Modification in energy and productivity of high-temperature variable pressure humidification–compression

One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of humidification–compression (HC) processes are designed. Two single-stage processes and one double-stage HC process are designed and their performances are compar...

Full description

Saved in:
Bibliographic Details
Published inWater science & technology. Water supply Vol. 21; no. 7; pp. 3557 - 3569
Main Authors Abedi, Marzieh, Ghalavand, Younes
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.11.2021
Subjects
Online AccessGet full text
ISSN1606-9749
1607-0798
DOI10.2166/ws.2021.120

Cover

Abstract One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of humidification–compression (HC) processes are designed. Two single-stage processes and one double-stage HC process are designed and their performances are compared based on desalinated water production, gained output ratio (GOR) and power consumption. An attempt is made to reduce the power consumption and improve the system performance. All three processes are simulated to examine the effect of operation parameters on HC performance. To validate these simulations, the theoretical results are compared with an experimental rig with a humidifier column of 1.5 m height. The results indicate that the simulation values conform to the experimental data. The effect of minimum approach temperature (ΔTmin) on system performance is investigated for three processes subject to constant operating conditions (feed temperature, water mass flow, air mass flow, and pressure ratio). For this purpose, four values of ΔTmin are considered (7.5, 10, 12.5 and 15 °C) for heat exchanger operations. The results indicate that an increase in ΔTmin in all three cases increases desalinated water volume and GOR. Also, the double-stage HC system has higher water production rate (66.08 kg/h) and higher GOR (17.19) compared with its counterparts.
AbstractList One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of humidification–compression (HC) processes are designed. Two single-stage processes and one double-stage HC process are designed and their performances are compared based on desalinated water production, gained output ratio (GOR) and power consumption. An attempt is made to reduce the power consumption and improve the system performance. All three processes are simulated to examine the effect of operation parameters on HC performance. To validate these simulations, the theoretical results are compared with an experimental rig with a humidifier column of 1.5 m height. The results indicate that the simulation values conform to the experimental data. The effect of minimum approach temperature (ΔTmin) on system performance is investigated for three processes subject to constant operating conditions (feed temperature, water mass flow, air mass flow, and pressure ratio). For this purpose, four values of ΔTmin are considered (7.5, 10, 12.5 and 15 °C) for heat exchanger operations. The results indicate that an increase in ΔTmin in all three cases increases desalinated water volume and GOR. Also, the double-stage HC system has higher water production rate (66.08 kg/h) and higher GOR (17.19) compared with its counterparts.
One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of humidification–compression (HC) processes are designed. Two single-stage processes and one double-stage HC process are designed and their performances are compared based on desalinated water production, gained output ratio (GOR) and power consumption. An attempt is made to reduce the power consumption and improve the system performance. All three processes are simulated to examine the effect of operation parameters on HC performance. To validate these simulations, the theoretical results are compared with an experimental rig with a humidifier column of 1.5 m height. The results indicate that the simulation values conform to the experimental data. The effect of minimum approach temperature (ΔTmin) on system performance is investigated for three processes subject to constant operating conditions (feed temperature, water mass flow, air mass flow, and pressure ratio). For this purpose, four values of ΔTmin are considered (7.5, 10, 12.5 and 15 °C) for heat exchanger operations. The results indicate that an increase in ΔTmin in all three cases increases desalinated water volume and GOR. Also, the double-stage HC system has higher water production rate (66.08 kg/h) and higher GOR (17.19) compared with its counterparts. HIGHLIGHTS Single-stage and double-stage HC arrangements are proposed and simulated.; The effect of minimum approach temperature on system performance is evaluated.; The double-stage variable pressure HC outperforms its counterparts.;
Author Abedi, Marzieh
Ghalavand, Younes
Author_xml – sequence: 1
  givenname: Marzieh
  surname: Abedi
  fullname: Abedi, Marzieh
  organization: Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, IR, Iran
– sequence: 2
  givenname: Younes
  surname: Ghalavand
  fullname: Ghalavand, Younes
  organization: Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, IR, Iran
BookMark eNptUcFqGzEQFSWFJmlP_YGFHsM6knYlrY4hJG0goZf2LMbSyJaxV66kTfAt_5A_7JdUtlsCJafRjN57M7x3Rk7GOCIhnxmdcSbl5VOeccrZjHH6jpwySVVLlR5ODm_ZatXrD-Qs5xWlXCnGT8nqIbrgg4US4tiEscER02LXwOiabYpusiU8hrJrom-WYbFsC262mKBMCZtHSAHma6xIzHk_WU6b8Kr3-_nFxs3hs3YfyXsP64yf_tZz8vP25sf1t_b--9e766v71nLdl9bxTnZzUAq1E3xw3FnPUHupQdNeO4Wd90ooKYS1jHHhvIQOwHdCMV_Z5-TuqOsirMw2hQ2knYkQzGEQ08JAKsGu0VicK8G0kEPPelCDBjGnbBgQJXfU26r15ahVvfg1YS5mFac01vNNNVD1gothv5EdUTbFnBN6Y0M5OFAShLVh1OzjMU-VVeMxNZ7KufiP8-_St9B_ADMPllw
CitedBy_id crossref_primary_10_1016_j_desal_2023_116931
crossref_primary_10_3390_en16176352
Cites_doi 10.1016/j.jclepro.2020.120224
10.1016/j.desal.2014.02.039
10.1080/19443994.2015.1080190
10.1016/j.desal.2015.09.024
10.1016/j.desal.2018.08.015
10.1016/j.desal.2017.12.020
10.3103/S0003701X13030109
10.1016/j.enconman.2019.04.079
10.1016/j.desal.2015.02.019
10.1016/S0011-9164(04)90007-0
10.1016/j.enconman.2018.01.063
10.1016/j.desal.2018.03.004
10.1016/j.desal.2018.01.024
10.1016/j.enconman.2016.07.064
10.1016/j.desal.2018.07.033
10.1016/j.applthermaleng.2019.114114
10.1016/j.solener.2017.08.029
10.1016/j.ijheatmasstransfer.2015.03.088
10.1016/j.desal.2018.02.021
10.1016/j.energy.2014.02.094
10.1016/j.desal.2014.04.004
ContentType Journal Article
Copyright Copyright IWA Publishing Nov 2021
Copyright_xml – notice: Copyright IWA Publishing Nov 2021
DBID AAYXX
CITATION
7QH
7UA
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
H97
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.2166/ws.2021.120
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1607-0798
EndPage 3569
ExternalDocumentID oai_doaj_org_article_ceb7519568414a789a5b0188ee62d0fc
10_2166_ws_2021_120
GroupedDBID ---
0R~
123
4.4
8CJ
8FE
8FG
8FH
AAFWJ
AAJVE
AAYXX
ABFYC
ABJCF
ABLGR
ACIWK
AECGI
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
DU5
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L6V
M7S
O9-
OK1
PCBAR
PHGZM
PHGZT
PTHSS
RHI
~02
7QH
7UA
C1K
DWQXO
F1W
H96
H97
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c294t-d2363ba77e9d528d2dcf1e9f69a9049d7e3ff757655cc1125df6a3aaf3571fd23
IEDL.DBID 8FG
ISSN 1606-9749
IngestDate Wed Aug 27 01:09:58 EDT 2025
Sun Jul 13 04:59:21 EDT 2025
Thu Apr 24 23:05:53 EDT 2025
Tue Jul 01 03:33:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-d2363ba77e9d528d2dcf1e9f69a9049d7e3ff757655cc1125df6a3aaf3571fd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/ceb7519568414a789a5b0188ee62d0fc
PQID 2777452582
PQPubID 2044521
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_ceb7519568414a789a5b0188ee62d0fc
proquest_journals_2777452582
crossref_citationtrail_10_2166_ws_2021_120
crossref_primary_10_2166_ws_2021_120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Water science & technology. Water supply
PublicationYear 2021
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References (2021111018510787700_WS-EM20786C25) 2015; 87
(2021111018510787700_WS-EM20786C26) 2017; 409
(2021111018510787700_WS-EM20786C31) 2011
(2021111018510787700_WS-EM20786C5) 2018; 445
(2021111018510787700_WS-EM20786C18) 2018; 161
(2021111018510787700_WS-EM20786C14) 2014; 68
(2021111018510787700_WS-EM20786C24) 2018; 437
(2021111018510787700_WS-EM20786C11) 2018; 433
(2021111018510787700_WS-EM20786C4) 2018; 429
(2021111018510787700_WS-EM20786C10) 2016; 57
(2021111018510787700_WS-EM20786C7) 2015; 365
(2021111018510787700_WS-EM20786C27) 2013; 49
(2021111018510787700_WS-EM20786C2) 2020; 255
(2021111018510787700_WS-EM20786C19) 2018; 145
(2021111018510787700_WS-EM20786C22) 2018; 162
(2021111018510787700_WS-EM20786C23) 2018; 447
(2021111018510787700_WS-EM20786C12) 2018; 436
(2021111018510787700_WS-EM20786C8) 2019; 194
(2021111018510787700_WS-EM20786C21) 2004; 160
(2021111018510787700_WS-EM20786C9) 2014; 341
(2021111018510787700_WS-EM20786C15) 2014; 344
(2021111018510787700_WS-EM20786C1) 2013; 52
(2021111018510787700_WS-EM20786C29) 2016; 378
(2021111018510787700_WS-EM20786C30) 2019; 181
(2021111018510787700_WS-EM20786C30a) 2011; 277
(2021111018510787700_WS-EM20786C28) 2018; 82
(2021111018510787700_WS-EM20786C20) 2017; 157
(2021111018510787700_WS-EM20786C3) 2019; 160
(2021111018510787700_WS-EM20786C6) 2016; 126
(2021111018510787700_WS-EM20786C17) 2011; 31
References_xml – volume: 255
  start-page: 120224
  year: 2020
  ident: 2021111018510787700_WS-EM20786C2
  article-title: Performance analysis of a novel augmented desalination and cooling system using modified vapor compression refrigeration integrated with humidification–dehumidification desalination
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.120224
– volume: 341
  start-page: 120
  year: 2014
  ident: 2021111018510787700_WS-EM20786C9
  article-title: Humidification compression desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.02.039
– volume: 57
  start-page: 15285
  issue: 33
  year: 2016
  ident: 2021111018510787700_WS-EM20786C10
  article-title: Performance evaluation of humidification–compression desalination
  publication-title: Desalination and Water Treatment
  doi: 10.1080/19443994.2015.1080190
– volume: 378
  start-page: 100
  year: 2016
  ident: 2021111018510787700_WS-EM20786C29
  article-title: Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification–dehumidification processes
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.09.024
– volume: 447
  start-page: 84
  year: 2018
  ident: 2021111018510787700_WS-EM20786C23
  article-title: Performance assessment and optimization of a humidification dehumidification (HDH) system driven by absorption–compression heat pump cycle
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.08.015
– volume: 429
  start-page: 155
  year: 2018
  ident: 2021111018510787700_WS-EM20786C4
  article-title: Process analysis of a novel humidification–dehumidification–adsorption (HDHA) desalination method
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.12.020
– volume: 145
  start-page: 128
  issue: 11
  year: 2018
  ident: 2021111018510787700_WS-EM20786C19
  article-title: Simulation and optimization of humidification–dehumidification evaporation system
  publication-title: Energy
– volume: 49
  start-page: 137
  issue: 3
  year: 2013
  ident: 2021111018510787700_WS-EM20786C27
  article-title: Experimental study an a low pressure solar still
  publication-title: Applied Solar Energy
  doi: 10.3103/S0003701X13030109
– volume: 181
  start-page: 68
  issue: 8
  year: 2019
  ident: 2021111018510787700_WS-EM20786C30
  article-title: Thermodynamic study on an enhanced humidification–dehumidification solar desalination system with weakly compressed air and internal heat recovery
  publication-title: Energy Conversion and Management
– volume: 194
  start-page: 160
  year: 2019
  ident: 2021111018510787700_WS-EM20786C8
  article-title: Performance evaluation of a novel compact humidification–dehumidification desalination system coupled with a heat pump for design and off-design conditions
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.04.079
– volume-title: ASME/JSME 8th
  year: 2011
  ident: 2021111018510787700_WS-EM20786C31
  article-title: Variable pressure humidification dehumidification desalination system
– volume: 365
  start-page: 36
  year: 2015
  ident: 2021111018510787700_WS-EM20786C7
  article-title: Experimental and analytical study on productivity augmentation of a novel solar humidification–dehumidification (HDH) system
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.02.019
– volume: 160
  start-page: 167
  issue: 2
  year: 2004
  ident: 2021111018510787700_WS-EM20786C21
  article-title: Solar desalination with a humidification–dehumidification technique – a comprehensive technical review
  publication-title: Desalination
  doi: 10.1016/S0011-9164(04)90007-0
– volume: 162
  start-page: 321
  year: 2018
  ident: 2021111018510787700_WS-EM20786C22
  article-title: Solar assisted modified variable pressure humidification–dehumidification desalination system
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.01.063
– volume: 437
  start-page: 81
  year: 2018
  ident: 2021111018510787700_WS-EM20786C24
  article-title: Experimental investigation of heat recovery in a humidification–dehumidification desalination system via a heat pump
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.03.004
– volume: 82
  start-page: 629
  issue: 1
  year: 2018
  ident: 2021111018510787700_WS-EM20786C28
  article-title: Recent fresh water augmentation techniques in solar still and HDH desalination – a review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 433
  start-page: 48
  year: 2018
  ident: 2021111018510787700_WS-EM20786C11
  article-title: Mathematical modeling for humidifier performance in a compression desalination system: insulation effects
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.01.024
– volume: 31
  start-page: 1906
  issue: 11–12
  year: 2011
  ident: 2021111018510787700_WS-EM20786C17
  article-title: Effect of air humidity at the entrance on heat and mass transfers in a humidifier intended for a desalination system
  publication-title: Applied Thermal Engineering
– volume: 126
  start-page: 12
  year: 2016
  ident: 2021111018510787700_WS-EM20786C6
  article-title: Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification–dehumidification
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2016.07.064
– volume: 445
  start-page: 95
  year: 2018
  ident: 2021111018510787700_WS-EM20786C5
  article-title: Performance analysis of a heat pump driven humidification–dehumidification desalination system
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.07.033
– volume: 160
  start-page: 114114
  year: 2019
  ident: 2021111018510787700_WS-EM20786C3
  article-title: Water productivity enhancement in variable pressure humidification dehumidification (HDH) desalination systems using heat pump
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2019.114114
– volume: 157
  start-page: 321
  year: 2017
  ident: 2021111018510787700_WS-EM20786C20
  article-title: Mathematical modeling and sensibility analysis of a solar humidification–dehumidification desalination system considering saturated air
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2017.08.029
– volume: 87
  start-page: 212
  year: 2015
  ident: 2021111018510787700_WS-EM20786C25
  article-title: The effect of pressure on the performance of bubble column dehumidifier
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.03.088
– volume: 409
  start-page: 171
  issue: 4
  year: 2017
  ident: 2021111018510787700_WS-EM20786C26
  article-title: Performance evaluation of variable pressure humidification–dehumidification systems
  publication-title: Desalination
– volume: 52
  start-page: 4622
  issue: 25–27
  year: 2013
  ident: 2021111018510787700_WS-EM20786C1
  article-title: Water desalination using humidification/dehumidification (HDH) technique powered by solar energy: a detailed review
  publication-title: Desalination and Water Treatment
– volume: 161
  start-page: 128
  issue: 8
  year: 2018
  ident: 2021111018510787700_WS-EM20786C18
  article-title: Humidification–dehumidification desalination system operated by a heat pump
  publication-title: Energy Conversion and Management
– volume: 277
  start-page: 92
  issue: 1–3
  year: 2011
  ident: 2021111018510787700_WS-EM20786C30a
  article-title: Experimental study of a solar desalination system based on humidification–dehumidification process
  publication-title: Desalination
– volume: 436
  start-page: 152
  year: 2018
  ident: 2021111018510787700_WS-EM20786C12
  article-title: Investigation on humidification dehumidification desalination system coupled with heat pump
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.02.021
– volume: 68
  start-page: 218
  year: 2014
  ident: 2021111018510787700_WS-EM20786C14
  article-title: Experimental study of a humidification–dehumidification solar technique by natural and forced air circulation
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.094
– volume: 344
  start-page: 339
  year: 2014
  ident: 2021111018510787700_WS-EM20786C15
  article-title: Performance of a two-stage multi-effect desalination system based on humidification–dehumidification process
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.04.004
SSID ssj0027712
Score 2.247056
Snippet One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3557
SubjectTerms Air flow
Air masses
Air temperature
Atmospheric pressure
Compression
computer simulation
Desalination
Efficiency
Energy consumption
energy saving
Heat
Heat exchangers
High temperature
Humidification
humidification–compression
Humidity
Investigations
Mass flow
Mathematical models
Power consumption
Pressure ratio
process modification
Productivity
Simulation
Temperature
Volume transport
Water desalting
Water masses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6tVcuhJWNtk89gcVRQR6slCb0s2D6zoVrS1V_-D_9BfYibZ1oKCF69hNhMms8l8uzPfINSBah7vA0wtci0yxhTJlOQ0U7xwzlFSFQ4-DfRvxfWA3Qz5cKnVF-SEJXrgZLiucZXksaiNEaZloTSveqQIMwlqe97A6dtTvTmYmkMtmf5zhvA86GYqVeZRIkR3BiTdlJwSaPG9dBdFyv4fJ3K8Zq420UYTH-KztK4ttOLqbbS-xBq4gx76YwsJPtGmeFRjF-v3sK4tfk4ErrEjBB57DGzEGdBPNdzJ-C1gY6iWwjEBFkbup0-j7_k-3z8gyzxlx9a7aHB1eXdxnTUtEzJDFZtkluYir7SUTllOC0ut8cQpL5RWAQtY6XLvZcAYnBsTQi1uvdC51j7nkvjw9B5arce120dYG1b4yntvvWGa5soKqxyrpLUBUjvdQidz45Wm4ROHthaPZcAVYOly9lqCpctg6RbqLISfE43G72LnsAsLEeC-jgPBI8rGI8q_PKKF2vM9LJsXMmiQIc7llBf04D90HKI1WHMqSmyj1cnL1B2F6GRSHUdH_AJ5jOUq
  priority: 102
  providerName: Directory of Open Access Journals
Title Modification in energy and productivity of high-temperature variable pressure humidification–compression
URI https://www.proquest.com/docview/2777452582
https://doaj.org/article/ceb7519568414a789a5b0188ee62d0fc
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbKcoEDogXEtrDygVOlAHb8PFWA2KJKoAqBxC1y_OAhSLbLwl77H_oP-SV4HO-C1KpXx0ms8diebzzzDUI7kM0TQoSpqjSiYEyTQktOC82V956SWnlwDZyeiZNL9uOKX2WH22MOq5ztiWmjdq0FH_keldFQ4ZQr-m30q4CqUXC7mktoLKBFEk8a0HM1_P4GuGR32xmN9DgCprv8PEqE2JsCVTcluwQKfb87kRJx_1_7cjpshqtoJVuJ-KCb1o_og28-oeV33IFr6O60dRDmkySLbxvsUxYfNo3Do47GNdWFwG3AwElcAAlVZlDGzxEhQ84UTmGw0HLz9HD79r2X338g1ryLkW3W0eXw-OLopMiFEwpLNZsUjpairI2UXjtOlaPOBuJ1ENroiAic9GUIMiINzq2NBhd3QZjSmFBySUJ8ewP1mrbxmwgby1SoQwguWGZoqZ1w2rNaOheBtTd99HUmvMpmVnEobnFfRXQBkq6mjxVIuoqS7qOdeedRR6bx726HMAvzLsCAnRra8XWVF1RlfS15SnZkhBmptOH1PlFRwwR1-8H20dZsDqu8LOMf5kr0-f-Pv6AlGE2XdLiFepPxk9-O1sekHiQVG6DFw-Ozn-eDhOFfAQZi33U
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNwQDzFlgI-lAtSaOP4ER8QotBqS7srhFqpN-P4Aa0gWdotq976H_gf_Ch-CR4n2VYCcevVsfKYmYxn7Pm-AVhDNE8IMU0tCyMyxlSeKclppnjpvad5VXrcGhhPxOiAvT_kh0vwq8fCYFll7xOTo3aNxT3ydSpjoMIpL-nr6fcMu0bh6WrfQqM1i11_Po8p2-mrnXdRv88p3d7afzvKuq4CmaWKzTJHC1FURkqvHKelo86G3KsglFExXHbSFyHIGIZzbm2MRrgLwhTGhILLPDgkOoguf5khonUAy5tbkw8fL1M82Z6vxrQgfjNTLSKQ5kKsz5EcnOYvc2wtfmUNTK0C_loJ0vK2fQdud3EpedMa0l1Y8vU9uHWFrfA-HI8bh4VFSZfkqCY-4QaJqR2ZtsSxqRMFaQJBFuQMaa86zmbyI-bkiNIiqfAWR76cfTu6vN_vi59Y3d5W5dYP4OBahPoQBnVT-0dAjGVlqEIILlhmaKGccMqzSjoXU3lvhvCiF562HY85ttP4qmM-g5LW81ONktZR0kNYW0yetvQd_562iVpYTEHO7TTQnHzW3S-sra8kT_BKljMjS2V4tZGX0aYFdRvBDmG116HuHEF8wsJsV_5_-RncGO2P9_TezmT3MdzEN2shj6swmJ2c-Scx9plVTzuDI_Dpum38D7XeHAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO6QJTF6MD7jImof8GIyLtPTj-mDMSJsQGRDjCTc2p5-KERnVljccOM_-G_8Of4Sq3pmFhKNN649lXlU1dSju-orQtawmydGSFPLwsqMc51nWgmWaVGGEFhelQG3BvYmcvuAvzsUh0vkV98Lg2WVvU1Mhto3DvfIR0xBoCKYKNkodmUR-5vj19PvGU6QwpPWfpxGqyK74XwO6dvpq51NkPVzxsZbH99uZ92EgcwxzWeZZ4UsKqtU0F6w0jPvYh50lNpqCJ29CkWMCkJyIZyDyET4KG1hbSyEyqNH0AMw_8sKvCIfkOWNrcn-h8t0T7VnrZAiwPdz3XYHslzK0RyBwln-Mscx41f8YRob8JdXSK5ufIfc7mJU-qZVqrtkKdT3yK0ryIX3yfFe47HIKMmVHtU0pB5CamtPpy2IbJpKQZtIERE5QwisDr-Z_oD8HDu2aCrCxZUvZ9-OLu_3--InVrq3Fbr1A3JwLUx9SAZ1U4dHhFrHy1jFGH103LJCe-l14JXyHtL6YIfkRc884zpMcxyt8dVAboOcNvNTg5w2wOkhWVsQT1soj3-TbaAUFiSIv50WmpPPpvudjQuVEqnVkufcqlJbUa3nJei3ZH49uiFZ7WVoOqMAT1io8Mr_Lz8jN0C3zfudye5jchNfrO1-XCWD2clZeAJh0Kx62ukbJZ-uW8X_AFsbICw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+in+energy+and+productivity+of+high-temperature+variable+pressure+humidification%E2%80%93compression&rft.jtitle=Water+science+%26+technology.+Water+supply&rft.au=Abedi%2C+Marzieh&rft.au=Younes+Ghalavand&rft.date=2021-11-01&rft.pub=IWA+Publishing&rft.issn=1606-9749&rft.eissn=1607-0798&rft.volume=21&rft.issue=7&rft.spage=3557&rft_id=info:doi/10.2166%2Fws.2021.120&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1606-9749&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1606-9749&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1606-9749&client=summon