A Thermal Displacement Prediction System with an Automatic LRGTVAC-PSO Optimized Branch Structured Bidirectional GRU Neural Network

Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurate...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 12; p. 1
Main Authors Kuo, Ping-Huan, Chen, Yen-Wen, Hsieh, Tung-Hsien, Jywe, Wen-Yuh, Yau, Her-Terng
Format Journal Article
LanguageEnglish
Published New York IEEE 15.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurately correcting such errors is difficult or even impossible using traditional machining methods. This paper proposes a machine learning method for high-accuracy error prediction that nonprofessionals can easily implement. An optimized automatic Logistic Random Generator Time Varying Acceleration Coefficient Particle Swarm Optimization (LRGTVAC-PSO) method is proposed to optimize a branch structured bidirectional Gated Recurrent Unit (GRU) neural network. The accuracy of the proposed method (with a three-axis average of 0.945) is superior to that of the other optimized algorithms evaluated in this study. The method serves as a means not only of accurately predicting thermal displacement but also of autotuning the hyperparameters of machine learning algorithms.
AbstractList Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurately correcting such errors is difficult or even impossible using traditional machining methods. This paper proposes a machine learning method for high-accuracy error prediction that nonprofessionals can easily implement. An optimized automatic Logistic Random Generator Time Varying Acceleration Coefficient Particle Swarm Optimization (LRGTVAC-PSO) method is proposed to optimize a branch structured bidirectional Gated Recurrent Unit (GRU) neural network. The accuracy of the proposed method (with a three-axis average of 0.945) is superior to that of the other optimized algorithms evaluated in this study. The method serves as a means not only of accurately predicting thermal displacement but also of autotuning the hyperparameters of machine learning algorithms.
Considering technology’s rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurately correcting such errors is difficult or even impossible using traditional machining methods. This article proposes a machine learning method for high-accuracy error prediction that nonprofessionals can easily implement. An optimized automatic logistic random generator time-varying acceleration coefficient particle swarm optimization (LRGTVAC-PSO) method is proposed to optimize a branch structured bidirectional gated recurrent unit (GRU) neural network. The accuracy of the proposed method (with a three-axis average of 0.945) is superior to that of the other optimized algorithms evaluated in this study. The method serves as a means not only of accurately predicting thermal displacement but also of autotuning the hyperparameters of machine learning algorithms.
Author Yau, Her-Terng
Chen, Yen-Wen
Jywe, Wen-Yuh
Kuo, Ping-Huan
Hsieh, Tung-Hsien
Author_xml – sequence: 1
  givenname: Ping-Huan
  orcidid: 0000-0001-5125-4420
  surname: Kuo
  fullname: Kuo, Ping-Huan
– sequence: 2
  givenname: Yen-Wen
  surname: Chen
  fullname: Chen, Yen-Wen
– sequence: 3
  givenname: Tung-Hsien
  surname: Hsieh
  fullname: Hsieh, Tung-Hsien
– sequence: 4
  givenname: Wen-Yuh
  surname: Jywe
  fullname: Jywe, Wen-Yuh
– sequence: 5
  givenname: Her-Terng
  orcidid: 0000-0002-1187-1771
  surname: Yau
  fullname: Yau, Her-Terng
BookMark eNp9kM1OwzAQhC0EEr8PgMTBEucU20mc5BgKFFDVVk2LuEWOvVENTVJsRwiuvDgJ7QFx4LSj1czu6DtG-3VTA0LnlAwoJcnVY3Y7GTDC_IHPeEJ4sIeOaBjGHo2CeL_XPvECP3o-RMfWvhBCkyiMjtBXihcrMJVY4xttN2shoYLa4ZkBpaXTTY2zD-ugwu_arbCocdq6phJOSzyejxZP6dCbZVM83Thd6U9Q-NqIWq5w5kwrXWv6jVbawM-x7s1ovsQTaE0nJ-DeG_N6ig5KsbZwtpsnaHl3uxjee-Pp6GGYjj3JksB5RalUyWOm4oIyEgQF55GIFSMCQLCC8oIzJpOwCKOolKwgMvSVVARKFpdAqX-CLrd3N6Z5a8G6_KVpTdfJ5ixmIScsSYLOFW1d0jTWGihzqZ3oyzsj9DqnJO-J5z3xvCee74h3SfonuTG6Eubj38zFNqMB4Je_c_Mg9L8B5waP4Q
CODEN ISJEAZ
CitedBy_id crossref_primary_10_2298_TSCI2403033S
crossref_primary_10_1109_ACCESS_2025_3540434
crossref_primary_10_3390_s24082531
crossref_primary_10_1177_14613484231185490
crossref_primary_10_2298_TSCI2403125S
crossref_primary_10_1142_S0218348X24500221
crossref_primary_10_2298_TSCI2403143Y
crossref_primary_10_1177_14613484241247450
crossref_primary_10_2298_TSCI2403983S
crossref_primary_10_2298_TSCI2403135Y
crossref_primary_10_2298_TSCI2403999Z
crossref_primary_10_1016_j_aei_2024_103005
crossref_primary_10_1142_S0218348X24500543
crossref_primary_10_2298_TSCI2403975Q
crossref_primary_10_3389_fphy_2023_1238901
crossref_primary_10_2298_TSCI2403051B
crossref_primary_10_1142_S0218348X23501141
Cites_doi 10.1016/s0890-6955(00)00010-9
10.1109/ibdap52511.2021.9552082
10.1109/tr.2019.2930195
10.1109/icsem.2010.103
10.1016/j.mechatronics.2014.12.004
10.1109/ICAMechS49982.2020.9310157
10.1016/j.ijmachtools.2019.103468
10.1016/j.cirp.2012.05.008
10.1016/j.enconman.2016.09.085
10.1109/sges51519.2020.00169
10.1109/icsens.2016.7808975
10.3390/machines9090184
10.1007/s00170-016-8593-5
10.3390/app11125444
10.1109/ssps.2017.8071631
10.1109/lsp.2014.2313570
10.1016/j.jmsy.2020.10.008
10.1007/s00170-019-03665-7
10.1016/j.asoc.2021.107094
10.1109/jsen.2019.2933347
10.17775/cseejpes.2020.04780
10.1109/icict43934.2018.9034296
10.1109/icamse.2016.7840292
10.1007/s00170-022-09260-7
10.1109/access.2020.3009537
10.1007/s00170-016-9254-4
10.1007/s40436-020-00342-x
10.1016/j.measurement.2021.109287
10.1109/icma.2012.6285706
10.1109/iciase45644.2019.9074094
10.1109/ictc46691.2019.8939729
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3269064
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3269064
10109645
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-bfddf682d8b12044b667a8d20aeea2b16b622c95b577fc2b0c53dcd0ef28fe113
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 09:58:44 EDT 2025
Tue Jul 01 04:27:08 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Wed Aug 27 02:56:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-bfddf682d8b12044b667a8d20aeea2b16b622c95b577fc2b0c53dcd0ef28fe113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5125-4420
0000-0002-1187-1771
0009-0009-0661-4429
PQID 2825602994
PQPubID 75733
PageCount 1
ParticipantIDs crossref_primary_10_1109_JSEN_2023_3269064
crossref_citationtrail_10_1109_JSEN_2023_3269064
ieee_primary_10109645
proquest_journals_2825602994
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1016/s0890-6955(00)00010-9
– ident: ref30
  doi: 10.1109/ibdap52511.2021.9552082
– ident: ref7
  doi: 10.1109/tr.2019.2930195
– ident: ref10
  doi: 10.1109/icsem.2010.103
– ident: ref28
  doi: 10.1016/j.mechatronics.2014.12.004
– ident: ref27
  doi: 10.1109/ICAMechS49982.2020.9310157
– ident: ref4
  doi: 10.1016/j.ijmachtools.2019.103468
– ident: ref1
  doi: 10.1016/j.cirp.2012.05.008
– ident: ref29
  doi: 10.1016/j.enconman.2016.09.085
– ident: ref20
  doi: 10.1109/sges51519.2020.00169
– ident: ref9
  doi: 10.1109/icsens.2016.7808975
– ident: ref15
  doi: 10.3390/machines9090184
– ident: ref3
  doi: 10.1007/s00170-016-8593-5
– ident: ref14
  doi: 10.3390/app11125444
– ident: ref31
  doi: 10.1109/ssps.2017.8071631
– ident: ref23
  doi: 10.1109/lsp.2014.2313570
– ident: ref17
  doi: 10.1016/j.jmsy.2020.10.008
– ident: ref12
  doi: 10.1007/s00170-019-03665-7
– ident: ref13
  doi: 10.1016/j.asoc.2021.107094
– ident: ref8
  doi: 10.1109/jsen.2019.2933347
– ident: ref26
  doi: 10.17775/cseejpes.2020.04780
– ident: ref24
  doi: 10.1109/icict43934.2018.9034296
– ident: ref6
  doi: 10.1109/icamse.2016.7840292
– ident: ref19
  doi: 10.1007/s00170-022-09260-7
– ident: ref21
  doi: 10.1109/access.2020.3009537
– ident: ref18
  doi: 10.1007/s00170-016-9254-4
– ident: ref16
  doi: 10.1007/s40436-020-00342-x
– ident: ref22
  doi: 10.1016/j.measurement.2021.109287
– ident: ref5
  doi: 10.1109/icma.2012.6285706
– ident: ref11
  doi: 10.1109/iciase45644.2019.9074094
– ident: ref25
  doi: 10.1109/ictc46691.2019.8939729
SSID ssj0019757
Score 2.4824235
Snippet Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national...
Considering technology’s rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Auto Optimization
CNC machine tools
Data models
Errors
GRU
LSTM
Machine learning
Machine learning algorithms
Machine tools
Machining
Manufacturing
Neural networks
Particle swarm optimization
Prediction algorithms
Production methods
PSO
Temperature measurement
Temperature sensors
Thermal displacement
Title A Thermal Displacement Prediction System with an Automatic LRGTVAC-PSO Optimized Branch Structured Bidirectional GRU Neural Network
URI https://ieeexplore.ieee.org/document/10109645
https://www.proquest.com/docview/2825602994
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BF-ihD6AiLa186KmSF9vr9e4eU8pDiAZECMpt5aeISpMKkkO59o_X490gaNWqN2tlW9bOeGY8j28APijpdRllP611pajUjtPKc0urwtgQnKkLj37ILwN1PJIn42LcFaunWhjvfUo-8xkOUyzfzewCXWXxhvNocctiFVbjy60t1noIGdRlgvWMN5hRmZfjLoQZV-ydDA8GGfYJz6KxUjMlnyih1FXlD1Gc9MvhCxgsT9amlXzNFnOT2fvfQBv_--gv4XlnaZJ-yxqvYMVPN-HZI_zBTVjvWqBf_9iCn30SWSaK6RvyeXKXUrVwS3J-i6EcJB9p0c0Jum6JnpL-Yj5LgK_k9OLo8qq_T8-HZ-QsyqBvk3vvyCfs2XFNhgmhdnGLXyatBk3uR3J0MSKIDRKHgzYZfRtGhweX-8e069BArajlnJrgXFCVcJXhgklplCp15QTT3mthuDJKCFsXpijLYIVhtsiddcwHUQXPef4a1qazqd8BEqJpFYLSRuhcMivrkjnLpTaOaa1Y3gO2JFljO_hy7KJx06RnDKsbpHKDVG46Kvfg48OS7y12x78mbyPVHk1sCdaD3SVjNN31vmuw4FexqMnlm78sewsbuDsmlfFiF9bir_bvovkyN-8T2_4CuIvsoA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6Vcig9UChFDRTwAS5Iu9her3f3wCH0lbZpWjUJym3xU40oCWoSofba38Ff4bdhezdRAcGtEjdrZe9j9vN4PDP-BuA1Z0ZkTvdHhch5xIQmUW6IivJUKmu1LFLj_ZDHHd7qs8NBOliC74uzMMaYkHxmYt8MsXw9VjPvKnMznDiLm81zKI_M1Te3Q5u8P9hxv_MNpXu7ve1WVBcRiBQt2DSSVmvLc6pzSShmTHKeiVxTLIwRVBIuOaWqSGWaZVZRiVWaaKWxsTS3hpDE3fce3HeGRkqr42GLIEWRBSJRpzNwxJJsUAdN3Tu-O-zudmJfmTx25lGBOftl2Qt1XP5Q_mFF21uDH3NZVIksn-PZVMbq-jeayP9WWI_gYW1Lo2YF_sewZEbrsHqLYXEdVuoi7-dXT-CmidykcAvRBdoZTkIymv8EdHrpg1UeoKjib0feOY3ECDVn03GgtEXts_3ex-Z2dNo9QSdOy34ZXhuNPviqJOeoGzh4Z5f-yrCyEYKDFe2f9ZFnP3HNTpVuvwH9O5HIU1gejUdmE5B1xqO1XEgqEoYVKzKsFWFCaiwEx0kD8BwipaoJ2n2dkIsybNRwUXpUlR5VZY2qBrxdDPlasZP8q_OGR8mtjhVAGrA1B2JZK7BJ6Y80c-xsFfbsL8NewUqrd9wu2wedo-fwwD_Jp9CRdAuWndjNC2esTeXLMGUQfLpr2P0EdCpMdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Thermal+Displacement+Prediction+System+With+an+Automatic+LRGTVAC-PSO+Optimized+Branch+Structured+Bidirectional+GRU+Neural+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Ping-Huan+Kuo&rft.au=Yen-Wen%2C+Chen&rft.au=Tung-Hsien+Hsieh&rft.au=Wen-Yuh+Jywe&rft.date=2023-06-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=12&rft.spage=12574&rft_id=info:doi/10.1109%2FJSEN.2023.3269064&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon