title: Face Recognition Dataset
  year: 2021
  ident: ref39
– ident: ref4
  doi: 10.1016/j.procs.2019.12.120
– ident: ref6
  doi: 10.1109/MIC.2017.39
– ident: ref5
  doi: 10.1109/ACCESS.2020.2991734
– ident: ref12
  doi: 10.1007/978-3-642-35289-8_25
– ident: ref36
  doi: 10.1117/12.2628053
– ident: ref23
  doi: 10.1109/TNSE.2022.3144699
– volume-title: Flower A Friendly Federated Learning Framework
  year: 2023
  ident: ref30
– ident: ref3
  doi: 10.1109/ICCE.2019.8661909
– volume-title: TensorFlow
  year: 2023
  ident: ref32
– volume-title: Data Preprocessing With Python Pandas
  year: 2022
  ident: ref41
– volume-title: Scikit-Learn Documentation
  year: 2022
  ident: ref35
– volume-title: Federated Learning of a Recurrent Neural Network on Raspberry PIS
  year: 2023
  ident: ref20
– year: 2020
  ident: ref16
  article-title: Flower: A friendly federated learning research framework
  publication-title: arXiv:2007.14390
– year: 2021
  ident: ref11
  article-title: Decentralized federated averaging
  publication-title: arXiv:2104.11375
– volume-title: CNN With TensorFlow and Keras
  year: 2022
  ident: ref33
– volume-title: PIR Sensor
  year: 2022
  ident: ref19
– volume-title: Implementing a CNN in TensorFlow & Keras
  year: 2023
  ident: ref34
– ident: ref43
  doi: 10.1007/978-1-4302-0148-9_3
– ident: ref28
  doi: 10.1109/SPICSCON48833.2019.9065100
– volume-title: DHT Sensor
  year: 2022
  ident: ref18
– volume-title: Easy Guide to Data Preprocessing in Python
  year: 2022
  ident: ref42
– ident: ref7
  doi: 10.1016/j.hcc.2021.100008
SSID ssj0019757
Score 2.3844242
Snippet This paper focused on applying federated learning to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of sensor...
This article focused on applying federated learning (FL) to process heterogeneous sensor data in a fog computing-enabled smart home environment. The fusion of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Computational modeling
Constraints
Data acquisition
Data processing
Edge computing
Face recognition
Federated learning
Fog computing
Home environment
Intelligent sensors
Internet of Things
Machine learning
Nodes
Regression models
Sensor data acquisition
Sensors
Servers
Smart buildings
Smart home environment
Smart houses
Training
Title Heterogeneous Sensor Data Acquisition and Federated Learning for Resource Constrained IoT Devices - A validation
URI https://ieeexplore.ieee.org/document/10161724
https://www.proquest.com/docview/2844902744
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VLqUHSoGqy0s-9FQpwUmch4-rwmpBYi-AtLfIHjsFgTYUkgP8ejyOF61ateKURLIjS9_YM-OZ-Qbge1U1OQlKxLnRkRBWRNK4_ViYBjPVOIWPdN9xMSum1-J8ns9DsbqvhbHW-uQzG9Orj-WbFnu6KjsmT9MpXLEGa85zG4q13kIGsvS0nm4H80hk5TyEMBMuj88vT2cx9QmPM-cg5EQBuaKEfFeVv45ir18mn2G2XNmQVnIX952O8eUP0sZ3L30LNoOlycaDaHyBD3axDZ9W-Ae34WNogX7zvAMPU0qMaZ082bZ_YpfOvW0f2YnqFBvj7_52yO1iamHYhAgonI1qWGBn_cWc6cuWkQBGTUB96wk34qy9YifWH0csYmPmBPt2aOO0C9eT06uf0yi0Y4gwlaKLjEjLtGmqJEFEqZHTwyay4VqVOhda28I4nHPeZFZqxVOrcpNigk2hKCL4FdYX7cJ-A-a-MS00mkpJUapMaZWIVNtUVhViVY2AL_GpMXCV07rva--zcFkTpDVBWgdIR_DjbcrDQNTxv8G7BNHKwAGdERwspaAOe_mpdgpcSM-kuPePafuwQX8f8gIPYL177O2hs1U6feRl9BUQ0uYX
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RONAeCqVUbEupDz1VSnAS58PHFbBaKOyFRdpbZI-dFhVtKCSH9tfX43jRqlWrnpJItmLpjT0znpk3AB-rqslJUCLOjY6EsCKSxu3HwjSYqcYpfKT7jqtZMb0RF4t8EYrVfS2MtdYnn9mYXn0s37TY01XZMXmaTuGKZ7DlFH-eDOVaT0EDWXpiT7eHeSSychGCmAmXxxfXZ7OYOoXHmXMRciKBXFNDvq_KH4ex1zCTHZit1jYklnyL-07H-PM32sb_XvwuvAy2JhsPwvEKNuxyD16sMRDuwXZogv71x2u4n1JqTOskyrb9I7t2Dm77wE5Vp9gYv_e3Q3YXU0vDJkRB4axUwwI_6xfmjF-2igUwagPqm0-4EeftnJ1afyCxiI2ZE-3boZHTPtxMzuYn0yg0ZIgwlaKLjEjLtGmqJEFEqZHTwyay4VqVOhda28I4pHPeZFZqxVOrcpNigk2hKCb4BjaX7dIeAHPfmBYaTaWkKFWmtEpEqm0qqwqxqkbAV_jUGNjKad13tfdauKwJ0pogrQOkI_j0NOV-oOr41-B9gmht4IDOCA5XUlCH3fxYOxUupOdSfPuXaR9gezq_uqwvz2ef38Fz-tOQJXgIm91Db987y6XTR15efwE2vOlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Sensor+Data+Acquisition+and+Federated+Learning+for+Resource+Constrained+IoT+Devices+-+A+validation&rft.jtitle=IEEE+sensors+journal&rft.au=Rudraraju%2C+Srinivasa+Raju&rft.au=Suryadevara%2C+N.K.&rft.au=Negi%2C+Atul&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2023.3287580&rft.externalDocID=10161724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon