Modification in energy and productivity of high-temperature variable pressure humidification–compression
One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of humidification–compression (HC) processes are designed. Two single-stage processes and one double-stage HC process are designed and their performances are compar...
Saved in:
Published in | Water science & technology. Water supply Vol. 21; no. 7; pp. 3557 - 3569 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1606-9749 1607-0798 |
DOI | 10.2166/ws.2021.120 |
Cover
Abstract | One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of humidification–compression (HC) processes are designed. Two single-stage processes and one double-stage HC process are designed and their performances are compared based on desalinated water production, gained output ratio (GOR) and power consumption. An attempt is made to reduce the power consumption and improve the system performance. All three processes are simulated to examine the effect of operation parameters on HC performance. To validate these simulations, the theoretical results are compared with an experimental rig with a humidifier column of 1.5 m height. The results indicate that the simulation values conform to the experimental data. The effect of minimum approach temperature (ΔTmin) on system performance is investigated for three processes subject to constant operating conditions (feed temperature, water mass flow, air mass flow, and pressure ratio). For this purpose, four values of ΔTmin are considered (7.5, 10, 12.5 and 15 °C) for heat exchanger operations. The results indicate that an increase in ΔTmin in all three cases increases desalinated water volume and GOR. Also, the double-stage HC system has higher water production rate (66.08 kg/h) and higher GOR (17.19) compared with its counterparts. |
---|---|
AbstractList | One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of humidification–compression (HC) processes are designed. Two single-stage processes and one double-stage HC process are designed and their performances are compared based on desalinated water production, gained output ratio (GOR) and power consumption. An attempt is made to reduce the power consumption and improve the system performance. All three processes are simulated to examine the effect of operation parameters on HC performance. To validate these simulations, the theoretical results are compared with an experimental rig with a humidifier column of 1.5 m height. The results indicate that the simulation values conform to the experimental data. The effect of minimum approach temperature (ΔTmin) on system performance is investigated for three processes subject to constant operating conditions (feed temperature, water mass flow, air mass flow, and pressure ratio). For this purpose, four values of ΔTmin are considered (7.5, 10, 12.5 and 15 °C) for heat exchanger operations. The results indicate that an increase in ΔTmin in all three cases increases desalinated water volume and GOR. Also, the double-stage HC system has higher water production rate (66.08 kg/h) and higher GOR (17.19) compared with its counterparts. One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of humidification–compression (HC) processes are designed. Two single-stage processes and one double-stage HC process are designed and their performances are compared based on desalinated water production, gained output ratio (GOR) and power consumption. An attempt is made to reduce the power consumption and improve the system performance. All three processes are simulated to examine the effect of operation parameters on HC performance. To validate these simulations, the theoretical results are compared with an experimental rig with a humidifier column of 1.5 m height. The results indicate that the simulation values conform to the experimental data. The effect of minimum approach temperature (ΔTmin) on system performance is investigated for three processes subject to constant operating conditions (feed temperature, water mass flow, air mass flow, and pressure ratio). For this purpose, four values of ΔTmin are considered (7.5, 10, 12.5 and 15 °C) for heat exchanger operations. The results indicate that an increase in ΔTmin in all three cases increases desalinated water volume and GOR. Also, the double-stage HC system has higher water production rate (66.08 kg/h) and higher GOR (17.19) compared with its counterparts. HIGHLIGHTS Single-stage and double-stage HC arrangements are proposed and simulated.; The effect of minimum approach temperature on system performance is evaluated.; The double-stage variable pressure HC outperforms its counterparts.; |
Author | Abedi, Marzieh Ghalavand, Younes |
Author_xml | – sequence: 1 givenname: Marzieh surname: Abedi fullname: Abedi, Marzieh organization: Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, IR, Iran – sequence: 2 givenname: Younes surname: Ghalavand fullname: Ghalavand, Younes organization: Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, IR, Iran |
BookMark | eNptUcFqGzEQFSWFJmlP_YGFHsM6knYlrY4hJG0goZf2LMbSyJaxV66kTfAt_5A_7JdUtlsCJafRjN57M7x3Rk7GOCIhnxmdcSbl5VOeccrZjHH6jpwySVVLlR5ODm_ZatXrD-Qs5xWlXCnGT8nqIbrgg4US4tiEscER02LXwOiabYpusiU8hrJrom-WYbFsC262mKBMCZtHSAHma6xIzHk_WU6b8Kr3-_nFxs3hs3YfyXsP64yf_tZz8vP25sf1t_b--9e766v71nLdl9bxTnZzUAq1E3xw3FnPUHupQdNeO4Wd90ooKYS1jHHhvIQOwHdCMV_Z5-TuqOsirMw2hQ2knYkQzGEQ08JAKsGu0VicK8G0kEPPelCDBjGnbBgQJXfU26r15ahVvfg1YS5mFac01vNNNVD1gothv5EdUTbFnBN6Y0M5OFAShLVh1OzjMU-VVeMxNZ7KufiP8-_St9B_ADMPllw |
CitedBy_id | crossref_primary_10_1016_j_desal_2023_116931 crossref_primary_10_3390_en16176352 |
Cites_doi | 10.1016/j.jclepro.2020.120224 10.1016/j.desal.2014.02.039 10.1080/19443994.2015.1080190 10.1016/j.desal.2015.09.024 10.1016/j.desal.2018.08.015 10.1016/j.desal.2017.12.020 10.3103/S0003701X13030109 10.1016/j.enconman.2019.04.079 10.1016/j.desal.2015.02.019 10.1016/S0011-9164(04)90007-0 10.1016/j.enconman.2018.01.063 10.1016/j.desal.2018.03.004 10.1016/j.desal.2018.01.024 10.1016/j.enconman.2016.07.064 10.1016/j.desal.2018.07.033 10.1016/j.applthermaleng.2019.114114 10.1016/j.solener.2017.08.029 10.1016/j.ijheatmasstransfer.2015.03.088 10.1016/j.desal.2018.02.021 10.1016/j.energy.2014.02.094 10.1016/j.desal.2014.04.004 |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Nov 2021 |
Copyright_xml | – notice: Copyright IWA Publishing Nov 2021 |
DBID | AAYXX CITATION 7QH 7UA 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H96 H97 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.2166/ws.2021.120 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1607-0798 |
EndPage | 3569 |
ExternalDocumentID | oai_doaj_org_article_ceb7519568414a789a5b0188ee62d0fc 10_2166_ws_2021_120 |
GroupedDBID | --- 0R~ 123 4.4 8CJ 8FE 8FG 8FH AAFWJ AAJVE AAYXX ABFYC ABJCF ABLGR ACIWK AECGI AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J DU5 GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L6V M7S O9- OK1 PCBAR PHGZM PHGZT PTHSS RHI ~02 7QH 7UA C1K DWQXO F1W H96 H97 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c294t-d2363ba77e9d528d2dcf1e9f69a9049d7e3ff757655cc1125df6a3aaf3571fd23 |
IEDL.DBID | 8FG |
ISSN | 1606-9749 |
IngestDate | Wed Aug 27 01:09:58 EDT 2025 Sun Jul 13 04:59:21 EDT 2025 Thu Apr 24 23:05:53 EDT 2025 Tue Jul 01 03:33:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-d2363ba77e9d528d2dcf1e9f69a9049d7e3ff757655cc1125df6a3aaf3571fd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/ceb7519568414a789a5b0188ee62d0fc |
PQID | 2777452582 |
PQPubID | 2044521 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ceb7519568414a789a5b0188ee62d0fc proquest_journals_2777452582 crossref_citationtrail_10_2166_ws_2021_120 crossref_primary_10_2166_ws_2021_120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Water science & technology. Water supply |
PublicationYear | 2021 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | (2021111018510787700_WS-EM20786C25) 2015; 87 (2021111018510787700_WS-EM20786C26) 2017; 409 (2021111018510787700_WS-EM20786C31) 2011 (2021111018510787700_WS-EM20786C5) 2018; 445 (2021111018510787700_WS-EM20786C18) 2018; 161 (2021111018510787700_WS-EM20786C14) 2014; 68 (2021111018510787700_WS-EM20786C24) 2018; 437 (2021111018510787700_WS-EM20786C11) 2018; 433 (2021111018510787700_WS-EM20786C4) 2018; 429 (2021111018510787700_WS-EM20786C10) 2016; 57 (2021111018510787700_WS-EM20786C7) 2015; 365 (2021111018510787700_WS-EM20786C27) 2013; 49 (2021111018510787700_WS-EM20786C2) 2020; 255 (2021111018510787700_WS-EM20786C19) 2018; 145 (2021111018510787700_WS-EM20786C22) 2018; 162 (2021111018510787700_WS-EM20786C23) 2018; 447 (2021111018510787700_WS-EM20786C12) 2018; 436 (2021111018510787700_WS-EM20786C8) 2019; 194 (2021111018510787700_WS-EM20786C21) 2004; 160 (2021111018510787700_WS-EM20786C9) 2014; 341 (2021111018510787700_WS-EM20786C15) 2014; 344 (2021111018510787700_WS-EM20786C1) 2013; 52 (2021111018510787700_WS-EM20786C29) 2016; 378 (2021111018510787700_WS-EM20786C30) 2019; 181 (2021111018510787700_WS-EM20786C30a) 2011; 277 (2021111018510787700_WS-EM20786C28) 2018; 82 (2021111018510787700_WS-EM20786C20) 2017; 157 (2021111018510787700_WS-EM20786C3) 2019; 160 (2021111018510787700_WS-EM20786C6) 2016; 126 (2021111018510787700_WS-EM20786C17) 2011; 31 |
References_xml | – volume: 255 start-page: 120224 year: 2020 ident: 2021111018510787700_WS-EM20786C2 article-title: Performance analysis of a novel augmented desalination and cooling system using modified vapor compression refrigeration integrated with humidification–dehumidification desalination publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.120224 – volume: 341 start-page: 120 year: 2014 ident: 2021111018510787700_WS-EM20786C9 article-title: Humidification compression desalination publication-title: Desalination doi: 10.1016/j.desal.2014.02.039 – volume: 57 start-page: 15285 issue: 33 year: 2016 ident: 2021111018510787700_WS-EM20786C10 article-title: Performance evaluation of humidification–compression desalination publication-title: Desalination and Water Treatment doi: 10.1080/19443994.2015.1080190 – volume: 378 start-page: 100 year: 2016 ident: 2021111018510787700_WS-EM20786C29 article-title: Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification–dehumidification processes publication-title: Desalination doi: 10.1016/j.desal.2015.09.024 – volume: 447 start-page: 84 year: 2018 ident: 2021111018510787700_WS-EM20786C23 article-title: Performance assessment and optimization of a humidification dehumidification (HDH) system driven by absorption–compression heat pump cycle publication-title: Desalination doi: 10.1016/j.desal.2018.08.015 – volume: 429 start-page: 155 year: 2018 ident: 2021111018510787700_WS-EM20786C4 article-title: Process analysis of a novel humidification–dehumidification–adsorption (HDHA) desalination method publication-title: Desalination doi: 10.1016/j.desal.2017.12.020 – volume: 145 start-page: 128 issue: 11 year: 2018 ident: 2021111018510787700_WS-EM20786C19 article-title: Simulation and optimization of humidification–dehumidification evaporation system publication-title: Energy – volume: 49 start-page: 137 issue: 3 year: 2013 ident: 2021111018510787700_WS-EM20786C27 article-title: Experimental study an a low pressure solar still publication-title: Applied Solar Energy doi: 10.3103/S0003701X13030109 – volume: 181 start-page: 68 issue: 8 year: 2019 ident: 2021111018510787700_WS-EM20786C30 article-title: Thermodynamic study on an enhanced humidification–dehumidification solar desalination system with weakly compressed air and internal heat recovery publication-title: Energy Conversion and Management – volume: 194 start-page: 160 year: 2019 ident: 2021111018510787700_WS-EM20786C8 article-title: Performance evaluation of a novel compact humidification–dehumidification desalination system coupled with a heat pump for design and off-design conditions publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.04.079 – volume-title: ASME/JSME 8th year: 2011 ident: 2021111018510787700_WS-EM20786C31 article-title: Variable pressure humidification dehumidification desalination system – volume: 365 start-page: 36 year: 2015 ident: 2021111018510787700_WS-EM20786C7 article-title: Experimental and analytical study on productivity augmentation of a novel solar humidification–dehumidification (HDH) system publication-title: Desalination doi: 10.1016/j.desal.2015.02.019 – volume: 160 start-page: 167 issue: 2 year: 2004 ident: 2021111018510787700_WS-EM20786C21 article-title: Solar desalination with a humidification–dehumidification technique – a comprehensive technical review publication-title: Desalination doi: 10.1016/S0011-9164(04)90007-0 – volume: 162 start-page: 321 year: 2018 ident: 2021111018510787700_WS-EM20786C22 article-title: Solar assisted modified variable pressure humidification–dehumidification desalination system publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.01.063 – volume: 437 start-page: 81 year: 2018 ident: 2021111018510787700_WS-EM20786C24 article-title: Experimental investigation of heat recovery in a humidification–dehumidification desalination system via a heat pump publication-title: Desalination doi: 10.1016/j.desal.2018.03.004 – volume: 82 start-page: 629 issue: 1 year: 2018 ident: 2021111018510787700_WS-EM20786C28 article-title: Recent fresh water augmentation techniques in solar still and HDH desalination – a review publication-title: Renewable and Sustainable Energy Reviews – volume: 433 start-page: 48 year: 2018 ident: 2021111018510787700_WS-EM20786C11 article-title: Mathematical modeling for humidifier performance in a compression desalination system: insulation effects publication-title: Desalination doi: 10.1016/j.desal.2018.01.024 – volume: 31 start-page: 1906 issue: 11–12 year: 2011 ident: 2021111018510787700_WS-EM20786C17 article-title: Effect of air humidity at the entrance on heat and mass transfers in a humidifier intended for a desalination system publication-title: Applied Thermal Engineering – volume: 126 start-page: 12 year: 2016 ident: 2021111018510787700_WS-EM20786C6 article-title: Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification–dehumidification publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2016.07.064 – volume: 445 start-page: 95 year: 2018 ident: 2021111018510787700_WS-EM20786C5 article-title: Performance analysis of a heat pump driven humidification–dehumidification desalination system publication-title: Desalination doi: 10.1016/j.desal.2018.07.033 – volume: 160 start-page: 114114 year: 2019 ident: 2021111018510787700_WS-EM20786C3 article-title: Water productivity enhancement in variable pressure humidification dehumidification (HDH) desalination systems using heat pump publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2019.114114 – volume: 157 start-page: 321 year: 2017 ident: 2021111018510787700_WS-EM20786C20 article-title: Mathematical modeling and sensibility analysis of a solar humidification–dehumidification desalination system considering saturated air publication-title: Solar Energy doi: 10.1016/j.solener.2017.08.029 – volume: 87 start-page: 212 year: 2015 ident: 2021111018510787700_WS-EM20786C25 article-title: The effect of pressure on the performance of bubble column dehumidifier publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.03.088 – volume: 409 start-page: 171 issue: 4 year: 2017 ident: 2021111018510787700_WS-EM20786C26 article-title: Performance evaluation of variable pressure humidification–dehumidification systems publication-title: Desalination – volume: 52 start-page: 4622 issue: 25–27 year: 2013 ident: 2021111018510787700_WS-EM20786C1 article-title: Water desalination using humidification/dehumidification (HDH) technique powered by solar energy: a detailed review publication-title: Desalination and Water Treatment – volume: 161 start-page: 128 issue: 8 year: 2018 ident: 2021111018510787700_WS-EM20786C18 article-title: Humidification–dehumidification desalination system operated by a heat pump publication-title: Energy Conversion and Management – volume: 277 start-page: 92 issue: 1–3 year: 2011 ident: 2021111018510787700_WS-EM20786C30a article-title: Experimental study of a solar desalination system based on humidification–dehumidification process publication-title: Desalination – volume: 436 start-page: 152 year: 2018 ident: 2021111018510787700_WS-EM20786C12 article-title: Investigation on humidification dehumidification desalination system coupled with heat pump publication-title: Desalination doi: 10.1016/j.desal.2018.02.021 – volume: 68 start-page: 218 year: 2014 ident: 2021111018510787700_WS-EM20786C14 article-title: Experimental study of a humidification–dehumidification solar technique by natural and forced air circulation publication-title: Energy doi: 10.1016/j.energy.2014.02.094 – volume: 344 start-page: 339 year: 2014 ident: 2021111018510787700_WS-EM20786C15 article-title: Performance of a two-stage multi-effect desalination system based on humidification–dehumidification process publication-title: Desalination doi: 10.1016/j.desal.2014.04.004 |
SSID | ssj0027712 |
Score | 2.247056 |
Snippet | One of the important approaches in thermal desalination processes is consumed energy reduction. To achieve this aim, three arrangements of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3557 |
SubjectTerms | Air flow Air masses Air temperature Atmospheric pressure Compression computer simulation Desalination Efficiency Energy consumption energy saving Heat Heat exchangers High temperature Humidification humidification–compression Humidity Investigations Mass flow Mathematical models Power consumption Pressure ratio process modification Productivity Simulation Temperature Volume transport Water desalting Water masses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6tVcuhJWNtk89gcVRQR6slCb0s2D6zoVrS1V_-D_9BfYibZ1oKCF69hNhMms8l8uzPfINSBah7vA0wtci0yxhTJlOQ0U7xwzlFSFQ4-DfRvxfWA3Qz5cKnVF-SEJXrgZLiucZXksaiNEaZloTSveqQIMwlqe97A6dtTvTmYmkMtmf5zhvA86GYqVeZRIkR3BiTdlJwSaPG9dBdFyv4fJ3K8Zq420UYTH-KztK4ttOLqbbS-xBq4gx76YwsJPtGmeFRjF-v3sK4tfk4ErrEjBB57DGzEGdBPNdzJ-C1gY6iWwjEBFkbup0-j7_k-3z8gyzxlx9a7aHB1eXdxnTUtEzJDFZtkluYir7SUTllOC0ut8cQpL5RWAQtY6XLvZcAYnBsTQi1uvdC51j7nkvjw9B5arce120dYG1b4yntvvWGa5soKqxyrpLUBUjvdQidz45Wm4ROHthaPZcAVYOly9lqCpctg6RbqLISfE43G72LnsAsLEeC-jgPBI8rGI8q_PKKF2vM9LJsXMmiQIc7llBf04D90HKI1WHMqSmyj1cnL1B2F6GRSHUdH_AJ5jOUq priority: 102 providerName: Directory of Open Access Journals |
Title | Modification in energy and productivity of high-temperature variable pressure humidification–compression |
URI | https://www.proquest.com/docview/2777452582 https://doaj.org/article/ceb7519568414a789a5b0188ee62d0fc |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbKcoEDogXEtrDygVOlAHb8PFWA2KJKoAqBxC1y_OAhSLbLwl77H_oP-SV4HO-C1KpXx0ms8diebzzzDUI7kM0TQoSpqjSiYEyTQktOC82V956SWnlwDZyeiZNL9uOKX2WH22MOq5ztiWmjdq0FH_keldFQ4ZQr-m30q4CqUXC7mktoLKBFEk8a0HM1_P4GuGR32xmN9DgCprv8PEqE2JsCVTcluwQKfb87kRJx_1_7cjpshqtoJVuJ-KCb1o_og28-oeV33IFr6O60dRDmkySLbxvsUxYfNo3Do47GNdWFwG3AwElcAAlVZlDGzxEhQ84UTmGw0HLz9HD79r2X338g1ryLkW3W0eXw-OLopMiFEwpLNZsUjpairI2UXjtOlaPOBuJ1ENroiAic9GUIMiINzq2NBhd3QZjSmFBySUJ8ewP1mrbxmwgby1SoQwguWGZoqZ1w2rNaOheBtTd99HUmvMpmVnEobnFfRXQBkq6mjxVIuoqS7qOdeedRR6bx726HMAvzLsCAnRra8XWVF1RlfS15SnZkhBmptOH1PlFRwwR1-8H20dZsDqu8LOMf5kr0-f-Pv6AlGE2XdLiFepPxk9-O1sekHiQVG6DFw-Ozn-eDhOFfAQZi33U |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNwQDzFlgI-lAtSaOP4ER8QotBqS7srhFqpN-P4Aa0gWdotq976H_gf_Ch-CR4n2VYCcevVsfKYmYxn7Pm-AVhDNE8IMU0tCyMyxlSeKclppnjpvad5VXrcGhhPxOiAvT_kh0vwq8fCYFll7xOTo3aNxT3ydSpjoMIpL-nr6fcMu0bh6WrfQqM1i11_Po8p2-mrnXdRv88p3d7afzvKuq4CmaWKzTJHC1FURkqvHKelo86G3KsglFExXHbSFyHIGIZzbm2MRrgLwhTGhILLPDgkOoguf5khonUAy5tbkw8fL1M82Z6vxrQgfjNTLSKQ5kKsz5EcnOYvc2wtfmUNTK0C_loJ0vK2fQdud3EpedMa0l1Y8vU9uHWFrfA-HI8bh4VFSZfkqCY-4QaJqR2ZtsSxqRMFaQJBFuQMaa86zmbyI-bkiNIiqfAWR76cfTu6vN_vi59Y3d5W5dYP4OBahPoQBnVT-0dAjGVlqEIILlhmaKGccMqzSjoXU3lvhvCiF562HY85ttP4qmM-g5LW81ONktZR0kNYW0yetvQd_562iVpYTEHO7TTQnHzW3S-sra8kT_BKljMjS2V4tZGX0aYFdRvBDmG116HuHEF8wsJsV_5_-RncGO2P9_TezmT3MdzEN2shj6swmJ2c-Scx9plVTzuDI_Dpum38D7XeHAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO6QJTF6MD7jImof8GIyLtPTj-mDMSJsQGRDjCTc2p5-KERnVljccOM_-G_8Of4Sq3pmFhKNN649lXlU1dSju-orQtawmydGSFPLwsqMc51nWgmWaVGGEFhelQG3BvYmcvuAvzsUh0vkV98Lg2WVvU1Mhto3DvfIR0xBoCKYKNkodmUR-5vj19PvGU6QwpPWfpxGqyK74XwO6dvpq51NkPVzxsZbH99uZ92EgcwxzWeZZ4UsKqtU0F6w0jPvYh50lNpqCJ29CkWMCkJyIZyDyET4KG1hbSyEyqNH0AMw_8sKvCIfkOWNrcn-h8t0T7VnrZAiwPdz3XYHslzK0RyBwln-Mscx41f8YRob8JdXSK5ufIfc7mJU-qZVqrtkKdT3yK0ryIX3yfFe47HIKMmVHtU0pB5CamtPpy2IbJpKQZtIERE5QwisDr-Z_oD8HDu2aCrCxZUvZ9-OLu_3--InVrq3Fbr1A3JwLUx9SAZ1U4dHhFrHy1jFGH103LJCe-l14JXyHtL6YIfkRc884zpMcxyt8dVAboOcNvNTg5w2wOkhWVsQT1soj3-TbaAUFiSIv50WmpPPpvudjQuVEqnVkufcqlJbUa3nJei3ZH49uiFZ7WVoOqMAT1io8Mr_Lz8jN0C3zfudye5jchNfrO1-XCWD2clZeAJh0Kx62ukbJZ-uW8X_AFsbICw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+in+energy+and+productivity+of+high-temperature+variable+pressure+humidification%E2%80%93compression&rft.jtitle=Water+science+%26+technology.+Water+supply&rft.au=Abedi%2C+Marzieh&rft.au=Younes+Ghalavand&rft.date=2021-11-01&rft.pub=IWA+Publishing&rft.issn=1606-9749&rft.eissn=1607-0798&rft.volume=21&rft.issue=7&rft.spage=3557&rft_id=info:doi/10.2166%2Fws.2021.120&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1606-9749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1606-9749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1606-9749&client=summon |