Wearable Wireless Dual Channel EEG System for Emotion Recognition Based on Machine Learning

Objective : Emotion recognition is critical for promoting mental health, as too much negative emotions may cause mental illness, especially in the era of COVID-19. EEG is the dominating modality to study brain dynamics. However, most of current EEG devices were designed for as much applications as p...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 18; p. 1
Main Authors Wang, Yue, Tian, Wei, Xu, Jingyi, Tian, Yingnan, Xu, Chengtao, Ma, Biao, Hao, Qing, Zhao, Chao, Liu, Hong
Format Journal Article
LanguageEnglish
Published New York IEEE 15.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2023.3303441

Cover

Abstract Objective : Emotion recognition is critical for promoting mental health, as too much negative emotions may cause mental illness, especially in the era of COVID-19. EEG is the dominating modality to study brain dynamics. However, most of current EEG devices were designed for as much applications as possible with unnecessary electrodes for emotion recognition applications. Methods : In this paper, a wearable and wireless EEG device with only two channels were specifically designed for emotion recognition. The device is minimized and could be embedded in a headband. Novel preprocessing algorithm to remove ocular artifacts, features selection and optimization, comparison between four machine learning methods were studied to demonstrate a high classification accuracy of emotion valence on 20 subjects. Conclusions : As our wearable EEG system achieved high accuracy with only two channels, it would broaden the application perspective of emotion recognition, and could be applied in outdoor environment or other scenarios.
AbstractList Emotion recognition is critical for promoting mental health, as too much negative emotions may cause mental illness, especially in the era of COVID-19. EEG is the dominating modality to study brain dynamics. However, most of the current EEG devices were designed for as much applications as possible with unnecessary electrodes for emotion recognition applications. In this article, a wearable and wireless EEG device with only two channels were specifically designed for emotion recognition. The device is minimized and could be embedded in a headband. Novel preprocessing algorithm to remove ocular artifacts, features selection, and optimization, comparison between the four machine learning methods were studied to demonstrate a high classification accuracy of emotion valence on 20 subjects. As our wearable EEG system achieved high accuracy with only two channels, it would broaden the application perspective of emotion recognition, and could be applied in outdoor environments or other scenarios.
Objective : Emotion recognition is critical for promoting mental health, as too much negative emotions may cause mental illness, especially in the era of COVID-19. EEG is the dominating modality to study brain dynamics. However, most of current EEG devices were designed for as much applications as possible with unnecessary electrodes for emotion recognition applications. Methods : In this paper, a wearable and wireless EEG device with only two channels were specifically designed for emotion recognition. The device is minimized and could be embedded in a headband. Novel preprocessing algorithm to remove ocular artifacts, features selection and optimization, comparison between four machine learning methods were studied to demonstrate a high classification accuracy of emotion valence on 20 subjects. Conclusions : As our wearable EEG system achieved high accuracy with only two channels, it would broaden the application perspective of emotion recognition, and could be applied in outdoor environment or other scenarios.
Author Wang, Yue
Ma, Biao
Tian, Wei
Xu, Chengtao
Hao, Qing
Xu, Jingyi
Tian, Yingnan
Liu, Hong
Zhao, Chao
Author_xml – sequence: 1
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Wei
  surname: Tian
  fullname: Tian, Wei
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Jingyi
  surname: Xu
  fullname: Xu, Jingyi
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Yingnan
  surname: Tian
  fullname: Tian, Yingnan
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Chengtao
  surname: Xu
  fullname: Xu, Chengtao
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
– sequence: 6
  givenname: Biao
  surname: Ma
  fullname: Ma, Biao
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
– sequence: 7
  givenname: Qing
  surname: Hao
  fullname: Hao, Qing
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
– sequence: 8
  givenname: Chao
  orcidid: 0000-0002-4482-2589
  surname: Zhao
  fullname: Zhao, Chao
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
– sequence: 9
  givenname: Hong
  orcidid: 0000-0002-9841-1603
  surname: Liu
  fullname: Liu, Hong
  organization: School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
BookMark eNp9kUtPwzAQhC0EElD4AUgcLHFO8Suxc4QSXiogUVCROFiOswGj1Cl2euDfk9AeEAdOO4eZWe23-2jbtx4QOqJkTCnJT29nxf2YEcbHnBMuBN1CezRNVUKlUNuD5iQRXL7sov0YPwihuUzlHnqdgwmmbADPXYAGYsQXK9PgybvxHhpcFFd49hU7WOC6DbhYtJ1rPX4E275596PPTYQK9-LO2HfnAU_7Su_82wHaqU0T4XAzR-j5sniaXCfTh6ubydk0sSwXXVIaKSVhOVSgyrSuszpPaWZFRnLCBKvqmpJUkcpQZTnNVcWtzMpSKZ5WJZOWj9DJuncZ2s8VxE5_tKvg-5WaqSztayQTvUuuXTa0MQaotXWdGS7ognGNpkQPJPVAUg8k9YZkn6R_ksvgFiZ8_Zs5XmccAPzys_4RIuPf_T9_6Q
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_jneumeth_2024_110223
crossref_primary_10_1109_JSEN_2024_3514094
crossref_primary_10_1109_JSEN_2024_3466124
crossref_primary_10_1109_JBHI_2024_3487012
crossref_primary_10_1109_JSEN_2024_3484413
crossref_primary_10_1039_D3SD00283G
crossref_primary_10_1039_D4TC02494J
Cites_doi 10.1109/JBHI.2021.3110267
10.1109/JBHI.2021.3049119
10.1109/JBHI.2022.3148109
10.1109/JIOT.2021.3079461
10.1111/psyp.13331
10.1080/2326263X.2014.912883
10.1136/bjsports-2012-091877
10.1016/j.neucom.2013.06.046
10.1016/j.ijpsycho.2009.08.006
10.1109/TSP.2013.2265222
10.1109/T-AFFC.2011.15
10.1109/JBHI.2021.3091187
10.1109/TBME.2006.879459
10.1109/TAFFC.2017.2712143
10.1109/TAMD.2015.2431497
10.1109/JCSSE.2013.6567313
10.1109/JTEHM.2016.2544298
10.1016/j.yebeh.2009.02.035
10.1177/175114371101200208
10.1016/j.psychsport.2018.01.010
10.1109/JBHI.2021.3057891
10.1111/j.1469-8986.2012.01471.x
10.1016/j.ijhcs.2009.03.005
10.1109/JBHI.2017.2688239
10.1109/NER.2011.5910636
10.1109/JBHI.2014.2328317
10.1109/TAFFC.2017.2714671
10.1109/CSIT.2016.7549457
10.1109/JSEN.2019.2962874
10.1109/JBHI.2020.3032678
10.1109/JBHI.2020.2995767
10.1109/NER.2013.6695876
10.1016/S0140-6736(21)02143-7
10.1109/TITB.2011.2157933
10.1109/JSEN.2022.3172451
10.1109/JBHI.2021.3083525
10.1088/1741-2560/13/4/046017
10.1109/JSEN.2021.3075109
10.1088/1741-2552/aa5a98
10.1016/j.brainres.2017.12.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3303441
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3303441
10215346
Genre orig-research
GrantInformation_xml – fundername: Zhishan Young Scholars of Southeast University
– fundername: Key Project and Open Research Fund of State Key Laboratory of Bioelectronics
– fundername: Key Research and Development Program of Jiangsu Province
  grantid: BE2021700
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20200357
  funderid: 10.13039/501100004608
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2242022R10052; 2242022R20044
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 22005312; 62001104
  funderid: 10.13039/501100001809
– fundername: Science and Technology Development Program of Suzhou
  grantid: SYG202117
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-ba777029ede8b5ff6f9516c46090242dff10580da18c3198d3c76bb8835db27c3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:13:29 EDT 2025
Tue Jul 01 04:27:14 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Aug 27 02:25:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-ba777029ede8b5ff6f9516c46090242dff10580da18c3198d3c76bb8835db27c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4482-2589
0000-0002-9841-1603
0009-0005-6009-4867
PQID 2865090724
PQPubID 75733
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2023_3303441
proquest_journals_2865090724
crossref_primary_10_1109_JSEN_2023_3303441
ieee_primary_10215346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-15
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
pan (ref18) 2016
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
li (ref10) 2009
References_xml – ident: ref37
  doi: 10.1109/JBHI.2021.3110267
– ident: ref39
  doi: 10.1109/JBHI.2021.3049119
– start-page: 1223
  year: 2009
  ident: ref10
  article-title: Emotion classification based on gamma-band EEG
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref38
  doi: 10.1109/JBHI.2022.3148109
– ident: ref2
  doi: 10.1109/JIOT.2021.3079461
– ident: ref23
  doi: 10.1111/psyp.13331
– ident: ref19
  doi: 10.1080/2326263X.2014.912883
– ident: ref24
  doi: 10.1136/bjsports-2012-091877
– ident: ref13
  doi: 10.1016/j.neucom.2013.06.046
– ident: ref29
  doi: 10.1016/j.ijpsycho.2009.08.006
– ident: ref32
  doi: 10.1109/TSP.2013.2265222
– ident: ref9
  doi: 10.1109/T-AFFC.2011.15
– ident: ref21
  doi: 10.1109/JBHI.2021.3091187
– ident: ref33
  doi: 10.1109/TBME.2006.879459
– ident: ref8
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref7
  doi: 10.1109/TAMD.2015.2431497
– ident: ref16
  doi: 10.1109/JCSSE.2013.6567313
– ident: ref35
  doi: 10.1109/JTEHM.2016.2544298
– ident: ref4
  doi: 10.1016/j.yebeh.2009.02.035
– ident: ref5
  doi: 10.1177/175114371101200208
– start-page: 2063
  year: 2016
  ident: ref18
  article-title: An EEG-based brain-computer interface for emotion recognition
  publication-title: Proc Int Joint Conf Neural Netw (IJCNN)
– ident: ref25
  doi: 10.1016/j.psychsport.2018.01.010
– ident: ref34
  doi: 10.1109/JBHI.2021.3057891
– ident: ref22
  doi: 10.1111/j.1469-8986.2012.01471.x
– ident: ref28
  doi: 10.1016/j.ijhcs.2009.03.005
– ident: ref20
  doi: 10.1109/JBHI.2017.2688239
– ident: ref11
  doi: 10.1109/NER.2011.5910636
– ident: ref14
  doi: 10.1109/JBHI.2014.2328317
– ident: ref3
  doi: 10.1109/TAFFC.2017.2714671
– ident: ref17
  doi: 10.1109/CSIT.2016.7549457
– ident: ref15
  doi: 10.1109/JSEN.2019.2962874
– ident: ref41
  doi: 10.1109/JBHI.2020.3032678
– ident: ref40
  doi: 10.1109/JBHI.2020.2995767
– ident: ref12
  doi: 10.1109/NER.2013.6695876
– ident: ref1
  doi: 10.1016/S0140-6736(21)02143-7
– ident: ref30
  doi: 10.1109/TITB.2011.2157933
– ident: ref36
  doi: 10.1109/JSEN.2022.3172451
– ident: ref42
  doi: 10.1109/JBHI.2021.3083525
– ident: ref27
  doi: 10.1088/1741-2560/13/4/046017
– ident: ref31
  doi: 10.1109/JSEN.2021.3075109
– ident: ref6
  doi: 10.1088/1741-2552/aa5a98
– ident: ref26
  doi: 10.1016/j.brainres.2017.12.010
SSID ssj0019757
Score 2.4452543
Snippet Objective : Emotion recognition is critical for promoting mental health, as too much negative emotions may cause mental illness, especially in the era of...
Emotion recognition is critical for promoting mental health, as too much negative emotions may cause mental illness, especially in the era of COVID-19. EEG is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Channels
EEG
Electrodes
Electroencephalography
Emotion recognition
Emotions
Feature extraction
Machine learning
Optimization
Sensors
wearable device
Wearable technology
Wireless communication
Wireless sensor networks
Title Wearable Wireless Dual Channel EEG System for Emotion Recognition Based on Machine Learning
URI https://ieeexplore.ieee.org/document/10215346
https://www.proquest.com/docview/2865090724
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BF-AAZQvqFlr5wAkpWSd24vjIRyhC2j1AUVfiEMVfIHW1VGX3UH49Y8eLllZF3OZgR4lm7HmOZ94DOLSiUo46l2TMuISbliWKKploKYs255iznD8oDkflxQ2_HBfj2KweemGstaH4zKbeDHf55kHP_a-ygZehLhgvV2EV46xr1nq5MpAi0HriAJpwJsbxCjOjcnB5XY9SrxOe4umdcZ69SkJBVeWfrTjkl_NtGC3erCsr-ZnOZyrVT3-RNr771T_AVkSa5LgLjR1YsdMebC7xD_ZgPUqg3__5CLc_MOZ9HxXxBbET3ADJ2Rzn-_aDqZ2Quv5GOnpzgjiX1J38D7laFCChfYIZ0RA0hqFC05JI3nq3Czfn9ffTiyQqLyQ6l3yWqFYIQXNpja1U4VzpEIiVmpe-ipPnxjmEZRU1bVZpXMOVYVqUSlUI54zKhWZ7sDZ9mNpPQLTmFlFhaUTRouUq7QSiKJG3rJCspX2gC1c0OtKSe3WMSROOJ1Q23nuN914TvdeHo5cpvzpOjrcG73pvLA3sHNGHg4XDm7hsHxvfpoufKHL--T_T9mHDP91XjGTFAazNfs_tF4QlM_U1hOMzfZbcKA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6CcSgcGOs2URjgA6dJyZzYieMjbBllW3uATlTaIYp_gUTVoa09wF_Ps-NW29Ambu9gy44-2-9z_N73AN5bUSlHnUsyZlzCTcsSRZVMtJRFm3P0Wc5fFEfjcnjOT6bFNCarh1wYa20IPrOpN8NbvrnUS_-r7MCXoS4YLx_DE3T8vOjStdaPBlIEYU9sQhPOxDQ-YmZUHpx8rceprxSe4v2dcZ7dckOhrso_h3HwMMebMF7NrQss-ZkuFyrVf-7INv735F_A88g1yYducWzBIzvvw7MbCoR96MUi6D9-b8PFN1z1PpOK-JDYGR6B5GiJ_X0CwtzOSF1_Ip3AOUGmS-quABD5sgpBQvsj-kRD0BiFGE1Lonzr9x04P64nh8Mk1l5IdC75IlGtEILm0hpbqcK50iEVKzUvfRwnz41zSMwqatqs0riLK8O0KJWqkNAZlQvNdmFjfjm3L4FozS3ywtKIokXLVdoJ5FEib1khWUsHQFdQNDoKk_v6GLMmXFCobDx6jUeviegNYH_d5VenyvFQ4x2Pxo2GHRAD2FsB3sSNe934RF38RJHzV_d0ewe94WR01px9Hp--hqd-JB8_khV7sLG4Wto3SFIW6m1Ymn8BL9LfdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Wireless+Dual-Channel+EEG+System+for+Emotion+Recognition+Based+on+Machine+Learning&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Yue&rft.au=Tian%2C+Wei&rft.au=Xu%2C+Jingyi&rft.au=Tian%2C+Yingnan&rft.date=2023-09-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=18&rft.spage=21767&rft.epage=21775&rft_id=info:doi/10.1109%2FJSEN.2023.3303441&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3303441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon