A robust oriented filter-based matching method for multisource, multitemporal remote sensing images

The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors Fan, Zhongli, Wang, Mi, Pi, Yingdong, Liu, Yuxuan, Jiang, Huiwei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2023.3288531

Cover

Loading…
Abstract The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM is insensitive to NIDs, while exhibiting scale and rotational invariance. First, salient feature points with multiscale attributes were detected in the Gaussian-scale space of the input images. Then, the images were convoluted using multi-oriented filters, and unified feature maps were constructed by the extraction of orientation indices using effective data pooling operations. The constructed feature maps were highly resistant to NIDs. Five filters were integrated into the OFM framework to investigate their applicabilities in different application scenarios. Next, a novel rotation-invariant feature descriptor was constructed, using a dominant direction determination approach and a descriptor-grouping strategy. The dominant direction determination approach enables accurate dominant direction estimation, whereas the descriptor-grouping strategy improves the stability of the method under different rotational angles. Finally, brute-force matching was implemented to obtain initial matches; an improved mismatch elimination method was used to identify reliable putative matches. To evaluate the performance of OFM, we created a large dataset comprising 4,427 pairs of multitemporal optical-optical, optical-synthetic aperture radar (SAR), optical-infrared, and optical-depth images. OFM outperformed state-of-the-art methods in terms of number of correct matches, recall, inlier ratio, root mean square error and success rate. Our implement is publicly available 1 .
AbstractList The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM is insensitive to NIDs, while exhibiting scale and rotational invariance. First, salient feature points with multiscale attributes were detected in the Gaussian-scale space of the input images. Then, the images were convoluted using multi-oriented filters, and unified feature maps were constructed by the extraction of orientation indices using effective data pooling operations. The constructed feature maps were highly resistant to NIDs. Five filters were integrated into the OFM framework to investigate their applicabilities in different application scenarios. Next, a novel rotation-invariant feature descriptor was constructed, using a dominant direction determination approach and a descriptor-grouping strategy. The dominant direction determination approach enables accurate dominant direction estimation, whereas the descriptor-grouping strategy improves the stability of the method under different rotational angles. Finally, brute-force matching was implemented to obtain initial matches; an improved mismatch elimination method was used to identify reliable putative matches. To evaluate the performance of OFM, we created a large dataset comprising 4,427 pairs of multitemporal optical-optical, optical-synthetic aperture radar (SAR), optical-infrared, and optical-depth images. OFM outperformed state-of-the-art methods in terms of number of correct matches, recall, inlier ratio, root mean square error and success rate. Our implement is publicly available 1 .
The accurate matching of multisource, multitemporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM is insensitive to NIDs while exhibiting scale and rotational invariance. First, salient feature points with multiscale attributes were detected in the Gaussian-scale space of the input images. Then, the images were convoluted using multioriented filters, and unified feature maps were constructed by the extraction of orientation indices using effective data pooling operations. The constructed feature maps were highly resistant to NIDs. Five filters were integrated into the OFM framework to investigate their applicabilities in different application scenarios. Next, a novel rotation-invariant feature descriptor was constructed, using a dominant direction determination approach and a descriptor-grouping strategy. The dominant direction determination approach enables accurate dominant direction estimation, whereas the descriptor-grouping strategy improves the stability of the method under different rotational angles. Finally, brute-force matching was implemented to obtain initial matches; an improved mismatch elimination method was used to identify reliable putative matches. To evaluate the performance of OFM, we created a large dataset comprising 4427 pairs of multitemporal optical–optical, optical–synthetic aperture radar (SAR), optical–infrared, and optical–depth images. OFM outperformed state-of-the-art methods in terms of a number of correct matches (NCM), recall, inlier ratio, root mean square error (RMSE), and success rate (SR). Our implementation is publicly available at https://github.com/Zhongli-Fan/OFM .
Author Jiang, Huiwei
Fan, Zhongli
Wang, Mi
Liu, Yuxuan
Pi, Yingdong
Author_xml – sequence: 1
  givenname: Zhongli
  orcidid: 0000-0001-5765-4070
  surname: Fan
  fullname: Fan, Zhongli
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Mi
  orcidid: 0000-0003-2799-5987
  surname: Wang
  fullname: Wang, Mi
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Yingdong
  orcidid: 0000-0003-4092-1544
  surname: Pi
  fullname: Pi, Yingdong
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Yuxuan
  orcidid: 0000-0003-4394-1989
  surname: Liu
  fullname: Liu, Yuxuan
  organization: Chinese Academy of Surveying and Mapping, Beijing, China
– sequence: 5
  givenname: Huiwei
  orcidid: 0000-0002-1560-5577
  surname: Jiang
  fullname: Jiang, Huiwei
  organization: National Geomatics Center of China, Beijing, China
BookMark eNp9kEtLAzEUhYMo2Ko_QHAx4NapuXlNspTiCwRB63rIZG7byMykJunCf--UdiEuXF0O93z3cabkeAgDEnIJdAZAze3i8e19xijjM860lhyOyASk1CVVQhyTCQWjSqYNOyXTlD4pBSGhmhB3V8TQbFMuQvQ4ZGyLpe8yxrKxaRS9zW7th1XRY16HsRli0W-77FPYRoc3e5Gx34RouyJiHzIWCYe0g3xvV5jOycnSdgkvDvWMfDzcL-ZP5cvr4_P87qV0zIhcNrxhjaha1YJ1zqqGG0AtWWUkCNUo3QqLHFAxDlI5gyiZoBqwaqlprONn5Ho_dxPD1xZTrj_HI4dxZc0056wSUlWjq9q7XAwpRVzWzmebfRhytL6rgda7ROtdovUu0fqQ6EjCH3ITxw_j97_M1Z7xiPjLD9IIrvkPjK2FRQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_LGRS_2024_3398725
crossref_primary_10_1016_j_compeleceng_2024_109477
crossref_primary_10_3390_s25051345
crossref_primary_10_1109_TGRS_2024_3511538
crossref_primary_10_3390_rs15225333
Cites_doi 10.1109/34.93808
10.1109/ICCV.2011.6126544
10.1109/LGRS.2019.2955153
10.1109/TGRS.2019.2924684
10.1109/ICCVW54120.2021.00389
10.1109/TGRS.2022.3165940
10.1109/TIP.2014.2375642
10.1109/TIP.2019.2959244
10.1109/JSTARS.2020.3037893
10.1023/B:VISI.0000029664.99615.94
10.1109/TPAMI.2008.275
10.1145/358669.358692
10.1109/TGRS.2022.3197357
10.1109/JSTARS.2020.3026162
10.1109/TGRS.2015.2420659
10.1109/TGRS.2017.2656380
10.1016/j.sigpro.2015.09.020
10.3390/rs14030478
10.1109/IGARSS.2018.8519242
10.1038/s41598-022-09952-w
10.1007/s11263-006-0002-3
10.3390/rs14030630
10.1016/j.isprsjprs.2020.09.012
10.1109/TIP.2019.2933747
10.1016/j.inffus.2021.06.008
10.5194/isprs-archives-XLIII-B3-2021-243-2021
10.3390/rs14184595
10.3390/rs12101662
10.1109/ICIP.2015.7350783
10.1016/j.inffus.2021.02.012
10.3390/rs13173535
10.1109/TGRS.2018.2790483
10.1109/TGRS.2010.2042813
10.1109/CVPR.2005.177
10.1109/LGRS.2016.2600858
10.1109/JSTARS.2021.3131489
10.23919/ELMAR.2018.8534641
10.1109/TIP.2003.819237
10.1109/TGRS.2022.3173476
10.3390/rs13122314
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3288531
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3288531
10159438
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for The Central Universities
  grantid: 2042022kf1002
– fundername: National Natural Science Foundation of China
  grantid: 42090010; 42192583; 42201479; 42201494
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
RIG
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-b3b2b47d6d1acca6b391e852795146b68d4ae31e623156c9ee524081e7d09bac3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:21:34 EDT 2025
Tue Jul 01 02:15:11 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Wed Aug 27 02:18:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-b3b2b47d6d1acca6b391e852795146b68d4ae31e623156c9ee524081e7d09bac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4394-1989
0000-0002-1560-5577
0000-0003-4092-1544
0000-0001-5765-4070
0000-0003-2799-5987
PQID 2833274567
PQPubID 85465
PageCount 1
ParticipantIDs proquest_journals_2833274567
crossref_citationtrail_10_1109_TGRS_2023_3288531
crossref_primary_10_1109_TGRS_2023_3288531
ieee_primary_10159438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
cho (ref42) 2021
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ma (ref12) 2010; 48
ref24
kovesi (ref8) 1999; 1
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref43
ref28
ref27
ref29
li (ref39) 2022; 106
ref7
ref9
chen (ref4) 2021; 14
ref3
ref6
ref5
ref40
References_xml – ident: ref34
  doi: 10.1109/34.93808
– volume: 1
  start-page: 1
  year: 1999
  ident: ref8
  article-title: Image features from phase congruency
  publication-title: J Comput Vis Res
– ident: ref7
  doi: 10.1109/ICCV.2011.6126544
– ident: ref17
  doi: 10.1109/LGRS.2019.2955153
– ident: ref18
  doi: 10.1109/TGRS.2019.2924684
– ident: ref41
  doi: 10.1109/ICCVW54120.2021.00389
– ident: ref29
  doi: 10.1109/TGRS.2022.3165940
– ident: ref2
  doi: 10.1109/TIP.2014.2375642
– ident: ref26
  doi: 10.1109/TIP.2019.2959244
– volume: 14
  start-page: 1194
  year: 2021
  ident: ref4
  article-title: DASNet: Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images
  publication-title: IEEE J Sel Topics Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2020.3037893
– ident: ref6
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref25
  doi: 10.1109/TPAMI.2008.275
– ident: ref9
  doi: 10.1145/358669.358692
– volume: 106
  year: 2022
  ident: ref39
  article-title: MCANet: A joint semantic segmentation framework of optical and SAR images for land use classification
  publication-title: Int J Appl Earth Observ Geoinf
– ident: ref28
  doi: 10.1109/TGRS.2022.3197357
– ident: ref40
  doi: 10.1109/JSTARS.2020.3026162
– ident: ref35
  doi: 10.1109/TGRS.2015.2420659
– ident: ref16
  doi: 10.1109/TGRS.2017.2656380
– ident: ref37
  doi: 10.1016/j.sigpro.2015.09.020
– ident: ref10
  doi: 10.3390/rs14030478
– ident: ref13
  doi: 10.1109/IGARSS.2018.8519242
– year: 2021
  ident: ref42
  article-title: DIML/CVL RGB-D dataset: 2M RGB-D images of natural indoor and outdoor scenes
  publication-title: arXiv 2110 11590
– ident: ref33
  doi: 10.1038/s41598-022-09952-w
– ident: ref1
  doi: 10.1007/s11263-006-0002-3
– ident: ref20
  doi: 10.3390/rs14030630
– ident: ref31
  doi: 10.1016/j.isprsjprs.2020.09.012
– ident: ref5
  doi: 10.1109/TIP.2019.2933747
– ident: ref3
  doi: 10.1016/j.inffus.2021.06.008
– ident: ref43
  doi: 10.5194/isprs-archives-XLIII-B3-2021-243-2021
– ident: ref30
  doi: 10.3390/rs14184595
– ident: ref38
  doi: 10.3390/rs12101662
– ident: ref24
  doi: 10.1109/ICIP.2015.7350783
– ident: ref11
  doi: 10.1016/j.inffus.2021.02.012
– ident: ref19
  doi: 10.3390/rs13173535
– ident: ref23
  doi: 10.1109/TGRS.2018.2790483
– volume: 48
  start-page: 2829
  year: 2010
  ident: ref12
  article-title: Fully automatic subpixel image registration of multiangle CHRIS/Proba data
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2010.2042813
– ident: ref15
  doi: 10.1109/CVPR.2005.177
– ident: ref22
  doi: 10.1109/LGRS.2016.2600858
– ident: ref27
  doi: 10.1109/JSTARS.2021.3131489
– ident: ref36
  doi: 10.23919/ELMAR.2018.8534641
– ident: ref14
  doi: 10.1109/TIP.2003.819237
– ident: ref32
  doi: 10.1109/TGRS.2022.3173476
– ident: ref21
  doi: 10.3390/rs13122314
SSID ssj0014517
Score 2.4711034
Snippet The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and...
The accurate matching of multisource, multitemporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive optics
Angles (geometry)
Direction
Error correction
Feature extraction
Feature maps
Filters
Image filters
Image matching
Infrared imagery
Infrared radar
Matching
Multisource images
Multitemporal images
nonlinear intensity differences (NIDs)
Optical distortion
Optical filters
Optical imaging
Optical sensors
Oriented filers
Remote sensing
Robustness
Root-mean-square errors
SAR (radar)
Synthetic aperture radar
Title A robust oriented filter-based matching method for multisource, multitemporal remote sensing images
URI https://ieeexplore.ieee.org/document/10159438
https://www.proquest.com/docview/2833274567
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBJbO0jSdOjiLp42IMP8FaadBZE3ZVt9-Kvd_JY8YHirYWmBL4k801m5huAo2GR1DUfqkgLlBFXtaY9l2BkuNBk8NKaG5flO5D9e379IB5CsbqrhUFEl3yGsX10sfxmbKb2qox2OBlfnqt5mCfPzRdrfYQMuEhDbbSMyIvIQggzTcrTu6ub29j2CY_zTJF9Sr8YIddV5cdR7OzL5SoMZjPzaSVP8bTTsXn7Jtr476mvwUpgmuzML411mMPRBix_0h_cgEWX_2naTTBnbDLW07ZjYyt8TDSUDR9tID2yZq5hxGtd0iXzHacZUV3mchH95f-Jfwk6V89sgrQCkLU2O54GPb7QqdVuwf3lxd15Pwr9FyKTlbyLdK4zzYtGNmlNQEudlykqkRXEyrjUUjW8xjxFYlDkBZoSUVjBtBSLJil1bfJtWBiNR7gDTIicsCcuqrjiTV1okSE5UyrDYdGgFD1IZoBUJoiT2x4Zz5VzUpKyshhWFsMqYNiD448hr16Z46-Ptywmnz70cPRgfwZ7FTZvWxHjyslZF7LY_WXYHizZv_urmH1Y6CZTPCBy0ulDtyjfAe_B4Fs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RUFV6KG-xLVAfOCES8rAd54iqwkJhD3SRuEWxMyshYBdtshd-PePHImhV1FsixYqlz_Z84_lmBmB_VCR1zUcq0gJlxFWtac8lGBkuNBm8tObGqXwHsn_Nz2_ETUhWd7kwiOjEZxjbRxfLbyZmZq_KaIeT8eW5-gBLwmbj-nStl6ABF2nIjpYR-RFZCGKmSXk0PL36HdtO4XGeKbJQ6Rsz5Pqq_HUYOwtzsgKD-dy8sOQunnU6Nk9_lG3878mvwpfANdmxXxxrsIDjdfj8qgLhOnx0ClDTboA5ZtOJnrUdm9jSx0RE2ejWhtIja-gaRszWyS6Z7znNiOwyp0b01_-H_iVUurpnU6Q1gKy1-ngadPtA51a7CdcnP4c_-lHowBCZrORdpHOdaV40sklrglrqvExRiawgXsallqrhNeYpEociP9CUiMKWTEuxaJJS1ybfgsXxZIzbwITICX1io4or3tSFFhmSO6UyHBUNStGDZA5IZUJ5ctsl475ybkpSVhbDymJYBQx7cPAy5NHX5njv402LyasPPRw92JnDXoXt21bEuXJy14Usvv5j2Hf41B9eXlQXZ4Nf32DZ_slfzOzAYjed4S5RlU7vuQX6DMm646M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+oriented+filter-based+matching+method+for+multisource%2C+multitemporal+remote+sensing+images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Fan%2C+Zhongli&rft.au=Wang%2C+Mi&rft.au=Pi%2C+Yingdong&rft.au=Liu%2C+Yuxuan&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3288531&rft.externalDocID=10159438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon