Incremental Learning Based on Granular Ball Rough Sets for Classification in Dynamic Mixed-Type Decision System

Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball computing (GBC) is a novel granular computing method, which can rapidly generate scalable and robust information granules, that is, granular balls. H...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 35; no. 9; pp. 9319 - 9332
Main Authors Zhang, Qinghua, Wu, Chengying, Xia, Shuyin, Zhao, Fan, Gao, Man, Cheng, Yunlong, Wang, Guoyin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2023.3237833

Cover

Abstract Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball computing (GBC) is a novel granular computing method, which can rapidly generate scalable and robust information granules, that is, granular balls. However, a comprehensive index for measuring the performance of a granular ball does not exist. Furthermore, GBC lacks a mechanism to deal with dynamic decision systems. Therefore, in this study, the quality index of a granular ball is first formulated. Next, with this index, a novel granular ball rough sets model (GBRS) based on GBC is proposed. GBRS is more conducive to learning knowledge from uncertain datasets and more suited to incremental learning than the latest granular ball neighborhood rough sets model based on GBC. Subsequently, an incremental mechanism is introduced into GBRS, and two incremental learning models are developed for objects increasing in stream patterns and batch patterns, respectively. In the incremental learning process, three patterns of granular balls, that is, update, fusion, and split, were well studied when a set of objects was added to the decision system. Finally, to verify the effectiveness and efficiency, we apply GBRS and these two incremental learning models into classification tasks. Compared with four current state-of-the-art classification methods based on granular computing and four classical classifiers in machine learning, the proposed classifiers in this paper achieve higher classification accuracy as well as better efficiency on benchmark datasets.
AbstractList Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball computing (GBC) is a novel granular computing method, which can rapidly generate scalable and robust information granules, that is, granular balls. However, a comprehensive index for measuring the performance of a granular ball does not exist. Furthermore, GBC lacks a mechanism to deal with dynamic decision systems. Therefore, in this study, the quality index of a granular ball is first formulated. Next, with this index, a novel granular ball rough sets model (GBRS) based on GBC is proposed. GBRS is more conducive to learning knowledge from uncertain datasets and more suited to incremental learning than the latest granular ball neighborhood rough sets model based on GBC. Subsequently, an incremental mechanism is introduced into GBRS, and two incremental learning models are developed for objects increasing in stream patterns and batch patterns, respectively. In the incremental learning process, three patterns of granular balls, that is, update, fusion, and split, were well studied when a set of objects was added to the decision system. Finally, to verify the effectiveness and efficiency, we apply GBRS and these two incremental learning models into classification tasks. Compared with four current state-of-the-art classification methods based on granular computing and four classical classifiers in machine learning, the proposed classifiers in this paper achieve higher classification accuracy as well as better efficiency on benchmark datasets.
Author Zhang, Qinghua
Wang, Guoyin
Gao, Man
Wu, Chengying
Zhao, Fan
Cheng, Yunlong
Xia, Shuyin
Author_xml – sequence: 1
  givenname: Qinghua
  orcidid: 0000-0002-6154-4656
  surname: Zhang
  fullname: Zhang, Qinghua
  email: zhangqh@cqupt.edu.cn
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 2
  givenname: Chengying
  orcidid: 0000-0002-8316-6107
  surname: Wu
  fullname: Wu, Chengying
  email: 381047936@qq.com
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 3
  givenname: Shuyin
  orcidid: 0000-0001-5993-9563
  surname: Xia
  fullname: Xia, Shuyin
  email: xiasy@cqupt.edu.cn
  organization: Information Engineering, Hubei Minzu University, Enshi, China
– sequence: 4
  givenname: Fan
  surname: Zhao
  fullname: Zhao, Fan
  email: s170602001@stu.cqupt.edu.cn
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 5
  givenname: Man
  surname: Gao
  fullname: Gao, Man
  email: gaomandaner@qq.com
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 6
  givenname: Yunlong
  orcidid: 0000-0002-9940-5109
  surname: Cheng
  fullname: Cheng, Yunlong
  email: 355266136@qq.com
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 7
  givenname: Guoyin
  orcidid: 0000-0002-8521-5232
  surname: Wang
  fullname: Wang, Guoyin
  email: wanggy@cqupt.edu.cn
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
BookMark eNp9kEFPAjEQhRuDiYL-ABMPTTwvdtrdbfeogEjEmAieN6VMsWbpYrsk8u9dhIPx4GkmM9-byXtd0vG1R0KugPUBWHE7fxqO-pxx0RdcSCXECTmHLFMJhwI6bc9SSFKRyjPSjfGDMaakgnNST7wJuEbf6IpOUQfv_Ire64hLWns6DtpvKx3aSVXR13q7eqczbCK1daCDSsforDO6cS3rPB3uvF47Q5_dFy6T-W6DdIjGxf16tosNri_IqdVVxMtj7ZG3h9F88JhMX8aTwd00MbxIm2SRFZkp-FJZljOrbV5grmCR6UwXhhnkUlnVAiwHnlrLbGsvl6hyIxcpSCt65OZwdxPqzy3Gpvyot8G3L0uuUlnkOTBoKXmgTKhjDGhL45ofN03QriqBlft0y3265T7d8phuq4Q_yk1wax12_2quDxqHiL94BkoJEN91-IeT
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_ins_2024_120858
crossref_primary_10_3390_math12111723
crossref_primary_10_1109_TKDE_2024_3405489
crossref_primary_10_1109_TKDE_2024_3428485
crossref_primary_10_1007_s10489_024_05904_1
crossref_primary_10_1109_TFUZZ_2024_3397697
crossref_primary_10_1007_s10489_024_05809_z
crossref_primary_10_1109_TCYB_2025_3534195
crossref_primary_10_1016_j_neucom_2024_128539
crossref_primary_10_1016_j_fss_2025_109382
crossref_primary_10_1016_j_eswa_2024_126030
crossref_primary_10_1016_j_inffus_2024_102901
crossref_primary_10_1007_s10115_024_02299_w
crossref_primary_10_1016_j_ins_2024_120831
crossref_primary_10_1016_j_displa_2024_102837
Cites_doi 10.1109/3477.658584
10.1109/TKDE.2020.2997039
10.1016/j.ijar.2021.04.009
10.1016/j.ins.2019.01.010
10.1016/j.ins.2008.05.024
10.1109/TFUZZ.2020.3001670
10.1109/TSMC.2016.2574538
10.1109/TKDE.2009.119
10.1016/j.knosys.2017.06.020
10.1109/TCYB.2021.3070005
10.1109/TSMCC.2012.2236648
10.1016/j.patcog.2018.07.021
10.1109/TSMCB.2008.2005527
10.1109/TCC.2019.2903240
10.1109/TKDE.2011.220
10.1109/TNNLS.2020.3047046
10.1016/j.ins.2018.07.065
10.1002/int.21523
10.1109/TFUZZ.2019.2948586
10.1109/TKDE.2014.2320740
10.1016/j.knosys.2019.105063
10.1016/j.ins.2020.05.039
10.1109/tpami.2020.3008694
10.1109/TKDE.2013.56
10.1109/TPDS.2021.3078254
10.1109/TKDE.2019.2911582
10.1016/j.ins.2017.11.004
10.1016/j.knosys.2018.10.010
10.1016/j.knosys.2016.06.025
10.1109/TKDE.2008.64
10.1109/TKDE.2008.223
10.1109/tnnls.2021.3105984
10.1109/TCYB.2019.2899633
10.1109/TPAMI.2019.2914899
10.1109/TCSS.2019.2924650
10.1007/BF01001956
10.1016/j.ins.2011.07.038
10.1016/S0165-0114(97)00077-8
10.1109/TKDE.2012.146
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2023.3237833
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 9332
ExternalDocumentID 10_1109_TKDE_2023_3237833
10018831
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2020YFC2003502
– fundername: Graduate Scientific Research Innovation Project of Chongqing
  grantid: CYB21207; CYB22243; CYB20173
– fundername: National Natural Science Foundation of China
  grantid: 62221005; 62276038
  funderid: 10.13039/501100001809
– fundername: Doctoral Talent Training Program of Chongqing University of Posts and Telecommunications
  grantid: BYJS202012
– fundername: Guidance Program of Scientific and Technical Research of Hubei Provincial
  grantid: B2017476
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-b595c92d8f060faf69e681b5a5a9c0ce278f8c9206124ff0f04167e86c7b417f3
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 04:48:39 EDT 2025
Tue Jul 01 01:19:42 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Wed Aug 27 02:02:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-b595c92d8f060faf69e681b5a5a9c0ce278f8c9206124ff0f04167e86c7b417f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9940-5109
0000-0002-8316-6107
0000-0001-5993-9563
0000-0002-8521-5232
0000-0002-6154-4656
PQID 2847966101
PQPubID 85438
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2023_3237833
ieee_primary_10018831
crossref_primary_10_1109_TKDE_2023_3237833
proquest_journals_2847966101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/3477.658584
– ident: ref28
  doi: 10.1109/TKDE.2020.2997039
– ident: ref23
  doi: 10.1016/j.ijar.2021.04.009
– ident: ref26
  doi: 10.1016/j.ins.2019.01.010
– ident: ref10
  doi: 10.1016/j.ins.2008.05.024
– ident: ref36
  doi: 10.1109/TFUZZ.2020.3001670
– ident: ref37
  doi: 10.1109/TSMC.2016.2574538
– ident: ref19
  doi: 10.1109/TKDE.2009.119
– ident: ref9
  doi: 10.1016/j.knosys.2017.06.020
– ident: ref30
  doi: 10.1109/TCYB.2021.3070005
– ident: ref31
  doi: 10.1109/TSMCC.2012.2236648
– ident: ref13
  doi: 10.1016/j.patcog.2018.07.021
– ident: ref22
  doi: 10.1109/TSMCB.2008.2005527
– ident: ref16
  doi: 10.1109/TCC.2019.2903240
– ident: ref3
  doi: 10.1109/TKDE.2011.220
– ident: ref25
  doi: 10.1109/TNNLS.2020.3047046
– ident: ref32
  doi: 10.1016/j.ins.2018.07.065
– ident: ref35
  doi: 10.1002/int.21523
– ident: ref17
  doi: 10.1109/TFUZZ.2019.2948586
– ident: ref2
  doi: 10.1109/TKDE.2014.2320740
– ident: ref33
  doi: 10.1016/j.knosys.2019.105063
– ident: ref4
  doi: 10.1016/j.ins.2020.05.039
– ident: ref27
  doi: 10.1109/tpami.2020.3008694
– ident: ref7
  doi: 10.1109/TKDE.2013.56
– ident: ref38
  doi: 10.1109/TPDS.2021.3078254
– ident: ref11
  doi: 10.1109/TKDE.2019.2911582
– ident: ref14
  doi: 10.1016/j.ins.2017.11.004
– ident: ref8
  doi: 10.1016/j.knosys.2018.10.010
– ident: ref15
  doi: 10.1016/j.knosys.2016.06.025
– ident: ref18
  doi: 10.1109/TKDE.2008.64
– ident: ref24
  doi: 10.1109/TKDE.2008.223
– ident: ref29
  doi: 10.1109/tnnls.2021.3105984
– ident: ref39
  doi: 10.1109/TCYB.2019.2899633
– ident: ref5
  doi: 10.1109/TPAMI.2019.2914899
– ident: ref1
  doi: 10.1109/TCSS.2019.2924650
– ident: ref20
  doi: 10.1007/BF01001956
– ident: ref6
  doi: 10.1016/j.ins.2011.07.038
– ident: ref34
  doi: 10.1016/S0165-0114(97)00077-8
– ident: ref12
  doi: 10.1109/TKDE.2012.146
SSID ssj0008781
Score 2.5358913
Snippet Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9319
SubjectTerms Classification
Classifiers
Computation
Computational modeling
Datasets
dynamic information systems
Granular computing
incremental learning
Indexes
Information systems
Knowledge discovery
Machine learning
Rough sets
Task analysis
Title Incremental Learning Based on Granular Ball Rough Sets for Classification in Dynamic Mixed-Type Decision System
URI https://ieeexplore.ieee.org/document/10018831
https://www.proquest.com/docview/2847966101
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ-ujxVXV8nBk9BuH2maHtV1XRT34AO8lTZNRFy6ol0Qf70zSXZZFcVbKZMS-CbzSGfmI-SogDA1jCAtUbqUHiu48soy415Von4U4LQMW8P1iA_v2eVD8uCa1U0vjFLKFJ8pHx_Nv_xqIqd4VdbDeUFCYNf0MuiZbdaam12RGkZSSC8gKYpZ6n5hhkHWu7vqn_vIE-7HUZyKOP7ihAyryg9TbPzLoEVGs53ZspJnf9qUvvz4NrTx31vfIOsu0qQnVjU2yZKqt0hrxuJA3aHeImsLIwm3yQQMhr0yhLVu-OojPQVfV9FJTS_AtWHhKrwZj-kNUvzQW9W8UYh9qSHYxNIjgzZ9qmnf8t3T66d3VXmY89K-I_WhdlZ6m9wPzu_Ohp4jZfBklLHGK5MskVlUCR3wQBeaZ4pD6JsUSZHJQKooFVqAAIZOTOtAAx48VYLLtGRhquMdslJParVLKOdJoaOQSZZopnQEMqKK40oIFhaRlB0SzFDKpZtYjsQZ49xkLkGWI7A5Aps7YDvkeL7kxY7r-Eu4jUAtCFqMOqQ704Xcnei3HN04pIZgwfZ-WbZPVvHrtgCtS1aa16k6gIilKQ-Npn4CmNvmIg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOFAOpVAQW2jxgVOlhDwcxzkCC90Wdg_tInGLEsdGK1bZqmQlxK9nxvYioAJxi6KxYukbz8OZmQ_goMIwNU4wLdGmVgGvhA7quhBBU5N-VOi0LFvDcCQGl_zXVXblm9VtL4zW2haf6ZAe7b_8ZqbmdFV2SPOCpKSu6RV0_Dxz7VqPhlfmlpMUEwxMi1Ke-5-YcVQcjs_7pyExhYdpkuYyTZ-5Icur8p8xth7mbB1Gi725wpKbcN7Vobp_Mbbx3Zv_BB99rMmOnHJswJJuN2F9wePA_LHehLUnQwk_wwxNhrs0xLV-_Oo1O0Zv17BZy36gc6PSVXwznbLfRPLD_ujulmH0yyzFJhUfWbzZpGV9x3jPhpM73QSU9bK-p_Vhblr6FlyenY5PBoGnZQhUUvAuqLMiU0XSSBOJyFRGFFpg8JtVWVWoSOkkl0aiAAVP3JjIIB4i11KovOZxbtJtWG5nrd4BJkRWmSTmimeGa5OgjGzStJGSx1WiVA-iBUql8jPLiTpjWtrcJSpKArYkYEsPbA--Py756wZ2vCW8RUA9EXQY9WBvoQulP9O3JTlyTA7Rhn15Zdk-rA7Gw4vy4ufofBc-0JdcOdoeLHf_5vorxi9d_c1q7QPMoulv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+Learning+Based+on+Granular+Ball+Rough+Sets+for+Classification+in+Dynamic+Mixed-Type+Decision+System&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhang%2C+Qinghua&rft.au=Wu%2C+Chengying&rft.au=Xia%2C+Shuyin&rft.au=Zhao%2C+Fan&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=9&rft.spage=9319&rft_id=info:doi/10.1109%2FTKDE.2023.3237833&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon