Cross-modality Features Fusion for Synthetic Aperture Radar Image Segmentation

Synthetic Aperture Radar (SAR) image segmentation stands as a formidable research frontier within the domain of SAR image interpretation. The fully convolutional network (FCN) methods have recently brought remarkable improvements in SAR image segmentation. Nevertheless, these methods do not utilize...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors Gao, Fei, Huang, Heqing, Yue, Zhenyu, Li, Dongyu, Ge, Shuzhi Sam, Lee, Tong Heng, Zhou, Huiyu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthetic Aperture Radar (SAR) image segmentation stands as a formidable research frontier within the domain of SAR image interpretation. The fully convolutional network (FCN) methods have recently brought remarkable improvements in SAR image segmentation. Nevertheless, these methods do not utilize the peculiarities of SAR images, leading to suboptimal segmentation accuracy. To address this issue, we rethink SAR image segmentation in terms of sequential information of transformers and cross-modal features. We first discuss the peculiarities of SAR images and extract the mean and texture features utilized as auxiliary features. The extraction of auxiliary features helps unearth the distinctive information in the SAR images. Afterward, a feature-enhanced FCN with the transformer encoder structure, termed FE-FCN, which can be extracted to context-level and pixel-level features. In FE-FCN, the features of a single-mode encoder are aligned and inserted into the model to explore the potential correspondence between modes. We also employ long skip connections to share each modality's distinguishing and particular features. Finally, we present the connection-enhanced conditional random field (CE-CRF) to capture the connection information of the image pixels. Since the CE-CRF utilizes the auxiliary features to enhance the reliability of the connection information, the segmentation results of FE-FCN are further optimized. Comparative experiments conducted on the Fangchenggang (FCG), Pucheng (PC), and Gaofen (GF) SAR datasets. Our method demonstrates superior segmentation accuracy compared to other conventional image segmentation methods, as confirmed by the experimental results.
AbstractList Synthetic aperture radar (SAR) image segmentation stands as a formidable research frontier within the domain of SAR image interpretation. The fully convolutional network (FCN) methods have recently brought remarkable improvements in SAR image segmentation. Nevertheless, these methods do not utilize the peculiarities of SAR images, leading to suboptimal segmentation accuracy. To address this issue, we rethink SAR image segmentation in terms of sequential information of transformers and cross-modal features. We first discuss the peculiarities of SAR images and extract the mean and texture features utilized as auxiliary features. The extraction of auxiliary features helps unearth the distinctive information in the SAR images. Afterward, a feature-enhanced FCN with the transformer encoder structure, termed FE-FCN, can be extracted to context- and pixel-level features. In FE-FCN, the features of a single-mode encoder are aligned and inserted into the model to explore the potential correspondence between modes. We also employ long skip connections to share each modality’s distinguishing and particular features. Finally, we present the connection-enhanced conditional random field (CE-CRF) to capture the connection information of the image pixels. Since the CE-CRF utilizes the auxiliary features to enhance the reliability of the connection information, the segmentation results of FE-FCN are further optimized. Comparative experiments were conducted on the Fangchenggang (FCG), Pucheng (PC), and Gaofen (GF) SAR datasets. Our method demonstrates superior segmentation accuracy compared to other conventional image segmentation methods, as confirmed by the experimental results.
Synthetic Aperture Radar (SAR) image segmentation stands as a formidable research frontier within the domain of SAR image interpretation. The fully convolutional network (FCN) methods have recently brought remarkable improvements in SAR image segmentation. Nevertheless, these methods do not utilize the peculiarities of SAR images, leading to suboptimal segmentation accuracy. To address this issue, we rethink SAR image segmentation in terms of sequential information of transformers and cross-modal features. We first discuss the peculiarities of SAR images and extract the mean and texture features utilized as auxiliary features. The extraction of auxiliary features helps unearth the distinctive information in the SAR images. Afterward, a feature-enhanced FCN with the transformer encoder structure, termed FE-FCN, which can be extracted to context-level and pixel-level features. In FE-FCN, the features of a single-mode encoder are aligned and inserted into the model to explore the potential correspondence between modes. We also employ long skip connections to share each modality's distinguishing and particular features. Finally, we present the connection-enhanced conditional random field (CE-CRF) to capture the connection information of the image pixels. Since the CE-CRF utilizes the auxiliary features to enhance the reliability of the connection information, the segmentation results of FE-FCN are further optimized. Comparative experiments conducted on the Fangchenggang (FCG), Pucheng (PC), and Gaofen (GF) SAR datasets. Our method demonstrates superior segmentation accuracy compared to other conventional image segmentation methods, as confirmed by the experimental results.
Author Li, Dongyu
Gao, Fei
Huang, Heqing
Yue, Zhenyu
Lee, Tong Heng
Ge, Shuzhi Sam
Zhou, Huiyu
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0002-1489-0812
  surname: Gao
  fullname: Gao, Fei
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Heqing
  orcidid: 0000-0002-7080-3701
  surname: Huang
  fullname: Huang, Heqing
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Zhenyu
  orcidid: 0000-0002-9497-6164
  surname: Yue
  fullname: Yue, Zhenyu
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Dongyu
  orcidid: 0000-0001-8338-0536
  surname: Li
  fullname: Li, Dongyu
  organization: School of Cyber Science and Technology, Beihang University, Beijing, China
– sequence: 5
  givenname: Shuzhi Sam
  orcidid: 0000-0001-5549-312X
  surname: Ge
  fullname: Ge, Shuzhi Sam
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 6
  givenname: Tong Heng
  orcidid: 0000-0002-2785-516X
  surname: Lee
  fullname: Lee, Tong Heng
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 7
  givenname: Huiyu
  orcidid: 0000-0003-1634-9840
  surname: Zhou
  fullname: Zhou, Huiyu
  organization: Department of Informatics, University of Leicester, Leicester, U.K
BookMark eNpNkD1vwjAQhq2qlQq0P6BSB0udQ_0VJxkRKhQJtRKwW0d8oUEkprYz8O-bCIZON9zz3sczJveta5GQF86mnLPifbfcbKeCCTmVkmW5SO_IiKdpnjCt1D0ZMV7oROSFeCTjEI6McZXybES-5t6FkDTOwqmOF7pAiJ3HQBddqF1LK-fp9tLGH4x1SWdn9EObbsCCp6sGDki3eGiwjRB7_ok8VHAK-HyrE7JbfOzmn8n6e7maz9ZJKQoVkzKFQsEestyCtlKikFIzudcaMpalJYJQWqHIK1VygKwPFaq0XIG0trJyQt6uY8_e_XYYojm6zrf9RiNyLbRiKlU9xa9UOfzosTJnXzfgL4YzM1gzgzUzWDM3a33m9ZqpEfEfL0R_RCH_ADqjawo
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3376070
crossref_primary_10_3390_rs16020287
Cites_doi 10.1109/TPAMI.2016.2572683
10.1109/TIP.2019.2916757
10.1109/TMI.2019.2959609
10.1109/TPAMI.2016.2644615
10.24963/ijcai.2017/307
10.1016/j.patcog.2016.11.015
10.1109/CVPR.2017.660
10.1109/MGRS.2013.2248301
10.1109/CVPR.2019.01270
10.1109/TGRS.2022.3144165
10.1109/JSTARS.2015.2502991
10.1007/s12559-016-9405-9
10.1109/JSTARS.2021.3076085
10.1007/s12559-019-09639-x
10.1007/978-3-031-25066-8_9
10.1109/CVPR.2017.353
10.1609/aaai.v34i07.6805
10.1109/LGRS.2021.3079925
10.1109/TGRS.2022.3227260
10.1109/LGRS.2018.2864342
10.1109/TGRS.2021.3130716
10.1109/TGRS.2021.3095166
10.3390/rs5020716
10.1109/ICCV.2019.00069
10.3390/rs11010020
10.1109/TPAMI.2017.2699184
10.1109/CVPRW.2018.00035
10.1109/TGRS.2022.3231253
10.1109/LGRS.2014.2307586
10.1109/CVPR.2018.00745
10.1109/JSTARS.2020.3016064
10.1109/LGRS.2015.2478256
10.1109/ICCV.2017.324
10.1080/2150704X.2020.1730472
10.1109/CVPR.2017.549
10.1109/CVPR46437.2021.00681
10.1109/TGRS.2015.2501162
10.1109/IGARSS47720.2021.9553563
10.1109/TGRS.2012.2203604
10.1109/TIM.2022.3178991
10.1007/978-3-030-87193-2_2
10.1109/LGRS.2018.2795531
10.1109/LGRS.2021.3058049
10.1109/ICIVC.2016.7571265
10.1109/LGRS.2018.2886559
10.1109/TGRS.2022.3221492
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3307825
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3307825
10227299
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61071139; 61771027
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
Y6R
5VS
AAYOK
AAYXX
AETIX
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-c5a94aba78da6d33e233603b66a7075cea2464e28f4c1aa729494cd14a3ddfd3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Oct 10 20:31:55 EDT 2024
Fri Aug 23 02:59:02 EDT 2024
Mon Nov 04 12:04:07 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-c5a94aba78da6d33e233603b66a7075cea2464e28f4c1aa729494cd14a3ddfd3
ORCID 0000-0002-2785-516X
0000-0002-9497-6164
0000-0002-7080-3701
0000-0003-1634-9840
0000-0002-1489-0812
0000-0001-5549-312X
0000-0001-8338-0536
PQID 2862640454
PQPubID 85465
PageCount 1
ParticipantIDs proquest_journals_2862640454
ieee_primary_10227299
crossref_primary_10_1109_TGRS_2023_3307825
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
dosovitskiy (ref44) 2020
qin (ref7) 2014; 11
ref17
ref16
ref19
ref18
ref51
ref50
guo (ref52) 2022
ref46
ref48
ref47
ref42
ref43
ref49
ref8
ref9
ronneberger (ref28) 2015
ref4
ref3
ref6
ref5
ref40
ref35
ref34
vaswani (ref24) 2017; 30
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
xu (ref53) 2022
ref23
ref26
ref25
ref20
chen (ref41) 2021
ref22
ref21
ref27
ref29
xie (ref45) 2021; 34
References_xml – ident: ref12
  doi: 10.1109/TPAMI.2016.2572683
– year: 2020
  ident: ref44
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv 2010 11929
  contributor:
    fullname: dosovitskiy
– ident: ref35
  doi: 10.1109/TIP.2019.2916757
– ident: ref18
  doi: 10.1109/TMI.2019.2959609
– year: 2021
  ident: ref41
  article-title: TransUNet: Transformers make strong encoders for medical image segmentation
  publication-title: arXiv 2102 04306
  contributor:
    fullname: chen
– ident: ref27
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref36
  doi: 10.24963/ijcai.2017/307
– ident: ref5
  doi: 10.1016/j.patcog.2016.11.015
– year: 2022
  ident: ref52
  article-title: SegNeXt: Rethinking convolutional attention design for semantic segmentation
  publication-title: arXiv 2209 08575
  contributor:
    fullname: guo
– ident: ref21
  doi: 10.1109/CVPR.2017.660
– ident: ref1
  doi: 10.1109/MGRS.2013.2248301
– ident: ref15
  doi: 10.1109/CVPR.2019.01270
– ident: ref48
  doi: 10.1109/TGRS.2022.3144165
– ident: ref8
  doi: 10.1109/JSTARS.2015.2502991
– ident: ref6
  doi: 10.1007/s12559-016-9405-9
– ident: ref33
  doi: 10.1109/JSTARS.2021.3076085
– ident: ref4
  doi: 10.1007/s12559-019-09639-x
– ident: ref39
  doi: 10.1007/978-3-031-25066-8_9
– ident: ref30
  doi: 10.1109/CVPR.2017.353
– start-page: 234
  year: 2015
  ident: ref28
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
  contributor:
    fullname: ronneberger
– ident: ref29
  doi: 10.1609/aaai.v34i07.6805
– ident: ref34
  doi: 10.1109/LGRS.2021.3079925
– ident: ref11
  doi: 10.1109/TGRS.2022.3227260
– ident: ref17
  doi: 10.1109/LGRS.2018.2864342
– year: 2022
  ident: ref53
  article-title: PIDNet: A real-time semantic segmentation network inspired by PID controllers
  publication-title: arXiv 2206 02066
  contributor:
    fullname: xu
– volume: 34
  start-page: 12077
  year: 2021
  ident: ref45
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: xie
– ident: ref49
  doi: 10.1109/TGRS.2021.3130716
– ident: ref47
  doi: 10.1109/TGRS.2021.3095166
– ident: ref2
  doi: 10.3390/rs5020716
– ident: ref22
  doi: 10.1109/ICCV.2019.00069
– ident: ref19
  doi: 10.3390/rs11010020
– ident: ref20
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref14
  doi: 10.1109/CVPRW.2018.00035
– ident: ref3
  doi: 10.1109/TGRS.2022.3231253
– volume: 11
  start-page: 1742
  year: 2014
  ident: ref7
  article-title: SAR image segmentation via hierarchical region merging and edge evolving with generalized gamma distribution
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2307586
  contributor:
    fullname: qin
– ident: ref37
  doi: 10.1109/CVPR.2018.00745
– ident: ref32
  doi: 10.1109/JSTARS.2020.3016064
– ident: ref50
  doi: 10.1109/LGRS.2015.2478256
– ident: ref38
  doi: 10.1109/ICCV.2017.324
– ident: ref10
  doi: 10.1080/2150704X.2020.1730472
– ident: ref23
  doi: 10.1109/CVPR.2017.549
– ident: ref43
  doi: 10.1109/CVPR46437.2021.00681
– ident: ref51
  doi: 10.1109/TGRS.2015.2501162
– ident: ref26
  doi: 10.1109/IGARSS47720.2021.9553563
– ident: ref9
  doi: 10.1109/TGRS.2012.2203604
– ident: ref40
  doi: 10.1109/TIM.2022.3178991
– ident: ref42
  doi: 10.1007/978-3-030-87193-2_2
– ident: ref13
  doi: 10.1109/LGRS.2018.2795531
– ident: ref31
  doi: 10.1109/LGRS.2021.3058049
– ident: ref25
  doi: 10.1109/ICIVC.2016.7571265
– volume: 30
  start-page: 1
  year: 2017
  ident: ref24
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: vaswani
– ident: ref16
  doi: 10.1109/LGRS.2018.2886559
– ident: ref46
  doi: 10.1109/TGRS.2022.3221492
SSID ssj0014517
Score 2.4717805
Snippet Synthetic Aperture Radar (SAR) image segmentation stands as a formidable research frontier within the domain of SAR image interpretation. The fully...
Synthetic aperture radar (SAR) image segmentation stands as a formidable research frontier within the domain of SAR image interpretation. The fully...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Accuracy
Coders
conditional random field
Conditional random fields
Context modeling
Convolutional neural networks
cross-modality features
Data mining
Feature extraction
fully convolutional network
Image enhancement
Image processing
Image segmentation
Pixels
Radar
Radar imaging
Radar polarimetry
SAR (radar)
Synthetic aperture radar
Transformers
Title Cross-modality Features Fusion for Synthetic Aperture Radar Image Segmentation
URI https://ieeexplore.ieee.org/document/10227299
https://www.proquest.com/docview/2862640454
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBJSN1t0u7mKOL6APfgruCtTJPUg2xX1u1Bf70zaVd8IHgrNAnTTJr5vswjACe9QnMZ70KSdUGpE9OTaNFJQtpeYRwXCbJH926QXj_o28fksUlWD7kw3vsQfOYjfgy-fDexFR-VnTE7ITBoFmGxa0ydrPXpMtBJp8mNTiWxiLhxYXba5mx0dT-M-J7wiNg7mcTkmxEKt6r82oqDfemvw2AuWR1W8hxVszyy7z-KNv5b9A1Ya5CmOK-XxiYs-HILVr_UH9yC5RD_aV-3YXDBgsrxxAVcLhgZVsTERb_i4zRB0FYM30pCizSaOH_xU34t7tHhVNyMaVMSQ_80bhKZyh0Y9S9HF9eyuWpB2tjombQJGo05dnsOU6eUj5VK2ypPU-wSqLAeY51qH5NqbQeRvkQbbV1Ho3KucGoXlspJ6fdAdL3LiZUVpk1tfcF1b5PcYorETXreqBaczqc-e6kLamSBiLRNxnrKWE9Zo6cW7PBUfmlYz2ILDufaypp_7jWLmZxpLim4_0e3A1jh0esTlENYmk0rf0SYYpYfh7X0AZiNyAo
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5iTNO2AxsMtA7YfOA0yaGNHTc-IkQpDHqgncQterEdDqgpKs1h--v3npNOsGnSbpHiJLaf4_d9fr8AjvJKcxrvSpJ2Qakzm0t06CUh7aAwTasM2aJ7PTHj7_ryNrvtgtVjLEwIITqfhYQvoy3fL1zDR2XHzE4IDNoX8JKAdW7acK3fRgOdDbroaCOJR6SdEXPQt8ez85tpwpXCE-LvpBSzZ2oo1lX5azOOGmb0DibrvrWOJfdJsyoT9_OPtI3_3fn3sNVhTXHSLo5t2Aj1Drx9koFwB15FD1D3-AEmp9xROV_4iMwFY8OGuLgYNXygJgjciumPmvAivU2cPIQl3xY36HEpLua0LYlpuJt3oUz1LsxGZ7PTseyKLUiXWr2SLkOrscRh7tF4pUKqlOmr0hgcEqxwAVNtdEhJuG6ASCPRVjs_0Ki8r7zag816UYePIIbBl8TLKtuntqHizLdZ6dAgsZM8WNWDr-upLx7alBpFpCJ9W7CcCpZT0cmpB7s8lU8atrPYg4O1tIrur3ssUqZnmpMKfvrHY1_g9Xh2fVVcXUy-7cMb_lJ7nnIAm6tlEw4JYazKz3Fd_QI6MctV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Modality+Features+Fusion+for+Synthetic+Aperture+Radar+Image+Segmentation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Gao%2C+Fei&rft.au=Huang%2C+Heqing&rft.au=Yue%2C+Zhenyu&rft.au=Li%2C+Dongyu&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3307825&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon