Sensitivity of Snow NDSI to Simulated Snow Grain Shape Characteristics
The normalized difference snow index (NDSI) is a fundamental spectral indicator of snow/ice in visible and shortwave-infrared imagery. The complex grain shapes in nature have well-known significant effects on the single-scattering properties (SSPs) and subsequently the bidirectional reflectance of s...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 20; pp. 1 - 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-598X 1558-0571 |
DOI | 10.1109/LGRS.2022.3233379 |
Cover
Abstract | The normalized difference snow index (NDSI) is a fundamental spectral indicator of snow/ice in visible and shortwave-infrared imagery. The complex grain shapes in nature have well-known significant effects on the single-scattering properties (SSPs) and subsequently the bidirectional reflectance of snow. The shape effects on snow NDSI need to be further characterized as NDSI is a nonlinear combination of two reflectance bands. Considering the common snow grain shapes represented by sphere, spheroid, hexagonal plate, and Koch snowflake, we use the ray-tracing approach to simulate the SSPs of ice particles and the discrete ordinate algorithm to solve the bidirectional reflectance function and calculate NDSI of snow. According to simulating results, the angular pattern of snow NDSI is subject to snow grain shape, whereas the shape effects can be significantly weakened by the increasing surface roughness of ice particles. The shape of Koch snowflake causes an NDSI habit different from other three shapes for large snow grain size. Moreover, snow NDSI also has complex responses to aspect ratio (AR) for spheroid and hexagonal prism. The theoretical characterization of the snow NDSI responses to various grain shapes would enrich the knowledge of NDSI variation mechanism in snow-covered area mapping applications. |
---|---|
AbstractList | The normalized difference snow index (NDSI) is a fundamental spectral indicator of snow/ice in visible and shortwave-infrared imagery. The complex grain shapes in nature have well-known significant effects on the single-scattering properties (SSPs) and subsequently the bidirectional reflectance of snow. The shape effects on snow NDSI need to be further characterized as NDSI is a nonlinear combination of two reflectance bands. Considering the common snow grain shapes represented by sphere, spheroid, hexagonal plate, and Koch snowflake, we use the ray-tracing approach to simulate the SSPs of ice particles and the discrete ordinate algorithm to solve the bidirectional reflectance function and calculate NDSI of snow. According to simulating results, the angular pattern of snow NDSI is subject to snow grain shape, whereas the shape effects can be significantly weakened by the increasing surface roughness of ice particles. The shape of Koch snowflake causes an NDSI habit different from other three shapes for large snow grain size. Moreover, snow NDSI also has complex responses to aspect ratio (AR) for spheroid and hexagonal prism. The theoretical characterization of the snow NDSI responses to various grain shapes would enrich the knowledge of NDSI variation mechanism in snow-covered area mapping applications. |
Author | Zhang, Yongsheng Wang, Gongxue Weng, Haiteng Jiang, Lingmei Pan, Fangbo |
Author_xml | – sequence: 1 givenname: Gongxue orcidid: 0000-0002-1563-1388 surname: Wang fullname: Wang, Gongxue email: wanggx@mail.bnu.edu.cn organization: Institute of Geospatial Information, PLA Information Engineering University, Zhengzhou, China – sequence: 2 givenname: Lingmei orcidid: 0000-0002-9847-9034 surname: Jiang fullname: Jiang, Lingmei email: jiang@bnu.edu.cn organization: State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Aerospace Information Research Institute of Chinese Academy of Sciences, Faculty of Geographical Science, Beijing Normal University, Beijing, China – sequence: 3 givenname: Fangbo surname: Pan fullname: Pan, Fangbo email: panfb@mail.bnu.edu.cn organization: State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Aerospace Information Research Institute of Chinese Academy of Sciences, Faculty of Geographical Science, Beijing Normal University, Beijing, China – sequence: 4 givenname: Haiteng surname: Weng fullname: Weng, Haiteng email: haiteng_weng@mail.bnu.edu.cn organization: First Research Institute of Ministry of Public Security, Beijing, China – sequence: 5 givenname: Yongsheng surname: Zhang fullname: Zhang, Yongsheng email: yszhang2001@vip.163.com organization: Institute of Geospatial Information, PLA Information Engineering University, Zhengzhou, China |
BookMark | eNp9kE9LAzEQxYNUsK1-AMHDguet-bPZJEepthaKgqvgbcmmszSl3dQkVfrt3WV7EA-eZph5vxneG6FB4xpA6JrgCSFY3S3nr8WEYkonjDLGhDpDQ8K5TDEXZND1GU-5kh8XaBTCBmOaSSmGaFZAE2y0XzYeE1cnReO-k-eHYpFElxR2d9jqCKt-PPfaNkmx1ntIpmvttYngbYjWhEt0XuttgKtTHaP32ePb9CldvswX0_tlaqjKYlrlspKUVZLDSmKcGaYoYZyspNSMKqiMlhRknlHNKQbF6loIMLRSK5NXnLMxuu3v7r37PECI5cYdfNO-LKkQLOM5JXmrEr3KeBeCh7o0NupoXRNbC9uS4LILrexCK7vQylNoLUn-kHtvd9of_2VuesYCwC9964-36x-Vk3jv |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3516882 crossref_primary_10_5194_essd_16_2501_2024 |
Cites_doi | 10.1016/j.jhydrol.2021.126020 10.1016/j.rse.2013.12.022 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2 10.1029/2006JD007290 10.3390/rs9100983 10.1109/LGRS.2020.2982053 10.5194/tc-9-1277-2015 10.1016/0034-4257(89)90101-6 10.1016/j.rse.2011.07.018 10.1016/S0034-4257(02)00095-0 10.3390/rs11202391 10.1109/JSTARS.2018.2879666 10.1029/96JD01155 10.1016/j.rse.2019.111618 10.1016/j.rse.2006.03.002 10.1016/j.jqsrt.2010.07.008 10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2 10.1029/2020MS002431 10.1109/TGRS.2022.3165986 10.1175/JCLI-D-17-0300.1 10.1016/j.rse.2004.11.013 10.1364/AO.27.002502 10.1016/j.rse.2009.01.001 10.1109/TGRS.2015.2411592 10.1002/2013JD021329 10.1109/36.581987 10.1016/S0022-4073(99)00028-X 10.1029/2002JD003142 10.1016/j.rse.2003.10.016 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2022.3233379 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 5 |
ExternalDocumentID | 10_1109_LGRS_2022_3233379 10004579 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42090014; 42171317 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2022YFF0801302 funderid: 10.13039/501100012166 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-b68b823b85ed8004c3921351d88a329ebca82e8642a520e93ff77ec2b9dc6b553 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 08:26:28 EDT 2025 Tue Jul 01 03:45:54 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Wed Aug 27 02:47:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-b68b823b85ed8004c3921351d88a329ebca82e8642a520e93ff77ec2b9dc6b553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1563-1388 0000-0002-9847-9034 |
PQID | 2773456216 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1109_LGRS_2022_3233379 proquest_journals_2773456216 crossref_citationtrail_10_1109_LGRS_2022_3233379 ieee_primary_10004579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref18 doi: 10.1016/j.jhydrol.2021.126020 – ident: ref11 doi: 10.1016/j.rse.2013.12.022 – ident: ref1 doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2 – ident: ref25 doi: 10.1029/2006JD007290 – ident: ref12 doi: 10.3390/rs9100983 – ident: ref14 doi: 10.1109/LGRS.2020.2982053 – ident: ref26 doi: 10.5194/tc-9-1277-2015 – ident: ref3 doi: 10.1016/0034-4257(89)90101-6 – ident: ref9 doi: 10.1016/j.rse.2011.07.018 – ident: ref5 doi: 10.1016/S0034-4257(02)00095-0 – ident: ref13 doi: 10.3390/rs11202391 – ident: ref15 doi: 10.1109/JSTARS.2018.2879666 – ident: ref24 doi: 10.1029/96JD01155 – ident: ref16 doi: 10.1016/j.rse.2019.111618 – ident: ref29 doi: 10.1016/j.rse.2006.03.002 – ident: ref22 doi: 10.1016/j.jqsrt.2010.07.008 – ident: ref20 doi: 10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2 – ident: ref21 doi: 10.1029/2020MS002431 – ident: ref19 doi: 10.1109/TGRS.2022.3165986 – ident: ref2 doi: 10.1175/JCLI-D-17-0300.1 – ident: ref7 doi: 10.1016/j.rse.2004.11.013 – ident: ref27 doi: 10.1364/AO.27.002502 – ident: ref8 doi: 10.1016/j.rse.2009.01.001 – ident: ref23 doi: 10.1109/TGRS.2015.2411592 – ident: ref17 doi: 10.1002/2013JD021329 – ident: ref28 doi: 10.1109/36.581987 – ident: ref4 doi: 10.1016/S0022-4073(99)00028-X – ident: ref10 doi: 10.1029/2002JD003142 – ident: ref6 doi: 10.1016/j.rse.2003.10.016 |
SSID | ssj0024887 |
Score | 2.3690386 |
Snippet | The normalized difference snow index (NDSI) is a fundamental spectral indicator of snow/ice in visible and shortwave-infrared imagery. The complex grain shapes... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Aspect ratio Aspect ratio (AR) Bidirectional reflectance Grain shape Grain size Ice Ice particles Infrared imagery normalized difference snow index (NDSI) Optical surface waves Ray tracing Reflectance Reflectance functions Reflectivity Rough surfaces Scattering Shape Shape effects Short wave radiation Simulation Snow Snow cover snow grain shape snow-covered area Snowflakes Surface roughness |
Title | Sensitivity of Snow NDSI to Simulated Snow Grain Shape Characteristics |
URI | https://ieeexplore.ieee.org/document/10004579 https://www.proquest.com/docview/2773456216 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BEmovvApieVQ-cKqUJbGT2D4iYBcQ7KEp0t6i2JkI1LJBkBWCX4_HyfKqinqLIluyZsbjb-yZ-QD20ggt9ZkLpEMDQWxMGuiYCnVRlYWIiiJFqne-GKUnl_HZOBl3xeq-FgYRffIZ9unTv-WXtZ3SVdl-5BGI1PMw7-ysLdZ6baynPBseQYIg0WrcPWFGod4_H_7MXCjIeV9wIQSlbb05hDyryl-u2J8vg2UYzVbWppX87k8b07dPH5o2_vfSV2CpQ5rsoDWNVZjDyRp86UjPrx7XYHHoWX0fv8EgozT2lkeC1RXLJvUDGx1lp6ypWXZ9QxRfWLa_h8QpwbKr4hbZ4ftuz-twOTj-dXgSdAQLgeU6bgKTKqO4MCrB0gHH2DqwRIx9pVKF4JrypBRH5UKUIuEhalFVUqLlRpc2NUkiNmBhUk9wE1ghYzShcWgskbEl16UklnFlnT-o0lD3IJxJPLdd93EiwfiT-ygk1DkpKScl5Z2SevDjZcpt23rjs8HrJPQ3A1t592Bnpte82533OZdSUOQXpVv_mLYNX4lXvr1r2YGF5m6Kuw59NOa7t7pnZqnS4A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6NITReBhtDdIzhhz0hpUtsJ7Yf0aDtoOvDskl9i2LnoqGNZoJUaPx6fE4KA7Rpb1FkS9adffedfXcfwEGWoKM-c5HyaCCS1maRkVSoi7oqRVKWGVK988ksm5zLT_N03herh1oYRAzJZzikz_CWXzVuSVdlh0lAIMo8gsfe8cu0K9f601pPBz48AgVRavS8f8RMYnM4HZ_mPhjkfCi4EIISt265ocCr8p8xDh5m9Axmq7V1iSWXw2Vrh-7nP20bH7z457DZY032vtscW7CGi23Y6GnPL2624ck48PrevIBRTonsHZMEa2qWL5ofbPYhP2Ztw_IvX4nkC6vu95hYJVh-UV4jO_q73_MOnI8-nh1Nop5iIXLcyDaymbaaC6tTrDx0lM7DJeLsq7QuBTeUKaU5ah-klCmP0Yi6Vgodt6ZymU1T8RLWF80CXwErlUQbW4_HUiUdGS-tsJK18xahzmIzgHgl8cL1_ceJBuOqCHFIbApSUkFKKnolDeDd7ynXXfON-wbvkNBvDezkPYC9lV6L_nx-L7hSgmK_JNu9Y9pb2JicnUyL6fHs82t4Sizz3c3LHqy335b4xmOR1u6HHfgLnz3WLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+Snow+NDSI+to+Simulated+Snow+Grain+Shape+Characteristics&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Gongxue&rft.au=Jiang%2C+Lingmei&rft.au=Pan%2C+Fangbo&rft.au=Weng%2C+Haiteng&rft.date=2023&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=20&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2022.3233379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2022_3233379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |