Renewable Energy Absorption Oriented Many-Objective Probabilistic Optimal Power Flow
To achieve the net zero emission of greenhouse gases, renewable energy (RE) has been highly penetrated into the power system. However, the high absorption of RE may violate operational constraints of the power system and impact its secure and economic operation. In contrast, if some of the penetrate...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 11; no. 6; pp. 5432 - 5448 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To achieve the net zero emission of greenhouse gases, renewable energy (RE) has been highly penetrated into the power system. However, the high absorption of RE may violate operational constraints of the power system and impact its secure and economic operation. In contrast, if some of the penetrated RE is curtailed, the above issue would be addressed. However, this causes energy waste. Therefore, a many-objective probabilistic optimal power flow (MOPOPF) model is proposed in this paper, orienting to the absorption of RE by minimizing its curtailments and supporting secure and economic objectives, simultaneously. To well resolve this model, an ensemble learning based group search optimizer with multiple producers (ELGSOMP) is developed, where the ensemble learning would enhance the convergence of the original group search optimizer with multiple producers by releasing its dilemma. Then, case studies in this study are conducted on a modified IEEE 30-bus benchmark and a real power system. Obtained results show the feasibility of our proposed MOPOPF, and the outperformance of ELGSOMP compared with other algorithms. |
---|---|
AbstractList | To achieve the net zero emission of greenhouse gases, renewable energy (RE) has been highly penetrated into the power system. However, the high absorption of RE may violate operational constraints of the power system and impact its secure and economic operation. In contrast, if some of the penetrated RE is curtailed, the above issue would be addressed. However, this causes energy waste. Therefore, a many-objective probabilistic optimal power flow (MOPOPF) model is proposed in this paper, orienting to the absorption of RE by minimizing its curtailments and supporting secure and economic objectives, simultaneously. To well resolve this model, an ensemble learning based group search optimizer with multiple producers (ELGSOMP) is developed, where the ensemble learning would enhance the convergence of the original group search optimizer with multiple producers by releasing its dilemma. Then, case studies in this study are conducted on a modified IEEE 30-bus benchmark and a real power system. Obtained results show the feasibility of our proposed MOPOPF, and the outperformance of ELGSOMP compared with other algorithms. |
Author | He, Shangyang Ding, Qiang Li, Yuanzheng Li, Yang Zeng, Zhigang |
Author_xml | – sequence: 1 givenname: Yuanzheng orcidid: 0000-0001-8052-1233 surname: Li fullname: Li, Yuanzheng email: Yuanzheng_li@hust.edu.cn organization: School of Artificial Intelligence and Automation, Key laboratory of lmage Information Processing and Inteligent Control of Ministry of Education of China, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Shangyang surname: He fullname: He, Shangyang email: heshangyang10@hust.edu.cn organization: China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Yang orcidid: 0000-0002-6515-4567 surname: Li fullname: Li, Yang email: liyang@neepu.edu.cn organization: Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin, China – sequence: 4 givenname: Qiang surname: Ding fullname: Ding, Qiang email: dingqiang@epri.sgcc.com.cn organization: China Electric Power Research Institute, Haidian District, Beijing, China – sequence: 5 givenname: Zhigang orcidid: 0000-0003-4587-3588 surname: Zeng fullname: Zeng, Zhigang email: zgzeng@hust.edu.cn organization: School of Artificial Intelligence and Automation, Key laboratory of lmage Information Processing and Inteligent Control of Ministry of Education of China, Huazhong University of Science and Technology, Wuhan, China |
BookMark | eNp9kE1LAzEQhoNUsNb-AMHDguet-djdNMdSWhWqW7SCt5CkE0lZNzWbWvrv3aU9iAdPMwPPO8M8l6hX-xoQuiZ4RAgWd6vn19mIYspGjApMMn6G-pSxLG3H917XU55mheAXaNg0G4wxoeOCMdZHqxeoYa90BcmshvBxSCa68WEbna-TMjioI6yTJ1Uf0lJvwET3DckyeK20q1wTnUnKFv5UVbL0ewjJvPL7K3RuVdXA8FQH6G0-W00f0kV5_zidLFJDRRZTZYkRuTBFbvQaF0LzPAe7xoYzYTEHVWgglgnIc2wtLrQFDMrw3DKbGcLZAN0e926D_9pBE-XG70LdnpSMMCzomOFxS_EjZYJvmgBWGhdV92AMylWSYNlZlJ1F2VmUJ4ttkvxJbkP7ajj8m7k5ZhwA_OJJwTkv2A-xMICy |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1038_s44287_024_00018_9 crossref_primary_10_3389_fenrg_2024_1347553 crossref_primary_10_1049_rpg2_13048 crossref_primary_10_3390_su151813283 |
Cites_doi | 10.1007/s00202-019-00878-7 10.1109/TPWRS.2014.2364313 10.1016/j.epsr.2011.11.015 10.1109/TII.2019.2928054 10.1109/TPWRS.2017.2737580 10.1109/TPWRS.2010.2051168 10.1109/TCST.2022.3156391 10.1109/TCYB.2018.2884083 10.1007/s10898-012-9973-5 10.1109/tpwrs.2022.3217579 10.1109/TEVC.2021.3131952 10.1109/4235.996017 10.1109/TAES.2018.2845198 10.1109/TPWRS.2021.3124579 10.1016/j.energy.2021.119847 10.1016/j.amc.2009.03.037 10.35833/MPCE.2020.000764 10.1049/iet-rpg.2008.0067 10.1115/1.1862266 10.1080/15435075.2019.1677234 10.1109/TVCG.2015.2466992 10.1049/iet-gtd.2014.0655 10.1109/TIV.2022.3168577 10.1038/nenergy.2016.95 10.1109/CDC.2017.8264614 10.17775/CSEEJPES.2020.01140 10.1007/s42835-023-01451-w 10.1007/s11721-017-0141-x 10.1109/TCYB.2021.3069434 10.1016/j.epsr.2019.02.011 10.1109/TNNLS.2017.2727065 10.1109/TPWRS.2021.3124999 10.1007/978-981-99-0799-1 10.1109/TIA.2019.2934706 10.1109/TSTE.2016.2610948 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2023.3290147 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 5448 |
ExternalDocumentID | 10_1109_TNSE_2023_3290147 10167776 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62073148; 62233006 funderid: 10.13039/501100001809 – fundername: Northeast Electric Power University grantid: MPSS2022-04 funderid: 10.13039/501100015752 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-af1c959c65cbd069b755efd0c739f07ea6be1f39e550ff06bfe0eac75f3f4c173 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 10:03:45 EDT 2025 Thu Apr 24 22:51:11 EDT 2025 Tue Jul 01 03:10:47 EDT 2025 Wed Aug 27 02:32:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-af1c959c65cbd069b755efd0c739f07ea6be1f39e550ff06bfe0eac75f3f4c173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8052-1233 0000-0002-6515-4567 0000-0003-4587-3588 |
PQID | 3130928308 |
PQPubID | 2040409 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2023_3290147 ieee_primary_10167776 proquest_journals_3130928308 crossref_primary_10_1109_TNSE_2023_3290147 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 Kreyszig (ref40) 1991 (ref9) 2018 ref24 (ref6) 2019 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 (ref1) 2020 ref4 ref3 Pandey (ref30) 2016 ref5 |
References_xml | – ident: ref36 doi: 10.1007/s00202-019-00878-7 – ident: ref26 doi: 10.1109/TPWRS.2014.2364313 – ident: ref29 doi: 10.1016/j.epsr.2011.11.015 – ident: ref11 doi: 10.1109/TII.2019.2928054 – year: 2018 ident: ref9 article-title: Grid connected renewable energy operation publication-title: Nat. Energy Admin. – ident: ref22 doi: 10.1109/TPWRS.2017.2737580 – ident: ref25 doi: 10.1109/TPWRS.2010.2051168 – ident: ref3 doi: 10.1109/TCST.2022.3156391 – ident: ref18 doi: 10.1109/TCYB.2018.2884083 – volume-title: International Renewable Energy Agency year: 2019 ident: ref6 – ident: ref35 doi: 10.1007/s10898-012-9973-5 – ident: ref28 doi: 10.1109/tpwrs.2022.3217579 – volume-title: Introductory Functional Analysis With Applications year: 1991 ident: ref40 – ident: ref21 doi: 10.1109/TEVC.2021.3131952 – ident: ref37 doi: 10.1109/4235.996017 – ident: ref39 doi: 10.1109/TAES.2018.2845198 – ident: ref10 doi: 10.1109/TPWRS.2021.3124579 – ident: ref14 doi: 10.1016/j.energy.2021.119847 – ident: ref16 doi: 10.1016/j.amc.2009.03.037 – ident: ref19 doi: 10.35833/MPCE.2020.000764 – ident: ref27 doi: 10.1049/iet-rpg.2008.0067 – ident: ref24 doi: 10.1115/1.1862266 – ident: ref13 doi: 10.1080/15435075.2019.1677234 – ident: ref38 doi: 10.1109/TVCG.2015.2466992 – ident: ref31 doi: 10.1049/iet-gtd.2014.0655 – ident: ref5 doi: 10.1109/TIV.2022.3168577 – ident: ref7 doi: 10.1038/nenergy.2016.95 – ident: ref2 doi: 10.1109/CDC.2017.8264614 – ident: ref15 doi: 10.17775/CSEEJPES.2020.01140 – ident: ref17 doi: 10.1007/s42835-023-01451-w – ident: ref33 doi: 10.1007/s11721-017-0141-x – ident: ref20 doi: 10.1109/TCYB.2021.3069434 – year: 2020 ident: ref1 article-title: Energy White paper: Powering Our Net Zero Future – ident: ref12 doi: 10.1016/j.epsr.2019.02.011 – ident: ref32 doi: 10.1109/TNNLS.2017.2727065 – ident: ref4 doi: 10.1109/TPWRS.2021.3124999 – ident: ref8 doi: 10.1007/978-981-99-0799-1 – ident: ref23 doi: 10.1109/TIA.2019.2934706 – start-page: 1 volume-title: Proc. 1st India Int. Conf. Inf. Process. year: 2016 ident: ref30 article-title: An analysis of machine learning techniques for classification – ident: ref34 doi: 10.1109/TSTE.2016.2610948 |
SSID | ssj0001286333 |
Score | 2.3195038 |
Snippet | To achieve the net zero emission of greenhouse gases, renewable energy (RE) has been highly penetrated into the power system. However, the high absorption of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5432 |
SubjectTerms | Absorption Algorithms Costs Energy absorption Ensemble learning Feasibility studies Greenhouse gases Load flow many-objective optimization Multiple objective analysis Optimization optimization algorithm Power flow Power system stability probability optimal power flow Renewable energy Renewable energy absorption Renewable resources Voltage control Wind power generation |
Title | Renewable Energy Absorption Oriented Many-Objective Probabilistic Optimal Power Flow |
URI | https://ieeexplore.ieee.org/document/10167776 https://www.proquest.com/docview/3130928308 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCa6kx78OeN0Gg6eTNrRAQWOi9mymLgtuiW7NYXCQedqti5L_OsF2pmp0XjrASjhwXt8vPe-B8ANSYk1Qm0aSM5VQAyxR0pHOjAWEGWcUoNSz_Y5iPsTcj-l0ypZ3efCaK198JkO3af35We5WrmnspZDmoyxeBfsWuRWJmttPajwGGNceS4jJFrjwVM3dOXBQ-y9heyL7fHFVH5oYG9WeodgsJlQGU3yEq4KGar3b1yN_57xETioLpiwU-6IY7Cj5ydgf4t28BSMH62CW7ucKdj1qX-wI5f5wisPOHTEx_YaCh-smgiG8rnUiHC0sCffRdI6Ymc4tI1f7W9Grsga7M3ydR1Met3xXT-oqisEqi1IEaQmUoIKFVMlMxQLySjVJkOKYWEQ02ksdWSw0BbDGINiaTSyWppRgw1REcNnoDbP5_ocQIuJOBdUGaEYUYKkjKBUtJGOFM84xg2ANuueqIp63FXAmCUegiCROFElTlRJJaoGuP3s8lbybvzVuO6WfqthueoN0NxIN6mO5jLB1moLR3vGL37pdgn27OikzDhsglqxWOkre_Uo5LXfch_8e9ZA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhEJ74OKgH38b65ODJZFe2wAJHY9rUV2u0Jt42CwsHra2pbUz89QK7NVWj8cYBAmGYbxiY-QbgiObUGaE6i5QQOqKWOpUyiYmsc4gKwZjFeWD7bKete3rxwB6qZPWQC2OMCcFnJvbN8JdfDPTYP5WdeE-Tc57Owrwz_KxepmtNPamIlBBS_V0mWJ5023eN2BcIj0n4L-RfrE8op_IDg4Nhaa5Ae7KkMp7kKR6PVKzfv7E1_nvNq7BcXTHRaXkm1mDG9NdhaYp4cAO6tw7i3nzWFGqE5D90ql4HwwAfqOOpj91FFF07oIg66rHERHQzdLrvY2k9tTPquM7PbpobX2YNNXuDt024bza6Z62oqq8Q6bqkoyi3iZZM6pRpVeBUKs6YsQXWnEiLuclTZRJLpHFejLU4VdZgh9OcWWKpTjjZgrn-oG-2ATmvSAjJtJWaUy1pzinOZR2bRItCEFIDPNn3TFfk474GRi8LTgiWmRdV5kWVVaKqwfHnkJeSeeOvzpt-66c6lrteg72JdLNKOV8z4uy29MRnYueXYYew0OpeX2VX5-3LXVh0M9Ey_3AP5kbDsdl3F5GROgjH7wNUoNmK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renewable+Energy+Absorption+Oriented+Many-Objective+Probabilistic+Optimal+Power+Flow&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Li%2C+Yuanzheng&rft.au=He%2C+Shangyang&rft.au=Yang%2C+Li&rft.au=Ding%2C+Qiang&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=11&rft.issue=6&rft.spage=5432&rft_id=info:doi/10.1109%2FTNSE.2023.3290147&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |