Incremental Learning Based on Granular Ball Rough Sets for Classification in Dynamic Mixed-Type Decision System
Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball computing (GBC) is a novel granular computing method, which can rapidly generate scalable and robust information granules, that is, granular balls. H...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 9; pp. 9319 - 9332 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1041-4347 1558-2191 |
DOI | 10.1109/TKDE.2023.3237833 |
Cover
Abstract | Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball computing (GBC) is a novel granular computing method, which can rapidly generate scalable and robust information granules, that is, granular balls. However, a comprehensive index for measuring the performance of a granular ball does not exist. Furthermore, GBC lacks a mechanism to deal with dynamic decision systems. Therefore, in this study, the quality index of a granular ball is first formulated. Next, with this index, a novel granular ball rough sets model (GBRS) based on GBC is proposed. GBRS is more conducive to learning knowledge from uncertain datasets and more suited to incremental learning than the latest granular ball neighborhood rough sets model based on GBC. Subsequently, an incremental mechanism is introduced into GBRS, and two incremental learning models are developed for objects increasing in stream patterns and batch patterns, respectively. In the incremental learning process, three patterns of granular balls, that is, update, fusion, and split, were well studied when a set of objects was added to the decision system. Finally, to verify the effectiveness and efficiency, we apply GBRS and these two incremental learning models into classification tasks. Compared with four current state-of-the-art classification methods based on granular computing and four classical classifiers in machine learning, the proposed classifiers in this paper achieve higher classification accuracy as well as better efficiency on benchmark datasets. |
---|---|
AbstractList | Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball computing (GBC) is a novel granular computing method, which can rapidly generate scalable and robust information granules, that is, granular balls. However, a comprehensive index for measuring the performance of a granular ball does not exist. Furthermore, GBC lacks a mechanism to deal with dynamic decision systems. Therefore, in this study, the quality index of a granular ball is first formulated. Next, with this index, a novel granular ball rough sets model (GBRS) based on GBC is proposed. GBRS is more conducive to learning knowledge from uncertain datasets and more suited to incremental learning than the latest granular ball neighborhood rough sets model based on GBC. Subsequently, an incremental mechanism is introduced into GBRS, and two incremental learning models are developed for objects increasing in stream patterns and batch patterns, respectively. In the incremental learning process, three patterns of granular balls, that is, update, fusion, and split, were well studied when a set of objects was added to the decision system. Finally, to verify the effectiveness and efficiency, we apply GBRS and these two incremental learning models into classification tasks. Compared with four current state-of-the-art classification methods based on granular computing and four classical classifiers in machine learning, the proposed classifiers in this paper achieve higher classification accuracy as well as better efficiency on benchmark datasets. |
Author | Zhang, Qinghua Wang, Guoyin Gao, Man Wu, Chengying Zhao, Fan Cheng, Yunlong Xia, Shuyin |
Author_xml | – sequence: 1 givenname: Qinghua orcidid: 0000-0002-6154-4656 surname: Zhang fullname: Zhang, Qinghua email: zhangqh@cqupt.edu.cn organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Chengying orcidid: 0000-0002-8316-6107 surname: Wu fullname: Wu, Chengying email: 381047936@qq.com organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 3 givenname: Shuyin orcidid: 0000-0001-5993-9563 surname: Xia fullname: Xia, Shuyin email: xiasy@cqupt.edu.cn organization: Information Engineering, Hubei Minzu University, Enshi, China – sequence: 4 givenname: Fan surname: Zhao fullname: Zhao, Fan email: s170602001@stu.cqupt.edu.cn organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 5 givenname: Man surname: Gao fullname: Gao, Man email: gaomandaner@qq.com organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 6 givenname: Yunlong orcidid: 0000-0002-9940-5109 surname: Cheng fullname: Cheng, Yunlong email: 355266136@qq.com organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 7 givenname: Guoyin orcidid: 0000-0002-8521-5232 surname: Wang fullname: Wang, Guoyin email: wanggy@cqupt.edu.cn organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China |
BookMark | eNp9kEFPAjEQhRuDiYL-ABMPTTwvdtrdbfeogEjEmAieN6VMsWbpYrsk8u9dhIPx4GkmM9-byXtd0vG1R0KugPUBWHE7fxqO-pxx0RdcSCXECTmHLFMJhwI6bc9SSFKRyjPSjfGDMaakgnNST7wJuEbf6IpOUQfv_Ire64hLWns6DtpvKx3aSVXR13q7eqczbCK1daCDSsforDO6cS3rPB3uvF47Q5_dFy6T-W6DdIjGxf16tosNri_IqdVVxMtj7ZG3h9F88JhMX8aTwd00MbxIm2SRFZkp-FJZljOrbV5grmCR6UwXhhnkUlnVAiwHnlrLbGsvl6hyIxcpSCt65OZwdxPqzy3Gpvyot8G3L0uuUlnkOTBoKXmgTKhjDGhL45ofN03QriqBlft0y3265T7d8phuq4Q_yk1wax12_2quDxqHiL94BkoJEN91-IeT |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_120858 crossref_primary_10_3390_math12111723 crossref_primary_10_1109_TKDE_2024_3405489 crossref_primary_10_1109_TKDE_2024_3428485 crossref_primary_10_1007_s10489_024_05904_1 crossref_primary_10_1109_TFUZZ_2024_3397697 crossref_primary_10_1007_s10489_024_05809_z crossref_primary_10_1109_TCYB_2025_3534195 crossref_primary_10_1016_j_neucom_2024_128539 crossref_primary_10_1016_j_fss_2025_109382 crossref_primary_10_1016_j_eswa_2024_126030 crossref_primary_10_1016_j_inffus_2024_102901 crossref_primary_10_1007_s10115_024_02299_w crossref_primary_10_1016_j_ins_2024_120831 crossref_primary_10_1016_j_displa_2024_102837 |
Cites_doi | 10.1109/3477.658584 10.1109/TKDE.2020.2997039 10.1016/j.ijar.2021.04.009 10.1016/j.ins.2019.01.010 10.1016/j.ins.2008.05.024 10.1109/TFUZZ.2020.3001670 10.1109/TSMC.2016.2574538 10.1109/TKDE.2009.119 10.1016/j.knosys.2017.06.020 10.1109/TCYB.2021.3070005 10.1109/TSMCC.2012.2236648 10.1016/j.patcog.2018.07.021 10.1109/TSMCB.2008.2005527 10.1109/TCC.2019.2903240 10.1109/TKDE.2011.220 10.1109/TNNLS.2020.3047046 10.1016/j.ins.2018.07.065 10.1002/int.21523 10.1109/TFUZZ.2019.2948586 10.1109/TKDE.2014.2320740 10.1016/j.knosys.2019.105063 10.1016/j.ins.2020.05.039 10.1109/tpami.2020.3008694 10.1109/TKDE.2013.56 10.1109/TPDS.2021.3078254 10.1109/TKDE.2019.2911582 10.1016/j.ins.2017.11.004 10.1016/j.knosys.2018.10.010 10.1016/j.knosys.2016.06.025 10.1109/TKDE.2008.64 10.1109/TKDE.2008.223 10.1109/tnnls.2021.3105984 10.1109/TCYB.2019.2899633 10.1109/TPAMI.2019.2914899 10.1109/TCSS.2019.2924650 10.1007/BF01001956 10.1016/j.ins.2011.07.038 10.1016/S0165-0114(97)00077-8 10.1109/TKDE.2012.146 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2023.3237833 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 9332 |
ExternalDocumentID | 10_1109_TKDE_2023_3237833 10018831 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFC2003502 – fundername: Graduate Scientific Research Innovation Project of Chongqing grantid: CYB21207; CYB22243; CYB20173 – fundername: National Natural Science Foundation of China grantid: 62221005; 62276038 funderid: 10.13039/501100001809 – fundername: Doctoral Talent Training Program of Chongqing University of Posts and Telecommunications grantid: BYJS202012 – fundername: Guidance Program of Scientific and Technical Research of Hubei Provincial grantid: B2017476 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-b595c92d8f060faf69e681b5a5a9c0ce278f8c9206124ff0f04167e86c7b417f3 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Mon Jun 30 04:48:39 EDT 2025 Tue Jul 01 01:19:42 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Wed Aug 27 02:02:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-b595c92d8f060faf69e681b5a5a9c0ce278f8c9206124ff0f04167e86c7b417f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9940-5109 0000-0002-8316-6107 0000-0001-5993-9563 0000-0002-8521-5232 0000-0002-6154-4656 |
PQID | 2847966101 |
PQPubID | 85438 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2023_3237833 ieee_primary_10018831 crossref_primary_10_1109_TKDE_2023_3237833 proquest_journals_2847966101 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref21 doi: 10.1109/3477.658584 – ident: ref28 doi: 10.1109/TKDE.2020.2997039 – ident: ref23 doi: 10.1016/j.ijar.2021.04.009 – ident: ref26 doi: 10.1016/j.ins.2019.01.010 – ident: ref10 doi: 10.1016/j.ins.2008.05.024 – ident: ref36 doi: 10.1109/TFUZZ.2020.3001670 – ident: ref37 doi: 10.1109/TSMC.2016.2574538 – ident: ref19 doi: 10.1109/TKDE.2009.119 – ident: ref9 doi: 10.1016/j.knosys.2017.06.020 – ident: ref30 doi: 10.1109/TCYB.2021.3070005 – ident: ref31 doi: 10.1109/TSMCC.2012.2236648 – ident: ref13 doi: 10.1016/j.patcog.2018.07.021 – ident: ref22 doi: 10.1109/TSMCB.2008.2005527 – ident: ref16 doi: 10.1109/TCC.2019.2903240 – ident: ref3 doi: 10.1109/TKDE.2011.220 – ident: ref25 doi: 10.1109/TNNLS.2020.3047046 – ident: ref32 doi: 10.1016/j.ins.2018.07.065 – ident: ref35 doi: 10.1002/int.21523 – ident: ref17 doi: 10.1109/TFUZZ.2019.2948586 – ident: ref2 doi: 10.1109/TKDE.2014.2320740 – ident: ref33 doi: 10.1016/j.knosys.2019.105063 – ident: ref4 doi: 10.1016/j.ins.2020.05.039 – ident: ref27 doi: 10.1109/tpami.2020.3008694 – ident: ref7 doi: 10.1109/TKDE.2013.56 – ident: ref38 doi: 10.1109/TPDS.2021.3078254 – ident: ref11 doi: 10.1109/TKDE.2019.2911582 – ident: ref14 doi: 10.1016/j.ins.2017.11.004 – ident: ref8 doi: 10.1016/j.knosys.2018.10.010 – ident: ref15 doi: 10.1016/j.knosys.2016.06.025 – ident: ref18 doi: 10.1109/TKDE.2008.64 – ident: ref24 doi: 10.1109/TKDE.2008.223 – ident: ref29 doi: 10.1109/tnnls.2021.3105984 – ident: ref39 doi: 10.1109/TCYB.2019.2899633 – ident: ref5 doi: 10.1109/TPAMI.2019.2914899 – ident: ref1 doi: 10.1109/TCSS.2019.2924650 – ident: ref20 doi: 10.1007/BF01001956 – ident: ref6 doi: 10.1016/j.ins.2011.07.038 – ident: ref34 doi: 10.1016/S0165-0114(97)00077-8 – ident: ref12 doi: 10.1109/TKDE.2012.146 |
SSID | ssj0008781 |
Score | 2.5358913 |
Snippet | Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9319 |
SubjectTerms | Classification Classifiers Computation Computational modeling Datasets dynamic information systems Granular computing incremental learning Indexes Information systems Knowledge discovery Machine learning Rough sets Task analysis |
Title | Incremental Learning Based on Granular Ball Rough Sets for Classification in Dynamic Mixed-Type Decision System |
URI | https://ieeexplore.ieee.org/document/10018831 https://www.proquest.com/docview/2847966101 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ-ujxVXV8nBk9BuH2maHtV1XRT34AO8lTZNRFy6ol0Qf70zSXZZFcVbKZMS-CbzSGfmI-SogDA1jCAtUbqUHiu48soy415Von4U4LQMW8P1iA_v2eVD8uCa1U0vjFLKFJ8pHx_Nv_xqIqd4VdbDeUFCYNf0MuiZbdaam12RGkZSSC8gKYpZ6n5hhkHWu7vqn_vIE-7HUZyKOP7ihAyryg9TbPzLoEVGs53ZspJnf9qUvvz4NrTx31vfIOsu0qQnVjU2yZKqt0hrxuJA3aHeImsLIwm3yQQMhr0yhLVu-OojPQVfV9FJTS_AtWHhKrwZj-kNUvzQW9W8UYh9qSHYxNIjgzZ9qmnf8t3T66d3VXmY89K-I_WhdlZ6m9wPzu_Ohp4jZfBklLHGK5MskVlUCR3wQBeaZ4pD6JsUSZHJQKooFVqAAIZOTOtAAx48VYLLtGRhquMdslJParVLKOdJoaOQSZZopnQEMqKK40oIFhaRlB0SzFDKpZtYjsQZ49xkLkGWI7A5Aps7YDvkeL7kxY7r-Eu4jUAtCFqMOqQ704Xcnei3HN04pIZgwfZ-WbZPVvHrtgCtS1aa16k6gIilKQ-Npn4CmNvmIg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOFAOpVAQW2jxgVOlhDwcxzkCC90Wdg_tInGLEsdGK1bZqmQlxK9nxvYioAJxi6KxYukbz8OZmQ_goMIwNU4wLdGmVgGvhA7quhBBU5N-VOi0LFvDcCQGl_zXVXblm9VtL4zW2haf6ZAe7b_8ZqbmdFV2SPOCpKSu6RV0_Dxz7VqPhlfmlpMUEwxMi1Ke-5-YcVQcjs_7pyExhYdpkuYyTZ-5Icur8p8xth7mbB1Gi725wpKbcN7Vobp_Mbbx3Zv_BB99rMmOnHJswJJuN2F9wePA_LHehLUnQwk_wwxNhrs0xLV-_Oo1O0Zv17BZy36gc6PSVXwznbLfRPLD_ujulmH0yyzFJhUfWbzZpGV9x3jPhpM73QSU9bK-p_Vhblr6FlyenY5PBoGnZQhUUvAuqLMiU0XSSBOJyFRGFFpg8JtVWVWoSOkkl0aiAAVP3JjIIB4i11KovOZxbtJtWG5nrd4BJkRWmSTmimeGa5OgjGzStJGSx1WiVA-iBUql8jPLiTpjWtrcJSpKArYkYEsPbA--Py756wZ2vCW8RUA9EXQY9WBvoQulP9O3JTlyTA7Rhn15Zdk-rA7Gw4vy4ufofBc-0JdcOdoeLHf_5vorxi9d_c1q7QPMoulv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+Learning+Based+on+Granular+Ball+Rough+Sets+for+Classification+in+Dynamic+Mixed-Type+Decision+System&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhang%2C+Qinghua&rft.au=Wu%2C+Chengying&rft.au=Xia%2C+Shuyin&rft.au=Zhao%2C+Fan&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=9&rft.spage=9319&rft_id=info:doi/10.1109%2FTKDE.2023.3237833&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |