A robust oriented filter-based matching method for multisource, multitemporal remote sensing images
The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 61; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2023.3288531 |
Cover
Loading…
Abstract | The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM is insensitive to NIDs, while exhibiting scale and rotational invariance. First, salient feature points with multiscale attributes were detected in the Gaussian-scale space of the input images. Then, the images were convoluted using multi-oriented filters, and unified feature maps were constructed by the extraction of orientation indices using effective data pooling operations. The constructed feature maps were highly resistant to NIDs. Five filters were integrated into the OFM framework to investigate their applicabilities in different application scenarios. Next, a novel rotation-invariant feature descriptor was constructed, using a dominant direction determination approach and a descriptor-grouping strategy. The dominant direction determination approach enables accurate dominant direction estimation, whereas the descriptor-grouping strategy improves the stability of the method under different rotational angles. Finally, brute-force matching was implemented to obtain initial matches; an improved mismatch elimination method was used to identify reliable putative matches. To evaluate the performance of OFM, we created a large dataset comprising 4,427 pairs of multitemporal optical-optical, optical-synthetic aperture radar (SAR), optical-infrared, and optical-depth images. OFM outperformed state-of-the-art methods in terms of number of correct matches, recall, inlier ratio, root mean square error and success rate. Our implement is publicly available 1 . |
---|---|
AbstractList | The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM is insensitive to NIDs, while exhibiting scale and rotational invariance. First, salient feature points with multiscale attributes were detected in the Gaussian-scale space of the input images. Then, the images were convoluted using multi-oriented filters, and unified feature maps were constructed by the extraction of orientation indices using effective data pooling operations. The constructed feature maps were highly resistant to NIDs. Five filters were integrated into the OFM framework to investigate their applicabilities in different application scenarios. Next, a novel rotation-invariant feature descriptor was constructed, using a dominant direction determination approach and a descriptor-grouping strategy. The dominant direction determination approach enables accurate dominant direction estimation, whereas the descriptor-grouping strategy improves the stability of the method under different rotational angles. Finally, brute-force matching was implemented to obtain initial matches; an improved mismatch elimination method was used to identify reliable putative matches. To evaluate the performance of OFM, we created a large dataset comprising 4,427 pairs of multitemporal optical-optical, optical-synthetic aperture radar (SAR), optical-infrared, and optical-depth images. OFM outperformed state-of-the-art methods in terms of number of correct matches, recall, inlier ratio, root mean square error and success rate. Our implement is publicly available 1 . The accurate matching of multisource, multitemporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM is insensitive to NIDs while exhibiting scale and rotational invariance. First, salient feature points with multiscale attributes were detected in the Gaussian-scale space of the input images. Then, the images were convoluted using multioriented filters, and unified feature maps were constructed by the extraction of orientation indices using effective data pooling operations. The constructed feature maps were highly resistant to NIDs. Five filters were integrated into the OFM framework to investigate their applicabilities in different application scenarios. Next, a novel rotation-invariant feature descriptor was constructed, using a dominant direction determination approach and a descriptor-grouping strategy. The dominant direction determination approach enables accurate dominant direction estimation, whereas the descriptor-grouping strategy improves the stability of the method under different rotational angles. Finally, brute-force matching was implemented to obtain initial matches; an improved mismatch elimination method was used to identify reliable putative matches. To evaluate the performance of OFM, we created a large dataset comprising 4427 pairs of multitemporal optical–optical, optical–synthetic aperture radar (SAR), optical–infrared, and optical–depth images. OFM outperformed state-of-the-art methods in terms of a number of correct matches (NCM), recall, inlier ratio, root mean square error (RMSE), and success rate (SR). Our implementation is publicly available at https://github.com/Zhongli-Fan/OFM . |
Author | Jiang, Huiwei Fan, Zhongli Wang, Mi Liu, Yuxuan Pi, Yingdong |
Author_xml | – sequence: 1 givenname: Zhongli orcidid: 0000-0001-5765-4070 surname: Fan fullname: Fan, Zhongli organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China – sequence: 2 givenname: Mi orcidid: 0000-0003-2799-5987 surname: Wang fullname: Wang, Mi organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China – sequence: 3 givenname: Yingdong orcidid: 0000-0003-4092-1544 surname: Pi fullname: Pi, Yingdong organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China – sequence: 4 givenname: Yuxuan orcidid: 0000-0003-4394-1989 surname: Liu fullname: Liu, Yuxuan organization: Chinese Academy of Surveying and Mapping, Beijing, China – sequence: 5 givenname: Huiwei orcidid: 0000-0002-1560-5577 surname: Jiang fullname: Jiang, Huiwei organization: National Geomatics Center of China, Beijing, China |
BookMark | eNp9kEtLAzEUhYMo2Ko_QHAx4NapuXlNspTiCwRB63rIZG7byMykJunCf--UdiEuXF0O93z3cabkeAgDEnIJdAZAze3i8e19xijjM860lhyOyASk1CVVQhyTCQWjSqYNOyXTlD4pBSGhmhB3V8TQbFMuQvQ4ZGyLpe8yxrKxaRS9zW7th1XRY16HsRli0W-77FPYRoc3e5Gx34RouyJiHzIWCYe0g3xvV5jOycnSdgkvDvWMfDzcL-ZP5cvr4_P87qV0zIhcNrxhjaha1YJ1zqqGG0AtWWUkCNUo3QqLHFAxDlI5gyiZoBqwaqlprONn5Ho_dxPD1xZTrj_HI4dxZc0056wSUlWjq9q7XAwpRVzWzmebfRhytL6rgda7ROtdovUu0fqQ6EjCH3ITxw_j97_M1Z7xiPjLD9IIrvkPjK2FRQ |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_LGRS_2024_3398725 crossref_primary_10_1016_j_compeleceng_2024_109477 crossref_primary_10_3390_s25051345 crossref_primary_10_1109_TGRS_2024_3511538 crossref_primary_10_3390_rs15225333 |
Cites_doi | 10.1109/34.93808 10.1109/ICCV.2011.6126544 10.1109/LGRS.2019.2955153 10.1109/TGRS.2019.2924684 10.1109/ICCVW54120.2021.00389 10.1109/TGRS.2022.3165940 10.1109/TIP.2014.2375642 10.1109/TIP.2019.2959244 10.1109/JSTARS.2020.3037893 10.1023/B:VISI.0000029664.99615.94 10.1109/TPAMI.2008.275 10.1145/358669.358692 10.1109/TGRS.2022.3197357 10.1109/JSTARS.2020.3026162 10.1109/TGRS.2015.2420659 10.1109/TGRS.2017.2656380 10.1016/j.sigpro.2015.09.020 10.3390/rs14030478 10.1109/IGARSS.2018.8519242 10.1038/s41598-022-09952-w 10.1007/s11263-006-0002-3 10.3390/rs14030630 10.1016/j.isprsjprs.2020.09.012 10.1109/TIP.2019.2933747 10.1016/j.inffus.2021.06.008 10.5194/isprs-archives-XLIII-B3-2021-243-2021 10.3390/rs14184595 10.3390/rs12101662 10.1109/ICIP.2015.7350783 10.1016/j.inffus.2021.02.012 10.3390/rs13173535 10.1109/TGRS.2018.2790483 10.1109/TGRS.2010.2042813 10.1109/CVPR.2005.177 10.1109/LGRS.2016.2600858 10.1109/JSTARS.2021.3131489 10.23919/ELMAR.2018.8534641 10.1109/TIP.2003.819237 10.1109/TGRS.2022.3173476 10.3390/rs13122314 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2023.3288531 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TGRS_2023_3288531 10159438 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for The Central Universities grantid: 2042022kf1002 – fundername: National Natural Science Foundation of China grantid: 42090010; 42192583; 42201479; 42201494 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 Y6R 5VS AAYOK AAYXX AETIX AGSQL AI. AIBXA CITATION EJD H~9 IBMZZ ICLAB IFJZH RIG VH1 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c294t-b3b2b47d6d1acca6b391e852795146b68d4ae31e623156c9ee524081e7d09bac3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:21:34 EDT 2025 Tue Jul 01 02:15:11 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Wed Aug 27 02:18:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-b3b2b47d6d1acca6b391e852795146b68d4ae31e623156c9ee524081e7d09bac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4394-1989 0000-0002-1560-5577 0000-0003-4092-1544 0000-0001-5765-4070 0000-0003-2799-5987 |
PQID | 2833274567 |
PQPubID | 85465 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2833274567 crossref_citationtrail_10_1109_TGRS_2023_3288531 crossref_primary_10_1109_TGRS_2023_3288531 ieee_primary_10159438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 cho (ref42) 2021 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ma (ref12) 2010; 48 ref24 kovesi (ref8) 1999; 1 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref43 ref28 ref27 ref29 li (ref39) 2022; 106 ref7 ref9 chen (ref4) 2021; 14 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref34 doi: 10.1109/34.93808 – volume: 1 start-page: 1 year: 1999 ident: ref8 article-title: Image features from phase congruency publication-title: J Comput Vis Res – ident: ref7 doi: 10.1109/ICCV.2011.6126544 – ident: ref17 doi: 10.1109/LGRS.2019.2955153 – ident: ref18 doi: 10.1109/TGRS.2019.2924684 – ident: ref41 doi: 10.1109/ICCVW54120.2021.00389 – ident: ref29 doi: 10.1109/TGRS.2022.3165940 – ident: ref2 doi: 10.1109/TIP.2014.2375642 – ident: ref26 doi: 10.1109/TIP.2019.2959244 – volume: 14 start-page: 1194 year: 2021 ident: ref4 article-title: DASNet: Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images publication-title: IEEE J Sel Topics Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2020.3037893 – ident: ref6 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref25 doi: 10.1109/TPAMI.2008.275 – ident: ref9 doi: 10.1145/358669.358692 – volume: 106 year: 2022 ident: ref39 article-title: MCANet: A joint semantic segmentation framework of optical and SAR images for land use classification publication-title: Int J Appl Earth Observ Geoinf – ident: ref28 doi: 10.1109/TGRS.2022.3197357 – ident: ref40 doi: 10.1109/JSTARS.2020.3026162 – ident: ref35 doi: 10.1109/TGRS.2015.2420659 – ident: ref16 doi: 10.1109/TGRS.2017.2656380 – ident: ref37 doi: 10.1016/j.sigpro.2015.09.020 – ident: ref10 doi: 10.3390/rs14030478 – ident: ref13 doi: 10.1109/IGARSS.2018.8519242 – year: 2021 ident: ref42 article-title: DIML/CVL RGB-D dataset: 2M RGB-D images of natural indoor and outdoor scenes publication-title: arXiv 2110 11590 – ident: ref33 doi: 10.1038/s41598-022-09952-w – ident: ref1 doi: 10.1007/s11263-006-0002-3 – ident: ref20 doi: 10.3390/rs14030630 – ident: ref31 doi: 10.1016/j.isprsjprs.2020.09.012 – ident: ref5 doi: 10.1109/TIP.2019.2933747 – ident: ref3 doi: 10.1016/j.inffus.2021.06.008 – ident: ref43 doi: 10.5194/isprs-archives-XLIII-B3-2021-243-2021 – ident: ref30 doi: 10.3390/rs14184595 – ident: ref38 doi: 10.3390/rs12101662 – ident: ref24 doi: 10.1109/ICIP.2015.7350783 – ident: ref11 doi: 10.1016/j.inffus.2021.02.012 – ident: ref19 doi: 10.3390/rs13173535 – ident: ref23 doi: 10.1109/TGRS.2018.2790483 – volume: 48 start-page: 2829 year: 2010 ident: ref12 article-title: Fully automatic subpixel image registration of multiangle CHRIS/Proba data publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2010.2042813 – ident: ref15 doi: 10.1109/CVPR.2005.177 – ident: ref22 doi: 10.1109/LGRS.2016.2600858 – ident: ref27 doi: 10.1109/JSTARS.2021.3131489 – ident: ref36 doi: 10.23919/ELMAR.2018.8534641 – ident: ref14 doi: 10.1109/TIP.2003.819237 – ident: ref32 doi: 10.1109/TGRS.2022.3173476 – ident: ref21 doi: 10.3390/rs13122314 |
SSID | ssj0014517 |
Score | 2.4711034 |
Snippet | The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and... The accurate matching of multisource, multitemporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptive optics Angles (geometry) Direction Error correction Feature extraction Feature maps Filters Image filters Image matching Infrared imagery Infrared radar Matching Multisource images Multitemporal images nonlinear intensity differences (NIDs) Optical distortion Optical filters Optical imaging Optical sensors Oriented filers Remote sensing Robustness Root-mean-square errors SAR (radar) Synthetic aperture radar |
Title | A robust oriented filter-based matching method for multisource, multitemporal remote sensing images |
URI | https://ieeexplore.ieee.org/document/10159438 https://www.proquest.com/docview/2833274567 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBJbO0jSdOjiLp42IMP8FaadBZE3ZVt9-Kvd_JY8YHirYWmBL4k801m5huAo2GR1DUfqkgLlBFXtaY9l2BkuNBk8NKaG5flO5D9e379IB5CsbqrhUFEl3yGsX10sfxmbKb2qox2OBlfnqt5mCfPzRdrfYQMuEhDbbSMyIvIQggzTcrTu6ub29j2CY_zTJF9Sr8YIddV5cdR7OzL5SoMZjPzaSVP8bTTsXn7Jtr476mvwUpgmuzML411mMPRBix_0h_cgEWX_2naTTBnbDLW07ZjYyt8TDSUDR9tID2yZq5hxGtd0iXzHacZUV3mchH95f-Jfwk6V89sgrQCkLU2O54GPb7QqdVuwf3lxd15Pwr9FyKTlbyLdK4zzYtGNmlNQEudlykqkRXEyrjUUjW8xjxFYlDkBZoSUVjBtBSLJil1bfJtWBiNR7gDTIicsCcuqrjiTV1okSE5UyrDYdGgFD1IZoBUJoiT2x4Zz5VzUpKyshhWFsMqYNiD448hr16Z46-Ptywmnz70cPRgfwZ7FTZvWxHjyslZF7LY_WXYHizZv_urmH1Y6CZTPCBy0ulDtyjfAe_B4Fs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RUFV6KG-xLVAfOCES8rAd54iqwkJhD3SRuEWxMyshYBdtshd-PePHImhV1FsixYqlz_Z84_lmBmB_VCR1zUcq0gJlxFWtac8lGBkuNBm8tObGqXwHsn_Nz2_ETUhWd7kwiOjEZxjbRxfLbyZmZq_KaIeT8eW5-gBLwmbj-nStl6ABF2nIjpYR-RFZCGKmSXk0PL36HdtO4XGeKbJQ6Rsz5Pqq_HUYOwtzsgKD-dy8sOQunnU6Nk9_lG3878mvwpfANdmxXxxrsIDjdfj8qgLhOnx0ClDTboA5ZtOJnrUdm9jSx0RE2ejWhtIja-gaRszWyS6Z7znNiOwyp0b01_-H_iVUurpnU6Q1gKy1-ngadPtA51a7CdcnP4c_-lHowBCZrORdpHOdaV40sklrglrqvExRiawgXsallqrhNeYpEociP9CUiMKWTEuxaJJS1ybfgsXxZIzbwITICX1io4or3tSFFhmSO6UyHBUNStGDZA5IZUJ5ctsl475ybkpSVhbDymJYBQx7cPAy5NHX5njv402LyasPPRw92JnDXoXt21bEuXJy14Usvv5j2Hf41B9eXlQXZ4Nf32DZ_slfzOzAYjed4S5RlU7vuQX6DMm646M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+oriented+filter-based+matching+method+for+multisource%2C+multitemporal+remote+sensing+images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Fan%2C+Zhongli&rft.au=Wang%2C+Mi&rft.au=Pi%2C+Yingdong&rft.au=Liu%2C+Yuxuan&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3288531&rft.externalDocID=10159438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |