ActiveSelfHAR: Incorporating Self-Training Into Active Learning to Improve Cross-Subject Human Activity Recognition

Deep learning (DL)-based human activity recognition (HAR) methods have shown promise in the applications of health Internet of Things (IoT) and wireless body sensor networks (BSNs). However, adapting these methods to new users in real-world scenarios is challenging due to the cross-subject issue. To...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 11; no. 4; pp. 6833 - 6847
Main Authors Wei, Baichun, Yi, Chunzhi, Zhang, Qi, Zhu, Haiqi, Zhu, Jianfei, Jiang, Feng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning (DL)-based human activity recognition (HAR) methods have shown promise in the applications of health Internet of Things (IoT) and wireless body sensor networks (BSNs). However, adapting these methods to new users in real-world scenarios is challenging due to the cross-subject issue. To solve this issue, we propose ActiveSelfHAR, a framework that combines active learning's benefit of sparsely acquiring informative samples with actual labels and self-training's benefit of effectively utilizing unlabeled data to adapt the HAR model to the target domain, i.e., the new users. ActiveSelfHAR consists of several key steps. First, we utilize the model from the source domain to select and label the domain invariant samples, forming a self-training set. Second, we leverage the distribution information of the self-training set to identify and annotate samples located around the class boundaries, forming a core set. Third, we augment the core set by considering the spatiotemporal relationships among the samples in the nonself-training set. Finally, we combine the self-training set and augmented core set to construct a diverse training set in the target domain and fine-tune the HAR model. Through leave-one-subject-out validation on three IMU-based data sets and one EMG-based data set, our method achieves mean HAR accuracies of 95.20%, 82.06%, 89.52%, and 92.82%, respectively. Our method demonstrates similar HAR accuracies to the upper bound, i.e., fine-tuning framework with approximately 1% labeled data of the target data set, while significantly improving data efficiency and time cost. Our work highlights the potential of implementing user-independent HAR methods into health IoT and BSN.
AbstractList Deep learning (DL)-based human activity recognition (HAR) methods have shown promise in the applications of health Internet of Things (IoT) and wireless body sensor networks (BSNs). However, adapting these methods to new users in real-world scenarios is challenging due to the cross-subject issue. To solve this issue, we propose ActiveSelfHAR, a framework that combines active learning’s benefit of sparsely acquiring informative samples with actual labels and self-training’s benefit of effectively utilizing unlabeled data to adapt the HAR model to the target domain, i.e., the new users. ActiveSelfHAR consists of several key steps. First, we utilize the model from the source domain to select and label the domain invariant samples, forming a self-training set. Second, we leverage the distribution information of the self-training set to identify and annotate samples located around the class boundaries, forming a core set. Third, we augment the core set by considering the spatiotemporal relationships among the samples in the nonself-training set. Finally, we combine the self-training set and augmented core set to construct a diverse training set in the target domain and fine-tune the HAR model. Through leave-one-subject-out validation on three IMU-based data sets and one EMG-based data set, our method achieves mean HAR accuracies of 95.20%, 82.06%, 89.52%, and 92.82%, respectively. Our method demonstrates similar HAR accuracies to the upper bound, i.e., fine-tuning framework with approximately 1% labeled data of the target data set, while significantly improving data efficiency and time cost. Our work highlights the potential of implementing user-independent HAR methods into health IoT and BSN.
Author Wei, Baichun
Yi, Chunzhi
Zhu, Jianfei
Zhang, Qi
Jiang, Feng
Zhu, Haiqi
Author_xml – sequence: 1
  givenname: Baichun
  orcidid: 0000-0002-2407-3410
  surname: Wei
  fullname: Wei, Baichun
  organization: Faculty of Computing, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Chunzhi
  orcidid: 0000-0002-4180-1109
  surname: Yi
  fullname: Yi, Chunzhi
  organization: School of Medicine and Health, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Qi
  orcidid: 0000-0002-9119-9523
  surname: Zhang
  fullname: Zhang, Qi
  organization: Faculty of Computing, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Haiqi
  orcidid: 0000-0002-5076-2412
  surname: Zhu
  fullname: Zhu, Haiqi
  organization: Faculty of Computing, Harbin Institute of Technology, Harbin, China
– sequence: 5
  givenname: Jianfei
  surname: Zhu
  fullname: Zhu, Jianfei
  organization: Faculty of Computing, Harbin Institute of Technology, Harbin, China
– sequence: 6
  givenname: Feng
  orcidid: 0000-0001-8342-1211
  surname: Jiang
  fullname: Jiang, Feng
  email: fjiang@hit.edu.cn
  organization: Faculty of Computing and the School of Medicine and Health, Harbin Institute of Technology, Harbin, China
BookMark eNp9kM1LwzAYxoNMcM79AYKHgufOfDVtvI2hrjIYbPMc0jQZGVsy00zYf29rPQwPnvLm4Xnej98tGDjvNAD3CE4QgvzpvVxuJhhiMiEEUZTBKzDEBOcpZQwPLuobMG6aHYSwjWWIsyFopiraL73WezOfrp6T0ikfjj7IaN026eR0E6R13a900Se9P1loGX7EVioPx-BbbRZ806TrU7XTKibz00G63m7jOVlp5bfORuvdHbg2ct_o8e87Ah-vL5vZPF0s38rZdJEqzGlMVY0qampKDIaFqijMGMpyLnnFas5ygyVUUtK8wJLVpsgo4djkqMJ1IQnODBmBx75vu97nSTdR7PwpuHakwBwTRBgtWOtCvUt16wdtxDHYgwxngaDo8IoOr-jwil-8bSb_k1E2yu622MLa_5t86JNWa30xCdMcZ4R8A4fGijk
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_JIOT_2024_3394050
crossref_primary_10_1007_s11036_024_02306_y
Cites_doi 10.1145/3542820
10.1109/TNSRE.2019.2896269
10.1145/3214269
10.1109/TPAMI.2022.3183112
10.1109/TBME.2003.813539
10.1109/TNSRE.2020.2966749
10.1145/3534589
10.1109/JIOT.2022.3140465
10.1145/3448112
10.1093/comjnl/bxt075
10.1109/TNSRE.2018.2796070
10.1016/j.pmrj.2018.06.013
10.1007/s00779-020-01397-0
10.1016/j.neucom.2019.06.081
10.1007/s00779-022-01688-8
10.1109/JIOT.2020.3033430
10.1109/ISWC.2012.13
10.1109/CVPR.2018.00392
10.1109/JSEN.2023.3267490
10.1109/ACCESS.2020.2979074
10.1109/TMC.2021.3071434
10.3390/s22041476
10.3389/fnbot.2021.704226
10.3390/s19010057
10.1038/s41587-019-0045-y
10.1007/s11390-020-9487-4
10.1016/j.jii.2020.100129
10.1109/tits.2023.3239114
10.3389/frobt.2018.00078
10.1016/j.knosys.2023.110867
10.1145/3328932
10.1007/s12652-022-03768-2
10.1016/j.eswa.2023.119679
10.1109/JIOT.2019.2948888
10.1016/j.neucom.2020.10.056
10.1109/JIOT.2019.2911669
10.1016/j.ins.2015.04.003
10.1109/THMS.2020.3039196
10.3389/fnbot.2016.00009
10.1109/wacv56688.2023.00565
10.1109/TMC.2018.2789890
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2023.3314150
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 6847
ExternalDocumentID 10_1109_JIOT_2023_3314150
10247253
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62076080
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-cd1b4fd43f208cb40561579a9b6d967f2a0caa4782a6df854392f71b2d8a325f3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 14:33:03 EDT 2025
Tue Jul 01 00:37:59 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Wed Aug 27 02:12:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-cd1b4fd43f208cb40561579a9b6d967f2a0caa4782a6df854392f71b2d8a325f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5076-2412
0000-0002-4180-1109
0000-0002-2407-3410
0000-0001-8342-1211
0000-0002-9119-9523
PQID 2923136486
PQPubID 2040421
PageCount 15
ParticipantIDs proquest_journals_2923136486
crossref_primary_10_1109_JIOT_2023_3314150
ieee_primary_10247253
crossref_citationtrail_10_1109_JIOT_2023_3314150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
Anguita (ref40); 3
ref30
ref33
ref10
ref32
ref2
ref1
Fallahzadeh (ref11)
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Sener (ref35) 2017
References_xml – ident: ref18
  doi: 10.1145/3542820
– ident: ref29
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref23
  doi: 10.1145/3214269
– ident: ref25
  doi: 10.1109/TPAMI.2022.3183112
– ident: ref42
  doi: 10.1109/TBME.2003.813539
– ident: ref30
  doi: 10.1109/TNSRE.2020.2966749
– year: 2017
  ident: ref35
  article-title: Active learning for convolutional neural networks: A core-set approach
  publication-title: arXiv:1708.00489
– ident: ref19
  doi: 10.1145/3534589
– ident: ref28
  doi: 10.1109/JIOT.2022.3140465
– ident: ref32
  doi: 10.1145/3448112
– ident: ref38
  doi: 10.1093/comjnl/bxt075
– ident: ref41
  doi: 10.1109/TNSRE.2018.2796070
– ident: ref6
  doi: 10.1016/j.pmrj.2018.06.013
– ident: ref9
  doi: 10.1007/s00779-020-01397-0
– ident: ref10
  doi: 10.1016/j.neucom.2019.06.081
– ident: ref21
  doi: 10.1007/s00779-022-01688-8
– ident: ref13
  doi: 10.1109/JIOT.2020.3033430
– ident: ref39
  doi: 10.1109/ISWC.2012.13
– ident: ref43
  doi: 10.1109/CVPR.2018.00392
– ident: ref37
  doi: 10.1109/JSEN.2023.3267490
– volume: 3
  start-page: 3
  volume-title: Proc. Esann
  ident: ref40
  article-title: A public domain dataset for human activity recognition using smartphones
– ident: ref12
  doi: 10.1109/ACCESS.2020.2979074
– ident: ref17
  doi: 10.1109/TMC.2021.3071434
– ident: ref7
  doi: 10.3390/s22041476
– ident: ref14
  doi: 10.3389/fnbot.2021.704226
– ident: ref16
  doi: 10.3390/s19010057
– ident: ref5
  doi: 10.1038/s41587-019-0045-y
– ident: ref22
  doi: 10.1007/s11390-020-9487-4
– ident: ref4
  doi: 10.1016/j.jii.2020.100129
– ident: ref3
  doi: 10.1109/tits.2023.3239114
– start-page: 293
  volume-title: Proc. 8th Int. Conf. Cyber-Phys. Syst.
  ident: ref11
  article-title: Personalization without user interruption: Boosting activity recognition in new subjects using unlabeled data
– ident: ref15
  doi: 10.3389/frobt.2018.00078
– ident: ref27
  doi: 10.1016/j.knosys.2023.110867
– ident: ref36
  doi: 10.1145/3328932
– ident: ref24
  doi: 10.1007/s12652-022-03768-2
– ident: ref31
  doi: 10.1016/j.eswa.2023.119679
– ident: ref1
  doi: 10.1109/JIOT.2019.2948888
– ident: ref8
  doi: 10.1016/j.neucom.2020.10.056
– ident: ref2
  doi: 10.1109/JIOT.2019.2911669
– ident: ref33
  doi: 10.1016/j.ins.2015.04.003
– ident: ref20
  doi: 10.1109/THMS.2020.3039196
– ident: ref26
  doi: 10.3389/fnbot.2016.00009
– ident: ref34
  doi: 10.1109/wacv56688.2023.00565
– ident: ref44
  doi: 10.1109/TMC.2018.2789890
SSID ssj0001105196
Score 2.3241127
Snippet Deep learning (DL)-based human activity recognition (HAR) methods have shown promise in the applications of health Internet of Things (IoT) and wireless body...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6833
SubjectTerms Active learning
Adaptation models
Body area networks
Correlation
Costs
Cross-subject adaptation
Data models
Datasets
Deep learning
deep learning (DL)
Human activity recognition
Internet of medical things
Internet of Things
Labeling
Labels
Machine learning
semi-supervised learning
Training
Upper bounds
wearable sensors
Wireless networks
Wireless sensor networks
Title ActiveSelfHAR: Incorporating Self-Training Into Active Learning to Improve Cross-Subject Human Activity Recognition
URI https://ieeexplore.ieee.org/document/10247253
https://www.proquest.com/docview/2923136486
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwvPIspLHpiQHBI_kpitqkClEkUqRWKLHMdmALWIpgu_nrPj8BSILXLOkaM7-757-A6hEwN6gwkjCCgnRkAoOJGlLQmgV6VzyWPrXQPX43R4x0f34j5cVvd3YYwxPvnMRO7Rx_KruV46VxnscMozKtgqWgXLrbms9eFQSRwaSUPkMonl2ejqZhq59uARYwkoqviL7vHNVH6cwF6tXG6gcbugJpvkMVrWZaRfv9Vq_PeKN9F6AJi430jEFloxs2200TZvwGEv76BF3590t-bJDvuTc3zlClr6osagzLAbJtPQPgLe1XPc0ONQkPUBw1DjkTB44H6XwBnknDrYxwUacoD4eNKmKM1nXXR3eTEdDEnowEA0lbwmukpKbivOLI1zXXJnbohMKlmmlUwzS1WsleKAMlRa2VwAuqE2S0pa5YpRYdku6szmM7OHcM4AW4B1VlFuODdSMaGt1FxJbjPKdA_FLW8KHcqTuy4ZT4U3U2JZOHYWjp1FYGcPnb5PeW5qc_xF3HXs-UTYcKaHDlsJKML2XRTUwV6W8jzd_2XaAVqDr3OXv52IQ9SpX5bmCOBJXR57sXwDZnvhSw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOMCllJe6hbY-9ITkkPiRxNxWCLTLY5FgkbhFjmP3ULRbleylv56x41AeKuotcsaKoxn7-zwezwB8t4gbXFpJEZw4RaMQVNWupshetSmVSF1wDVxO8tGtOLuTd_GyergLY60NwWc28Y_hLL-Zm4V3leEMZ6Jgki_DKgK_zLrrWn9dKpnnI3k8u8xSdXg2vpomvkB4wnmGUJW-QJ9QTuXNGhyA5XQDJv2QuniSn8mirRPz51W2xv8e80f4ECkmGXY2sQlLdrYFG335BhJn8zY8DMNad2Pv3Wh4fUTGPqVlSGuMcEZ8M53GAhL4rp2TTp7ElKw_CDZ1PglLjv3vUlyFvFuHhJOBThxJPrnug5Tmsx24PT2ZHo9orMFADVOipabJauEawR1LS1MLv-GQhdKqzhuVF47p1GgtkGfovHGlRH7DXJHVrCk1Z9LxXViZzWf2E5CSI7vA_VnDhBXCKs2lccoIrYQrGDcDSHvdVCYmKPd1Mu6rsFFJVeXVWXl1VlGdAzh46vKry87xnvCOV88zwU4zA9jvLaCKE_ihYp748lyU-ed_dPsGa6Pp5UV1MZ6c78E6fkn4aO5M7sNK-3thvyBZaeuvwUQfAUy45JQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ActiveSelfHAR%3A+Incorporating+Self-Training+Into+Active+Learning+to+Improve+Cross-Subject+Human+Activity+Recognition&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Wei%2C+Baichun&rft.au=Yi%2C+Chunzhi&rft.au=Zhang%2C+Qi&rft.au=Zhu%2C+Haiqi&rft.date=2024-02-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=11&rft.issue=4&rft.spage=6833&rft.epage=6847&rft_id=info:doi/10.1109%2FJIOT.2023.3314150&rft.externalDocID=10247253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon