A Thermal Displacement Prediction System with an Automatic LRGTVAC-PSO Optimized Branch Structured Bidirectional GRU Neural Network
Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurate...
Saved in:
Published in | IEEE sensors journal Vol. 23; no. 12; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurately correcting such errors is difficult or even impossible using traditional machining methods. This paper proposes a machine learning method for high-accuracy error prediction that nonprofessionals can easily implement. An optimized automatic Logistic Random Generator Time Varying Acceleration Coefficient Particle Swarm Optimization (LRGTVAC-PSO) method is proposed to optimize a branch structured bidirectional Gated Recurrent Unit (GRU) neural network. The accuracy of the proposed method (with a three-axis average of 0.945) is superior to that of the other optimized algorithms evaluated in this study. The method serves as a means not only of accurately predicting thermal displacement but also of autotuning the hyperparameters of machine learning algorithms. |
---|---|
AbstractList | Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurately correcting such errors is difficult or even impossible using traditional machining methods. This paper proposes a machine learning method for high-accuracy error prediction that nonprofessionals can easily implement. An optimized automatic Logistic Random Generator Time Varying Acceleration Coefficient Particle Swarm Optimization (LRGTVAC-PSO) method is proposed to optimize a branch structured bidirectional Gated Recurrent Unit (GRU) neural network. The accuracy of the proposed method (with a three-axis average of 0.945) is superior to that of the other optimized algorithms evaluated in this study. The method serves as a means not only of accurately predicting thermal displacement but also of autotuning the hyperparameters of machine learning algorithms. Considering technology’s rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurately correcting such errors is difficult or even impossible using traditional machining methods. This article proposes a machine learning method for high-accuracy error prediction that nonprofessionals can easily implement. An optimized automatic logistic random generator time-varying acceleration coefficient particle swarm optimization (LRGTVAC-PSO) method is proposed to optimize a branch structured bidirectional gated recurrent unit (GRU) neural network. The accuracy of the proposed method (with a three-axis average of 0.945) is superior to that of the other optimized algorithms evaluated in this study. The method serves as a means not only of accurately predicting thermal displacement but also of autotuning the hyperparameters of machine learning algorithms. |
Author | Yau, Her-Terng Chen, Yen-Wen Jywe, Wen-Yuh Kuo, Ping-Huan Hsieh, Tung-Hsien |
Author_xml | – sequence: 1 givenname: Ping-Huan orcidid: 0000-0001-5125-4420 surname: Kuo fullname: Kuo, Ping-Huan – sequence: 2 givenname: Yen-Wen surname: Chen fullname: Chen, Yen-Wen – sequence: 3 givenname: Tung-Hsien surname: Hsieh fullname: Hsieh, Tung-Hsien – sequence: 4 givenname: Wen-Yuh surname: Jywe fullname: Jywe, Wen-Yuh – sequence: 5 givenname: Her-Terng orcidid: 0000-0002-1187-1771 surname: Yau fullname: Yau, Her-Terng |
BookMark | eNp9kM1OwzAQhC0EEr8PgMTBEucU20mc5BgKFFDVVk2LuEWOvVENTVJsRwiuvDgJ7QFx4LSj1czu6DtG-3VTA0LnlAwoJcnVY3Y7GTDC_IHPeEJ4sIeOaBjGHo2CeL_XPvECP3o-RMfWvhBCkyiMjtBXihcrMJVY4xttN2shoYLa4ZkBpaXTTY2zD-ugwu_arbCocdq6phJOSzyejxZP6dCbZVM83Thd6U9Q-NqIWq5w5kwrXWv6jVbawM-x7s1ovsQTaE0nJ-DeG_N6ig5KsbZwtpsnaHl3uxjee-Pp6GGYjj3JksB5RalUyWOm4oIyEgQF55GIFSMCQLCC8oIzJpOwCKOolKwgMvSVVARKFpdAqX-CLrd3N6Z5a8G6_KVpTdfJ5ixmIScsSYLOFW1d0jTWGihzqZ3oyzsj9DqnJO-J5z3xvCee74h3SfonuTG6Eubj38zFNqMB4Je_c_Mg9L8B5waP4Q |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_2298_TSCI2403033S crossref_primary_10_1109_ACCESS_2025_3540434 crossref_primary_10_3390_s24082531 crossref_primary_10_1177_14613484231185490 crossref_primary_10_2298_TSCI2403125S crossref_primary_10_1142_S0218348X24500221 crossref_primary_10_2298_TSCI2403143Y crossref_primary_10_1177_14613484241247450 crossref_primary_10_2298_TSCI2403983S crossref_primary_10_2298_TSCI2403135Y crossref_primary_10_2298_TSCI2403999Z crossref_primary_10_1016_j_aei_2024_103005 crossref_primary_10_1142_S0218348X24500543 crossref_primary_10_2298_TSCI2403975Q crossref_primary_10_3389_fphy_2023_1238901 crossref_primary_10_2298_TSCI2403051B crossref_primary_10_1142_S0218348X23501141 |
Cites_doi | 10.1016/s0890-6955(00)00010-9 10.1109/ibdap52511.2021.9552082 10.1109/tr.2019.2930195 10.1109/icsem.2010.103 10.1016/j.mechatronics.2014.12.004 10.1109/ICAMechS49982.2020.9310157 10.1016/j.ijmachtools.2019.103468 10.1016/j.cirp.2012.05.008 10.1016/j.enconman.2016.09.085 10.1109/sges51519.2020.00169 10.1109/icsens.2016.7808975 10.3390/machines9090184 10.1007/s00170-016-8593-5 10.3390/app11125444 10.1109/ssps.2017.8071631 10.1109/lsp.2014.2313570 10.1016/j.jmsy.2020.10.008 10.1007/s00170-019-03665-7 10.1016/j.asoc.2021.107094 10.1109/jsen.2019.2933347 10.17775/cseejpes.2020.04780 10.1109/icict43934.2018.9034296 10.1109/icamse.2016.7840292 10.1007/s00170-022-09260-7 10.1109/access.2020.3009537 10.1007/s00170-016-9254-4 10.1007/s40436-020-00342-x 10.1016/j.measurement.2021.109287 10.1109/icma.2012.6285706 10.1109/iciase45644.2019.9074094 10.1109/ictc46691.2019.8939729 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2023.3269064 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2023_3269064 10109645 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-bfddf682d8b12044b667a8d20aeea2b16b622c95b577fc2b0c53dcd0ef28fe113 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 09:58:44 EDT 2025 Tue Jul 01 04:27:08 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Wed Aug 27 02:56:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-bfddf682d8b12044b667a8d20aeea2b16b622c95b577fc2b0c53dcd0ef28fe113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5125-4420 0000-0002-1187-1771 0009-0009-0661-4429 |
PQID | 2825602994 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2023_3269064 crossref_citationtrail_10_1109_JSEN_2023_3269064 ieee_primary_10109645 proquest_journals_2825602994 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1016/s0890-6955(00)00010-9 – ident: ref30 doi: 10.1109/ibdap52511.2021.9552082 – ident: ref7 doi: 10.1109/tr.2019.2930195 – ident: ref10 doi: 10.1109/icsem.2010.103 – ident: ref28 doi: 10.1016/j.mechatronics.2014.12.004 – ident: ref27 doi: 10.1109/ICAMechS49982.2020.9310157 – ident: ref4 doi: 10.1016/j.ijmachtools.2019.103468 – ident: ref1 doi: 10.1016/j.cirp.2012.05.008 – ident: ref29 doi: 10.1016/j.enconman.2016.09.085 – ident: ref20 doi: 10.1109/sges51519.2020.00169 – ident: ref9 doi: 10.1109/icsens.2016.7808975 – ident: ref15 doi: 10.3390/machines9090184 – ident: ref3 doi: 10.1007/s00170-016-8593-5 – ident: ref14 doi: 10.3390/app11125444 – ident: ref31 doi: 10.1109/ssps.2017.8071631 – ident: ref23 doi: 10.1109/lsp.2014.2313570 – ident: ref17 doi: 10.1016/j.jmsy.2020.10.008 – ident: ref12 doi: 10.1007/s00170-019-03665-7 – ident: ref13 doi: 10.1016/j.asoc.2021.107094 – ident: ref8 doi: 10.1109/jsen.2019.2933347 – ident: ref26 doi: 10.17775/cseejpes.2020.04780 – ident: ref24 doi: 10.1109/icict43934.2018.9034296 – ident: ref6 doi: 10.1109/icamse.2016.7840292 – ident: ref19 doi: 10.1007/s00170-022-09260-7 – ident: ref21 doi: 10.1109/access.2020.3009537 – ident: ref18 doi: 10.1007/s00170-016-9254-4 – ident: ref16 doi: 10.1007/s40436-020-00342-x – ident: ref22 doi: 10.1016/j.measurement.2021.109287 – ident: ref5 doi: 10.1109/icma.2012.6285706 – ident: ref11 doi: 10.1109/iciase45644.2019.9074094 – ident: ref25 doi: 10.1109/ictc46691.2019.8939729 |
SSID | ssj0019757 |
Score | 2.4824235 |
Snippet | Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national... Considering technology’s rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Auto Optimization CNC machine tools Data models Errors GRU LSTM Machine learning Machine learning algorithms Machine tools Machining Manufacturing Neural networks Particle swarm optimization Prediction algorithms Production methods PSO Temperature measurement Temperature sensors Thermal displacement |
Title | A Thermal Displacement Prediction System with an Automatic LRGTVAC-PSO Optimized Branch Structured Bidirectional GRU Neural Network |
URI | https://ieeexplore.ieee.org/document/10109645 https://www.proquest.com/docview/2825602994 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BF-ihD6AiLa186KmSF9vr9e4eU8pDiAZECMpt5aeISpMKkkO59o_X490gaNWqN2tlW9bOeGY8j28APijpdRllP611pajUjtPKc0urwtgQnKkLj37ILwN1PJIn42LcFaunWhjvfUo-8xkOUyzfzewCXWXxhvNocctiFVbjy60t1noIGdRlgvWMN5hRmZfjLoQZV-ydDA8GGfYJz6KxUjMlnyih1FXlD1Gc9MvhCxgsT9amlXzNFnOT2fvfQBv_--gv4XlnaZJ-yxqvYMVPN-HZI_zBTVjvWqBf_9iCn30SWSaK6RvyeXKXUrVwS3J-i6EcJB9p0c0Jum6JnpL-Yj5LgK_k9OLo8qq_T8-HZ-QsyqBvk3vvyCfs2XFNhgmhdnGLXyatBk3uR3J0MSKIDRKHgzYZfRtGhweX-8e069BArajlnJrgXFCVcJXhgklplCp15QTT3mthuDJKCFsXpijLYIVhtsiddcwHUQXPef4a1qazqd8BEqJpFYLSRuhcMivrkjnLpTaOaa1Y3gO2JFljO_hy7KJx06RnDKsbpHKDVG46Kvfg48OS7y12x78mbyPVHk1sCdaD3SVjNN31vmuw4FexqMnlm78sewsbuDsmlfFiF9bir_bvovkyN-8T2_4CuIvsoA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6Vcig9UChFDRTwAS5Iu9her3f3wCH0lbZpWjUJym3xU40oCWoSofba38Ff4bdhezdRAcGtEjdrZe9j9vN4PDP-BuA1Z0ZkTvdHhch5xIQmUW6IivJUKmu1LFLj_ZDHHd7qs8NBOliC74uzMMaYkHxmYt8MsXw9VjPvKnMznDiLm81zKI_M1Te3Q5u8P9hxv_MNpXu7ve1WVBcRiBQt2DSSVmvLc6pzSShmTHKeiVxTLIwRVBIuOaWqSGWaZVZRiVWaaKWxsTS3hpDE3fce3HeGRkqr42GLIEWRBSJRpzNwxJJsUAdN3Tu-O-zudmJfmTx25lGBOftl2Qt1XP5Q_mFF21uDH3NZVIksn-PZVMbq-jeayP9WWI_gYW1Lo2YF_sewZEbrsHqLYXEdVuoi7-dXT-CmidykcAvRBdoZTkIymv8EdHrpg1UeoKjib0feOY3ECDVn03GgtEXts_3ex-Z2dNo9QSdOy34ZXhuNPviqJOeoGzh4Z5f-yrCyEYKDFe2f9ZFnP3HNTpVuvwH9O5HIU1gejUdmE5B1xqO1XEgqEoYVKzKsFWFCaiwEx0kD8BwipaoJ2n2dkIsybNRwUXpUlR5VZY2qBrxdDPlasZP8q_OGR8mtjhVAGrA1B2JZK7BJ6Y80c-xsFfbsL8NewUqrd9wu2wedo-fwwD_Jp9CRdAuWndjNC2esTeXLMGUQfLpr2P0EdCpMdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Thermal+Displacement+Prediction+System+With+an+Automatic+LRGTVAC-PSO+Optimized+Branch+Structured+Bidirectional+GRU+Neural+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Ping-Huan+Kuo&rft.au=Yen-Wen%2C+Chen&rft.au=Tung-Hsien+Hsieh&rft.au=Wen-Yuh+Jywe&rft.date=2023-06-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=12&rft.spage=12574&rft_id=info:doi/10.1109%2FJSEN.2023.3269064&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |