Evolutionary Multitasking for Costly Task Offloading in Mobile-Edge Computing Networks
The offloading of computation-intensive tasks to an edge server near resource-constrained mobile devices can provide improved application performance and user experience. However, with the rapid growth of mobile devices connected to the edge server, it is challenging to directly obtain an optimal ta...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 28; no. 2; pp. 338 - 352 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The offloading of computation-intensive tasks to an edge server near resource-constrained mobile devices can provide improved application performance and user experience. However, with the rapid growth of mobile devices connected to the edge server, it is challenging to directly obtain an optimal task offloading scheme due to increasing computational cost and problem scale. In this study, we model the costly task offloading problem (CTOP) in mobile-edge computing networks to achieve efficient joint optimization of energy consumption and processing latency for mobile devices. Inspired by the success of evolutionary multitasking in solving complex optimization problems by leveraging the experience of simple optimization problems, we develop a novel multitasking framework whose effectiveness is demonstrated in solving the CTOP. In this framework, auxiliary tasks are created to optimize the local processing overhead and the edge processing overhead of task offloading. On this basis, we propose an effective multitask evolutionary algorithm that includes segmented knowledge transfer and auxiliary task update. Specifically, source and extended decision variables are considered as different knowledge to be utilized, while the auxiliary tasks are allowed to be updated dynamically. Related knowledge that is learned from cheap and simple auxiliary tasks promotes the evolutionary search for CTOP. Experimental results verify the effectiveness of knowledge transfer. Compared to existing multitasking and single-tasking algorithms, the proposed algorithm shows competitive performance in CTOP instances and achieves better comprehensive performance in terms of energy consumption and processing latency. |
---|---|
AbstractList | The offloading of computation-intensive tasks to an edge server near resource-constrained mobile devices can provide improved application performance and user experience. However, with the rapid growth of mobile devices connected to the edge server, it is challenging to directly obtain an optimal task offloading scheme due to increasing computational cost and problem scale. In this study, we model the costly task offloading problem (CTOP) in mobile-edge computing networks to achieve efficient joint optimization of energy consumption and processing latency for mobile devices. Inspired by the success of evolutionary multitasking in solving complex optimization problems by leveraging the experience of simple optimization problems, we develop a novel multitasking framework whose effectiveness is demonstrated in solving the CTOP. In this framework, auxiliary tasks are created to optimize the local processing overhead and the edge processing overhead of task offloading. On this basis, we propose an effective multitask evolutionary algorithm that includes segmented knowledge transfer and auxiliary task update. Specifically, source and extended decision variables are considered as different knowledge to be utilized, while the auxiliary tasks are allowed to be updated dynamically. Related knowledge that is learned from cheap and simple auxiliary tasks promotes the evolutionary search for CTOP. Experimental results verify the effectiveness of knowledge transfer. Compared to existing multitasking and single-tasking algorithms, the proposed algorithm shows competitive performance in CTOP instances and achieves better comprehensive performance in terms of energy consumption and processing latency. |
Author | Lan, Shulin Yang, Chen Huang, Zhi-An Zhu, Zexuan Chen, Qunjian Zhu, Liehuang |
Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0002-3863-5832 surname: Yang fullname: Yang, Chen email: yangchen666@bit.edu.cn organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Qunjian orcidid: 0009-0000-2727-0957 surname: Chen fullname: Chen, Qunjian email: Chen-QJ@outlook.com organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Zexuan orcidid: 0000-0001-8479-6904 surname: Zhu fullname: Zhu, Zexuan email: zhuzx@szu.edu.cn organization: National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Zhi-An orcidid: 0000-0001-9974-148X surname: Huang fullname: Huang, Zhi-An email: huang.za@cityu.edu.cn organization: Research Office, City University of Hong Kong (Dongguan), Dongguan, China – sequence: 5 givenname: Shulin orcidid: 0000-0001-5234-0830 surname: Lan fullname: Lan, Shulin email: lanshulin@ucas.ac.cn organization: School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Liehuang orcidid: 0000-0003-3277-3887 surname: Zhu fullname: Zhu, Liehuang email: liehuangz@bit.edu.cn organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AMHDguet-djdNEdZ1g9o7aUWb2E_JiXtdlOTVOm_N0t7EA-eMmTeZ4Z5RmjQmQ4QuiV4QggWD8tilU8opmzCaJrSLLtAQyISEmNMs0Go8VTEnE8_rtDIuQ3GJEmJGKJV8WXag9emK-0xmh9ar33ptrpbR8rYKDfOt8doGb6ihVKtKZu-pbtobirdQlw0awip3T7MCI038N_Gbt01ulRl6-Dm_I7R-1OxzF_i2eL5NX-cxTUViY9LpSDBwBMAUXKuKqEqntSqP4Fi3jCuWAaiUWlTJRRUAiwTdUNIykhgMBuj-9PcvTWfB3BebszBdmGlZJgRJlLO-xQ5pWprnLOg5N7qXThYEix7fbLXJ3t98qwvMPwPUwczvShvS93-S96dSA0AvzbhLE25YD-uu4CV |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1007_s44196_024_00569_7 crossref_primary_10_1007_s12293_025_00448_4 crossref_primary_10_1016_j_swevo_2024_101786 crossref_primary_10_1186_s40537_024_00975_w crossref_primary_10_3390_drones8110693 crossref_primary_10_1007_s12559_024_10386_x crossref_primary_10_1016_j_swevo_2024_101821 crossref_primary_10_1016_j_ins_2024_120921 crossref_primary_10_1109_JIOT_2024_3417315 |
Cites_doi | 10.1109/MCOM.2017.1600863 10.1109/TNET.2018.2873002 10.1109/MCI.2022.3155332 10.1007/s12559-018-9620-7 10.1109/TEVC.2021.3099289 10.1109/TEVC.2017.2785351 10.1109/JIOT.2018.2876279 10.1109/CEC.2017.7969454 10.1109/tcc.2021.3132175 10.1109/ICNSC52481.2021.9702184 10.1109/MWC.2019.1700441 10.1109/TEVC.2019.2906927 10.1109/TVT.2018.2812742 10.1109/TSMC.2021.3096220 10.1109/JIOT.2020.2984887 10.1109/TII.2018.2816590 10.1109/TCOMM.2016.2599530 10.1109/TEVC.2022.3145582 10.1109/TEVC.2021.3107435 10.1109/TVT.2017.2672701 10.1109/tcyb.2022.3214825 10.1109/TCYB.2021.3050516 10.1109/JIOT.2020.2982292 10.1109/JIOT.2017.2750180 10.1109/MASS.2019.00043 10.1109/JIOT.2017.2786343 10.1109/CEC.2017.7969407 10.1109/TEVC.2021.3065707 10.1109/TEVC.2019.2893614 10.1109/WCSP49889.2020.9299850 10.1109/tevc.2022.3175065 10.1109/CSCloud.2016.34 10.1109/TCYB.2020.2980888 10.1109/TEVC.2015.2458037 10.1109/TCOMM.2017.2699660 10.1109/JIOT.2020.2996762 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TEVC.2023.3255266 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0026 |
EndPage | 352 |
ExternalDocumentID | 10_1109_TEVC_2023_3255266 10065579 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China; National Key R&D Program of China grantid: 2021YFB1715700 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62103046; 72201266; 62202399 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: E1E40805X2 funderid: 10.13039/501100012226 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-affe40e74ee9a77fb9fb74cf2552207d37f36e9df5db42ef4e369cd115314ee03 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Mon Jun 30 03:21:57 EDT 2025 Thu Apr 24 23:07:41 EDT 2025 Tue Jul 01 01:56:24 EDT 2025 Wed Aug 27 02:02:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-affe40e74ee9a77fb9fb74cf2552207d37f36e9df5db42ef4e369cd115314ee03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3863-5832 0000-0001-8479-6904 0009-0000-2727-0957 0000-0001-5234-0830 0000-0003-3277-3887 0000-0001-9974-148X |
PQID | 3031395770 |
PQPubID | 85418 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3031395770 ieee_primary_10065579 crossref_primary_10_1109_TEVC_2023_3255266 crossref_citationtrail_10_1109_TEVC_2023_3255266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref1 doi: 10.1109/MCOM.2017.1600863 – ident: ref33 doi: 10.1109/TNET.2018.2873002 – ident: ref11 doi: 10.1109/MCI.2022.3155332 – ident: ref4 doi: 10.1007/s12559-018-9620-7 – ident: ref12 doi: 10.1109/TEVC.2021.3099289 – ident: ref28 doi: 10.1109/TEVC.2017.2785351 – ident: ref18 doi: 10.1109/JIOT.2018.2876279 – ident: ref23 doi: 10.1109/CEC.2017.7969454 – ident: ref6 doi: 10.1109/tcc.2021.3132175 – ident: ref34 doi: 10.1109/ICNSC52481.2021.9702184 – ident: ref17 doi: 10.1109/MWC.2019.1700441 – ident: ref10 doi: 10.1109/TEVC.2019.2906927 – ident: ref15 doi: 10.1109/TVT.2018.2812742 – ident: ref24 doi: 10.1109/TSMC.2021.3096220 – ident: ref2 doi: 10.1109/JIOT.2020.2984887 – ident: ref16 doi: 10.1109/TII.2018.2816590 – ident: ref19 doi: 10.1109/TCOMM.2016.2599530 – ident: ref14 doi: 10.1109/TEVC.2022.3145582 – ident: ref27 doi: 10.1109/TEVC.2021.3107435 – ident: ref21 doi: 10.1109/TVT.2017.2672701 – ident: ref32 doi: 10.1109/tcyb.2022.3214825 – ident: ref13 doi: 10.1109/TCYB.2021.3050516 – ident: ref30 doi: 10.1109/JIOT.2020.2982292 – ident: ref3 doi: 10.1109/JIOT.2017.2750180 – ident: ref8 doi: 10.1109/MASS.2019.00043 – ident: ref7 doi: 10.1109/JIOT.2017.2786343 – ident: ref22 doi: 10.1109/CEC.2017.7969407 – ident: ref29 doi: 10.1109/TEVC.2021.3065707 – ident: ref26 doi: 10.1109/TEVC.2019.2893614 – ident: ref35 doi: 10.1109/WCSP49889.2020.9299850 – ident: ref31 doi: 10.1109/tevc.2022.3175065 – ident: ref36 doi: 10.1109/CSCloud.2016.34 – ident: ref25 doi: 10.1109/TCYB.2020.2980888 – ident: ref9 doi: 10.1109/TEVC.2015.2458037 – ident: ref20 doi: 10.1109/TCOMM.2017.2699660 – ident: ref5 doi: 10.1109/JIOT.2020.2996762 |
SSID | ssj0014519 |
Score | 2.5186102 |
Snippet | The offloading of computation-intensive tasks to an edge server near resource-constrained mobile devices can provide improved application performance and user... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 338 |
SubjectTerms | Auxiliary task Computation offloading Computing costs Edge computing Effectiveness Electronic devices Energy consumption Evolutionary algorithms Evolutionary computation evolutionary multitasking (EMT) Knowledge management Knowledge transfer Mobile computing mobile-edge computing (MEC) Multitasking Optimization Resource management Search problems Servers Task analysis task offloading User experience |
Title | Evolutionary Multitasking for Costly Task Offloading in Mobile-Edge Computing Networks |
URI | https://ieeexplore.ieee.org/document/10065579 https://www.proquest.com/docview/3031395770 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7onvTBecV5Iw8-Ca29pMvyKGNDhM2XKXsrSZuIOFbZOmH-ek8u06EovpU2aUO-pOdLcs53AC4zjWZSUxp04oIHFA1AIBIdBx3NRGr4ubJJ-wbD9u0DvRtnYx-sbmNhlFLW-UyF5tKe5ZdVsTBbZTjD0WBmjG_CJq7cXLDW55GB0Ulx3vQcKWNn7I8w44hfj3qP3dDkCQ9TZNCJVUT8MkI2q8qPX7G1L_0mDFctc24lL-GilmHx_k208d9N34UdzzTJjRsae7ChpvvQXGVxIH5S78P2miThATz23vxgFLMlceG5Ym720wnSW9Kt5vVkSUZ4i9xrPamsCz55npJBJfEHE_TKJ0XcR8yDofMynx_CQ7836t4GPvdCUCSc1oHQWtFIMaoUF4xpybVktNCm_5KIlSnTaVvxUmelpInSiGmbFyXyyzTGOlF6BI1pNVXHQFiUGY0dkZU8RXImpaSKCewhJriIk7IF0QqMvPDC5CY_xiS3C5SI5wa_3OCXe_xacPVZ5dWpcvxV-NDgsVbQQdGCsxXkuZ-48zw1WpY8Yyw6-aXaKWzh2733zhk06tlCnSMxqeWFHZAfI-bewQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB2x5cByoNDtirIL-MAJKdl8OHV9XFWtCrTl0la9RXZiI7RVgtoUqfx6xh9dKtCivUWJLVt-tufFnnkD8CHTaCY1pcEgLnhA0QAEItFxMNBMpIafK5u0bzbvT5b08zpb-2B1GwujlLLOZyo0j_Yuv6yLvTkqwxWOBjNj_AyeouHPYheudX9pYJRSnD89R9I4WPtLzDjiN4vRahiaTOFhihw6sZqIf8yQzavyz2ZsLcy4DfNj35xjyV24b2RY_PpLtvHRnX8JLzzXJLducryCJ6rqQPuYx4H4Zd2B5yeihBewGv3001FsD8QF6IqdOVEnSHDJsN41mwNZ4CvyVetNbZ3wyfeKzGqJW0wwKr8p4hoxH-bOz3zXheV4tBhOAp99ISgSTptAaK1opBhVigvGtORaMlpoM35JxMqU6bSveKmzUtJEaUS1z4sSGWYaY50ovYRWVVfqNRAWZUZlR2QlT5GeSSmpYgJHiAku4qTsQXQEIy-8NLnJkLHJ7S9KxHODX27wyz1-Pfh4X-WH0-X4X-GuweOkoIOiB9dHyHO_dHd5atQsecZY9OaBau_h2WQxm-bTT_MvV3COLXlfnmtoNdu9eos0pZHv7OT8DenA4go |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Multitasking+for+Costly+Task+Offloading+in+Mobile-Edge+Computing+Networks&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Yang%2C+Chen&rft.au=Chen%2C+Qunjian&rft.au=Zhu%2C+Zexuan&rft.au=Huang%2C+Zhi-An&rft.date=2024-04-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=28&rft.issue=2&rft.spage=338&rft.epage=352&rft_id=info:doi/10.1109%2FTEVC.2023.3255266&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2023_3255266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |