Evolutionary Multitasking for Costly Task Offloading in Mobile-Edge Computing Networks

The offloading of computation-intensive tasks to an edge server near resource-constrained mobile devices can provide improved application performance and user experience. However, with the rapid growth of mobile devices connected to the edge server, it is challenging to directly obtain an optimal ta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 28; no. 2; pp. 338 - 352
Main Authors Yang, Chen, Chen, Qunjian, Zhu, Zexuan, Huang, Zhi-An, Lan, Shulin, Zhu, Liehuang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The offloading of computation-intensive tasks to an edge server near resource-constrained mobile devices can provide improved application performance and user experience. However, with the rapid growth of mobile devices connected to the edge server, it is challenging to directly obtain an optimal task offloading scheme due to increasing computational cost and problem scale. In this study, we model the costly task offloading problem (CTOP) in mobile-edge computing networks to achieve efficient joint optimization of energy consumption and processing latency for mobile devices. Inspired by the success of evolutionary multitasking in solving complex optimization problems by leveraging the experience of simple optimization problems, we develop a novel multitasking framework whose effectiveness is demonstrated in solving the CTOP. In this framework, auxiliary tasks are created to optimize the local processing overhead and the edge processing overhead of task offloading. On this basis, we propose an effective multitask evolutionary algorithm that includes segmented knowledge transfer and auxiliary task update. Specifically, source and extended decision variables are considered as different knowledge to be utilized, while the auxiliary tasks are allowed to be updated dynamically. Related knowledge that is learned from cheap and simple auxiliary tasks promotes the evolutionary search for CTOP. Experimental results verify the effectiveness of knowledge transfer. Compared to existing multitasking and single-tasking algorithms, the proposed algorithm shows competitive performance in CTOP instances and achieves better comprehensive performance in terms of energy consumption and processing latency.
AbstractList The offloading of computation-intensive tasks to an edge server near resource-constrained mobile devices can provide improved application performance and user experience. However, with the rapid growth of mobile devices connected to the edge server, it is challenging to directly obtain an optimal task offloading scheme due to increasing computational cost and problem scale. In this study, we model the costly task offloading problem (CTOP) in mobile-edge computing networks to achieve efficient joint optimization of energy consumption and processing latency for mobile devices. Inspired by the success of evolutionary multitasking in solving complex optimization problems by leveraging the experience of simple optimization problems, we develop a novel multitasking framework whose effectiveness is demonstrated in solving the CTOP. In this framework, auxiliary tasks are created to optimize the local processing overhead and the edge processing overhead of task offloading. On this basis, we propose an effective multitask evolutionary algorithm that includes segmented knowledge transfer and auxiliary task update. Specifically, source and extended decision variables are considered as different knowledge to be utilized, while the auxiliary tasks are allowed to be updated dynamically. Related knowledge that is learned from cheap and simple auxiliary tasks promotes the evolutionary search for CTOP. Experimental results verify the effectiveness of knowledge transfer. Compared to existing multitasking and single-tasking algorithms, the proposed algorithm shows competitive performance in CTOP instances and achieves better comprehensive performance in terms of energy consumption and processing latency.
Author Lan, Shulin
Yang, Chen
Huang, Zhi-An
Zhu, Zexuan
Chen, Qunjian
Zhu, Liehuang
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0002-3863-5832
  surname: Yang
  fullname: Yang, Chen
  email: yangchen666@bit.edu.cn
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Qunjian
  orcidid: 0009-0000-2727-0957
  surname: Chen
  fullname: Chen, Qunjian
  email: Chen-QJ@outlook.com
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Zexuan
  orcidid: 0000-0001-8479-6904
  surname: Zhu
  fullname: Zhu, Zexuan
  email: zhuzx@szu.edu.cn
  organization: National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Zhi-An
  orcidid: 0000-0001-9974-148X
  surname: Huang
  fullname: Huang, Zhi-An
  email: huang.za@cityu.edu.cn
  organization: Research Office, City University of Hong Kong (Dongguan), Dongguan, China
– sequence: 5
  givenname: Shulin
  orcidid: 0000-0001-5234-0830
  surname: Lan
  fullname: Lan, Shulin
  email: lanshulin@ucas.ac.cn
  organization: School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Liehuang
  orcidid: 0000-0003-3277-3887
  surname: Zhu
  fullname: Zhu, Liehuang
  email: liehuangz@bit.edu.cn
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
BookMark eNp9kE1LAzEQhoNUsK3-AMHDguet-djdNEdZ1g9o7aUWb2E_JiXtdlOTVOm_N0t7EA-eMmTeZ4Z5RmjQmQ4QuiV4QggWD8tilU8opmzCaJrSLLtAQyISEmNMs0Go8VTEnE8_rtDIuQ3GJEmJGKJV8WXag9emK-0xmh9ar33ptrpbR8rYKDfOt8doGb6ihVKtKZu-pbtobirdQlw0awip3T7MCI038N_Gbt01ulRl6-Dm_I7R-1OxzF_i2eL5NX-cxTUViY9LpSDBwBMAUXKuKqEqntSqP4Fi3jCuWAaiUWlTJRRUAiwTdUNIykhgMBuj-9PcvTWfB3BebszBdmGlZJgRJlLO-xQ5pWprnLOg5N7qXThYEix7fbLXJ3t98qwvMPwPUwczvShvS93-S96dSA0AvzbhLE25YD-uu4CV
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s44196_024_00569_7
crossref_primary_10_1007_s12293_025_00448_4
crossref_primary_10_1016_j_swevo_2024_101786
crossref_primary_10_1186_s40537_024_00975_w
crossref_primary_10_3390_drones8110693
crossref_primary_10_1007_s12559_024_10386_x
crossref_primary_10_1016_j_swevo_2024_101821
crossref_primary_10_1016_j_ins_2024_120921
crossref_primary_10_1109_JIOT_2024_3417315
Cites_doi 10.1109/MCOM.2017.1600863
10.1109/TNET.2018.2873002
10.1109/MCI.2022.3155332
10.1007/s12559-018-9620-7
10.1109/TEVC.2021.3099289
10.1109/TEVC.2017.2785351
10.1109/JIOT.2018.2876279
10.1109/CEC.2017.7969454
10.1109/tcc.2021.3132175
10.1109/ICNSC52481.2021.9702184
10.1109/MWC.2019.1700441
10.1109/TEVC.2019.2906927
10.1109/TVT.2018.2812742
10.1109/TSMC.2021.3096220
10.1109/JIOT.2020.2984887
10.1109/TII.2018.2816590
10.1109/TCOMM.2016.2599530
10.1109/TEVC.2022.3145582
10.1109/TEVC.2021.3107435
10.1109/TVT.2017.2672701
10.1109/tcyb.2022.3214825
10.1109/TCYB.2021.3050516
10.1109/JIOT.2020.2982292
10.1109/JIOT.2017.2750180
10.1109/MASS.2019.00043
10.1109/JIOT.2017.2786343
10.1109/CEC.2017.7969407
10.1109/TEVC.2021.3065707
10.1109/TEVC.2019.2893614
10.1109/WCSP49889.2020.9299850
10.1109/tevc.2022.3175065
10.1109/CSCloud.2016.34
10.1109/TCYB.2020.2980888
10.1109/TEVC.2015.2458037
10.1109/TCOMM.2017.2699660
10.1109/JIOT.2020.2996762
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2023.3255266
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 352
ExternalDocumentID 10_1109_TEVC_2023_3255266
10065579
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China; National Key R&D Program of China
  grantid: 2021YFB1715700
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62103046; 72201266; 62202399
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: E1E40805X2
  funderid: 10.13039/501100012226
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-affe40e74ee9a77fb9fb74cf2552207d37f36e9df5db42ef4e369cd115314ee03
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Mon Jun 30 03:21:57 EDT 2025
Thu Apr 24 23:07:41 EDT 2025
Tue Jul 01 01:56:24 EDT 2025
Wed Aug 27 02:02:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-affe40e74ee9a77fb9fb74cf2552207d37f36e9df5db42ef4e369cd115314ee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3863-5832
0000-0001-8479-6904
0009-0000-2727-0957
0000-0001-5234-0830
0000-0003-3277-3887
0000-0001-9974-148X
PQID 3031395770
PQPubID 85418
PageCount 15
ParticipantIDs proquest_journals_3031395770
ieee_primary_10065579
crossref_primary_10_1109_TEVC_2023_3255266
crossref_citationtrail_10_1109_TEVC_2023_3255266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1109/MCOM.2017.1600863
– ident: ref33
  doi: 10.1109/TNET.2018.2873002
– ident: ref11
  doi: 10.1109/MCI.2022.3155332
– ident: ref4
  doi: 10.1007/s12559-018-9620-7
– ident: ref12
  doi: 10.1109/TEVC.2021.3099289
– ident: ref28
  doi: 10.1109/TEVC.2017.2785351
– ident: ref18
  doi: 10.1109/JIOT.2018.2876279
– ident: ref23
  doi: 10.1109/CEC.2017.7969454
– ident: ref6
  doi: 10.1109/tcc.2021.3132175
– ident: ref34
  doi: 10.1109/ICNSC52481.2021.9702184
– ident: ref17
  doi: 10.1109/MWC.2019.1700441
– ident: ref10
  doi: 10.1109/TEVC.2019.2906927
– ident: ref15
  doi: 10.1109/TVT.2018.2812742
– ident: ref24
  doi: 10.1109/TSMC.2021.3096220
– ident: ref2
  doi: 10.1109/JIOT.2020.2984887
– ident: ref16
  doi: 10.1109/TII.2018.2816590
– ident: ref19
  doi: 10.1109/TCOMM.2016.2599530
– ident: ref14
  doi: 10.1109/TEVC.2022.3145582
– ident: ref27
  doi: 10.1109/TEVC.2021.3107435
– ident: ref21
  doi: 10.1109/TVT.2017.2672701
– ident: ref32
  doi: 10.1109/tcyb.2022.3214825
– ident: ref13
  doi: 10.1109/TCYB.2021.3050516
– ident: ref30
  doi: 10.1109/JIOT.2020.2982292
– ident: ref3
  doi: 10.1109/JIOT.2017.2750180
– ident: ref8
  doi: 10.1109/MASS.2019.00043
– ident: ref7
  doi: 10.1109/JIOT.2017.2786343
– ident: ref22
  doi: 10.1109/CEC.2017.7969407
– ident: ref29
  doi: 10.1109/TEVC.2021.3065707
– ident: ref26
  doi: 10.1109/TEVC.2019.2893614
– ident: ref35
  doi: 10.1109/WCSP49889.2020.9299850
– ident: ref31
  doi: 10.1109/tevc.2022.3175065
– ident: ref36
  doi: 10.1109/CSCloud.2016.34
– ident: ref25
  doi: 10.1109/TCYB.2020.2980888
– ident: ref9
  doi: 10.1109/TEVC.2015.2458037
– ident: ref20
  doi: 10.1109/TCOMM.2017.2699660
– ident: ref5
  doi: 10.1109/JIOT.2020.2996762
SSID ssj0014519
Score 2.5186102
Snippet The offloading of computation-intensive tasks to an edge server near resource-constrained mobile devices can provide improved application performance and user...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 338
SubjectTerms Auxiliary task
Computation offloading
Computing costs
Edge computing
Effectiveness
Electronic devices
Energy consumption
Evolutionary algorithms
Evolutionary computation
evolutionary multitasking (EMT)
Knowledge management
Knowledge transfer
Mobile computing
mobile-edge computing (MEC)
Multitasking
Optimization
Resource management
Search problems
Servers
Task analysis
task offloading
User experience
Title Evolutionary Multitasking for Costly Task Offloading in Mobile-Edge Computing Networks
URI https://ieeexplore.ieee.org/document/10065579
https://www.proquest.com/docview/3031395770
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7onvTBecV5Iw8-Ca29pMvyKGNDhM2XKXsrSZuIOFbZOmH-ek8u06EovpU2aUO-pOdLcs53AC4zjWZSUxp04oIHFA1AIBIdBx3NRGr4ubJJ-wbD9u0DvRtnYx-sbmNhlFLW-UyF5tKe5ZdVsTBbZTjD0WBmjG_CJq7cXLDW55GB0Ulx3vQcKWNn7I8w44hfj3qP3dDkCQ9TZNCJVUT8MkI2q8qPX7G1L_0mDFctc24lL-GilmHx_k208d9N34UdzzTJjRsae7ChpvvQXGVxIH5S78P2miThATz23vxgFLMlceG5Ym720wnSW9Kt5vVkSUZ4i9xrPamsCz55npJBJfEHE_TKJ0XcR8yDofMynx_CQ7836t4GPvdCUCSc1oHQWtFIMaoUF4xpybVktNCm_5KIlSnTaVvxUmelpInSiGmbFyXyyzTGOlF6BI1pNVXHQFiUGY0dkZU8RXImpaSKCewhJriIk7IF0QqMvPDC5CY_xiS3C5SI5wa_3OCXe_xacPVZ5dWpcvxV-NDgsVbQQdGCsxXkuZ-48zw1WpY8Yyw6-aXaKWzh2733zhk06tlCnSMxqeWFHZAfI-bewQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB2x5cByoNDtirIL-MAJKdl8OHV9XFWtCrTl0la9RXZiI7RVgtoUqfx6xh9dKtCivUWJLVt-tufFnnkD8CHTaCY1pcEgLnhA0QAEItFxMNBMpIafK5u0bzbvT5b08zpb-2B1GwujlLLOZyo0j_Yuv6yLvTkqwxWOBjNj_AyeouHPYheudX9pYJRSnD89R9I4WPtLzDjiN4vRahiaTOFhihw6sZqIf8yQzavyz2ZsLcy4DfNj35xjyV24b2RY_PpLtvHRnX8JLzzXJLducryCJ6rqQPuYx4H4Zd2B5yeihBewGv3001FsD8QF6IqdOVEnSHDJsN41mwNZ4CvyVetNbZ3wyfeKzGqJW0wwKr8p4hoxH-bOz3zXheV4tBhOAp99ISgSTptAaK1opBhVigvGtORaMlpoM35JxMqU6bSveKmzUtJEaUS1z4sSGWYaY50ovYRWVVfqNRAWZUZlR2QlT5GeSSmpYgJHiAku4qTsQXQEIy-8NLnJkLHJ7S9KxHODX27wyz1-Pfh4X-WH0-X4X-GuweOkoIOiB9dHyHO_dHd5atQsecZY9OaBau_h2WQxm-bTT_MvV3COLXlfnmtoNdu9eos0pZHv7OT8DenA4go
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Multitasking+for+Costly+Task+Offloading+in+Mobile-Edge+Computing+Networks&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Yang%2C+Chen&rft.au=Chen%2C+Qunjian&rft.au=Zhu%2C+Zexuan&rft.au=Huang%2C+Zhi-An&rft.date=2024-04-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=28&rft.issue=2&rft.spage=338&rft.epage=352&rft_id=info:doi/10.1109%2FTEVC.2023.3255266&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2023_3255266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon