Renewable Energy Absorption Oriented Many-Objective Probabilistic Optimal Power Flow

To achieve the net zero emission of greenhouse gases, renewable energy (RE) has been highly penetrated into the power system. However, the high absorption of RE may violate operational constraints of the power system and impact its secure and economic operation. In contrast, if some of the penetrate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 11; no. 6; pp. 5432 - 5448
Main Authors Li, Yuanzheng, He, Shangyang, Li, Yang, Ding, Qiang, Zeng, Zhigang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To achieve the net zero emission of greenhouse gases, renewable energy (RE) has been highly penetrated into the power system. However, the high absorption of RE may violate operational constraints of the power system and impact its secure and economic operation. In contrast, if some of the penetrated RE is curtailed, the above issue would be addressed. However, this causes energy waste. Therefore, a many-objective probabilistic optimal power flow (MOPOPF) model is proposed in this paper, orienting to the absorption of RE by minimizing its curtailments and supporting secure and economic objectives, simultaneously. To well resolve this model, an ensemble learning based group search optimizer with multiple producers (ELGSOMP) is developed, where the ensemble learning would enhance the convergence of the original group search optimizer with multiple producers by releasing its dilemma. Then, case studies in this study are conducted on a modified IEEE 30-bus benchmark and a real power system. Obtained results show the feasibility of our proposed MOPOPF, and the outperformance of ELGSOMP compared with other algorithms.
AbstractList To achieve the net zero emission of greenhouse gases, renewable energy (RE) has been highly penetrated into the power system. However, the high absorption of RE may violate operational constraints of the power system and impact its secure and economic operation. In contrast, if some of the penetrated RE is curtailed, the above issue would be addressed. However, this causes energy waste. Therefore, a many-objective probabilistic optimal power flow (MOPOPF) model is proposed in this paper, orienting to the absorption of RE by minimizing its curtailments and supporting secure and economic objectives, simultaneously. To well resolve this model, an ensemble learning based group search optimizer with multiple producers (ELGSOMP) is developed, where the ensemble learning would enhance the convergence of the original group search optimizer with multiple producers by releasing its dilemma. Then, case studies in this study are conducted on a modified IEEE 30-bus benchmark and a real power system. Obtained results show the feasibility of our proposed MOPOPF, and the outperformance of ELGSOMP compared with other algorithms.
Author He, Shangyang
Ding, Qiang
Li, Yuanzheng
Li, Yang
Zeng, Zhigang
Author_xml – sequence: 1
  givenname: Yuanzheng
  orcidid: 0000-0001-8052-1233
  surname: Li
  fullname: Li, Yuanzheng
  email: Yuanzheng_li@hust.edu.cn
  organization: School of Artificial Intelligence and Automation, Key laboratory of lmage Information Processing and Inteligent Control of Ministry of Education of China, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Shangyang
  surname: He
  fullname: He, Shangyang
  email: heshangyang10@hust.edu.cn
  organization: China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Yang
  orcidid: 0000-0002-6515-4567
  surname: Li
  fullname: Li, Yang
  email: liyang@neepu.edu.cn
  organization: Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin, China
– sequence: 4
  givenname: Qiang
  surname: Ding
  fullname: Ding, Qiang
  email: dingqiang@epri.sgcc.com.cn
  organization: China Electric Power Research Institute, Haidian District, Beijing, China
– sequence: 5
  givenname: Zhigang
  orcidid: 0000-0003-4587-3588
  surname: Zeng
  fullname: Zeng, Zhigang
  email: zgzeng@hust.edu.cn
  organization: School of Artificial Intelligence and Automation, Key laboratory of lmage Information Processing and Inteligent Control of Ministry of Education of China, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kE1LAzEQhoNUsNb-AMHDguet-djdNMdSWhWqW7SCt5CkE0lZNzWbWvrv3aU9iAdPMwPPO8M8l6hX-xoQuiZ4RAgWd6vn19mIYspGjApMMn6G-pSxLG3H917XU55mheAXaNg0G4wxoeOCMdZHqxeoYa90BcmshvBxSCa68WEbna-TMjioI6yTJ1Uf0lJvwET3DckyeK20q1wTnUnKFv5UVbL0ewjJvPL7K3RuVdXA8FQH6G0-W00f0kV5_zidLFJDRRZTZYkRuTBFbvQaF0LzPAe7xoYzYTEHVWgglgnIc2wtLrQFDMrw3DKbGcLZAN0e926D_9pBE-XG70LdnpSMMCzomOFxS_EjZYJvmgBWGhdV92AMylWSYNlZlJ1F2VmUJ4ttkvxJbkP7ajj8m7k5ZhwA_OJJwTkv2A-xMICy
CODEN ITNSD5
CitedBy_id crossref_primary_10_1038_s44287_024_00018_9
crossref_primary_10_3389_fenrg_2024_1347553
crossref_primary_10_1049_rpg2_13048
crossref_primary_10_3390_su151813283
Cites_doi 10.1007/s00202-019-00878-7
10.1109/TPWRS.2014.2364313
10.1016/j.epsr.2011.11.015
10.1109/TII.2019.2928054
10.1109/TPWRS.2017.2737580
10.1109/TPWRS.2010.2051168
10.1109/TCST.2022.3156391
10.1109/TCYB.2018.2884083
10.1007/s10898-012-9973-5
10.1109/tpwrs.2022.3217579
10.1109/TEVC.2021.3131952
10.1109/4235.996017
10.1109/TAES.2018.2845198
10.1109/TPWRS.2021.3124579
10.1016/j.energy.2021.119847
10.1016/j.amc.2009.03.037
10.35833/MPCE.2020.000764
10.1049/iet-rpg.2008.0067
10.1115/1.1862266
10.1080/15435075.2019.1677234
10.1109/TVCG.2015.2466992
10.1049/iet-gtd.2014.0655
10.1109/TIV.2022.3168577
10.1038/nenergy.2016.95
10.1109/CDC.2017.8264614
10.17775/CSEEJPES.2020.01140
10.1007/s42835-023-01451-w
10.1007/s11721-017-0141-x
10.1109/TCYB.2021.3069434
10.1016/j.epsr.2019.02.011
10.1109/TNNLS.2017.2727065
10.1109/TPWRS.2021.3124999
10.1007/978-981-99-0799-1
10.1109/TIA.2019.2934706
10.1109/TSTE.2016.2610948
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2023.3290147
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 5448
ExternalDocumentID 10_1109_TNSE_2023_3290147
10167776
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073148; 62233006
  funderid: 10.13039/501100001809
– fundername: Northeast Electric Power University
  grantid: MPSS2022-04
  funderid: 10.13039/501100015752
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-af1c959c65cbd069b755efd0c739f07ea6be1f39e550ff06bfe0eac75f3f4c173
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 10:03:45 EDT 2025
Thu Apr 24 22:51:11 EDT 2025
Tue Jul 01 03:10:47 EDT 2025
Wed Aug 27 02:32:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-af1c959c65cbd069b755efd0c739f07ea6be1f39e550ff06bfe0eac75f3f4c173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8052-1233
0000-0002-6515-4567
0000-0003-4587-3588
PQID 3130928308
PQPubID 2040409
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TNSE_2023_3290147
ieee_primary_10167776
proquest_journals_3130928308
crossref_primary_10_1109_TNSE_2023_3290147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Kreyszig (ref40) 1991
(ref9) 2018
ref24
(ref6) 2019
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
(ref1) 2020
ref4
ref3
Pandey (ref30) 2016
ref5
References_xml – ident: ref36
  doi: 10.1007/s00202-019-00878-7
– ident: ref26
  doi: 10.1109/TPWRS.2014.2364313
– ident: ref29
  doi: 10.1016/j.epsr.2011.11.015
– ident: ref11
  doi: 10.1109/TII.2019.2928054
– year: 2018
  ident: ref9
  article-title: Grid connected renewable energy operation
  publication-title: Nat. Energy Admin.
– ident: ref22
  doi: 10.1109/TPWRS.2017.2737580
– ident: ref25
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref3
  doi: 10.1109/TCST.2022.3156391
– ident: ref18
  doi: 10.1109/TCYB.2018.2884083
– volume-title: International Renewable Energy Agency
  year: 2019
  ident: ref6
– ident: ref35
  doi: 10.1007/s10898-012-9973-5
– ident: ref28
  doi: 10.1109/tpwrs.2022.3217579
– volume-title: Introductory Functional Analysis With Applications
  year: 1991
  ident: ref40
– ident: ref21
  doi: 10.1109/TEVC.2021.3131952
– ident: ref37
  doi: 10.1109/4235.996017
– ident: ref39
  doi: 10.1109/TAES.2018.2845198
– ident: ref10
  doi: 10.1109/TPWRS.2021.3124579
– ident: ref14
  doi: 10.1016/j.energy.2021.119847
– ident: ref16
  doi: 10.1016/j.amc.2009.03.037
– ident: ref19
  doi: 10.35833/MPCE.2020.000764
– ident: ref27
  doi: 10.1049/iet-rpg.2008.0067
– ident: ref24
  doi: 10.1115/1.1862266
– ident: ref13
  doi: 10.1080/15435075.2019.1677234
– ident: ref38
  doi: 10.1109/TVCG.2015.2466992
– ident: ref31
  doi: 10.1049/iet-gtd.2014.0655
– ident: ref5
  doi: 10.1109/TIV.2022.3168577
– ident: ref7
  doi: 10.1038/nenergy.2016.95
– ident: ref2
  doi: 10.1109/CDC.2017.8264614
– ident: ref15
  doi: 10.17775/CSEEJPES.2020.01140
– ident: ref17
  doi: 10.1007/s42835-023-01451-w
– ident: ref33
  doi: 10.1007/s11721-017-0141-x
– ident: ref20
  doi: 10.1109/TCYB.2021.3069434
– year: 2020
  ident: ref1
  article-title: Energy White paper: Powering Our Net Zero Future
– ident: ref12
  doi: 10.1016/j.epsr.2019.02.011
– ident: ref32
  doi: 10.1109/TNNLS.2017.2727065
– ident: ref4
  doi: 10.1109/TPWRS.2021.3124999
– ident: ref8
  doi: 10.1007/978-981-99-0799-1
– ident: ref23
  doi: 10.1109/TIA.2019.2934706
– start-page: 1
  volume-title: Proc. 1st India Int. Conf. Inf. Process.
  year: 2016
  ident: ref30
  article-title: An analysis of machine learning techniques for classification
– ident: ref34
  doi: 10.1109/TSTE.2016.2610948
SSID ssj0001286333
Score 2.3195038
Snippet To achieve the net zero emission of greenhouse gases, renewable energy (RE) has been highly penetrated into the power system. However, the high absorption of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5432
SubjectTerms Absorption
Algorithms
Costs
Energy absorption
Ensemble learning
Feasibility studies
Greenhouse gases
Load flow
many-objective optimization
Multiple objective analysis
Optimization
optimization algorithm
Power flow
Power system stability
probability optimal power flow
Renewable energy
Renewable energy absorption
Renewable resources
Voltage control
Wind power generation
Title Renewable Energy Absorption Oriented Many-Objective Probabilistic Optimal Power Flow
URI https://ieeexplore.ieee.org/document/10167776
https://www.proquest.com/docview/3130928308
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCa6kx78OeN0Gg6eTNrRAQWOi9mymLgtuiW7NYXCQedqti5L_OsF2pmp0XjrASjhwXt8vPe-B8ANSYk1Qm0aSM5VQAyxR0pHOjAWEGWcUoNSz_Y5iPsTcj-l0ypZ3efCaK198JkO3af35We5WrmnspZDmoyxeBfsWuRWJmttPajwGGNceS4jJFrjwVM3dOXBQ-y9heyL7fHFVH5oYG9WeodgsJlQGU3yEq4KGar3b1yN_57xETioLpiwU-6IY7Cj5ydgf4t28BSMH62CW7ucKdj1qX-wI5f5wisPOHTEx_YaCh-smgiG8rnUiHC0sCffRdI6Ymc4tI1f7W9Grsga7M3ydR1Met3xXT-oqisEqi1IEaQmUoIKFVMlMxQLySjVJkOKYWEQ02ksdWSw0BbDGINiaTSyWppRgw1REcNnoDbP5_ocQIuJOBdUGaEYUYKkjKBUtJGOFM84xg2ANuueqIp63FXAmCUegiCROFElTlRJJaoGuP3s8lbybvzVuO6WfqthueoN0NxIN6mO5jLB1moLR3vGL37pdgn27OikzDhsglqxWOkre_Uo5LXfch_8e9ZA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhEJ74OKgH38b65ODJZFe2wAJHY9rUV2u0Jt42CwsHra2pbUz89QK7NVWj8cYBAmGYbxiY-QbgiObUGaE6i5QQOqKWOpUyiYmsc4gKwZjFeWD7bKete3rxwB6qZPWQC2OMCcFnJvbN8JdfDPTYP5WdeE-Tc57Owrwz_KxepmtNPamIlBBS_V0mWJ5023eN2BcIj0n4L-RfrE8op_IDg4Nhaa5Ae7KkMp7kKR6PVKzfv7E1_nvNq7BcXTHRaXkm1mDG9NdhaYp4cAO6tw7i3nzWFGqE5D90ql4HwwAfqOOpj91FFF07oIg66rHERHQzdLrvY2k9tTPquM7PbpobX2YNNXuDt024bza6Z62oqq8Q6bqkoyi3iZZM6pRpVeBUKs6YsQXWnEiLuclTZRJLpHFejLU4VdZgh9OcWWKpTjjZgrn-oG-2ATmvSAjJtJWaUy1pzinOZR2bRItCEFIDPNn3TFfk474GRi8LTgiWmRdV5kWVVaKqwfHnkJeSeeOvzpt-66c6lrteg72JdLNKOV8z4uy29MRnYueXYYew0OpeX2VX5-3LXVh0M9Ey_3AP5kbDsdl3F5GROgjH7wNUoNmK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renewable+Energy+Absorption+Oriented+Many-Objective+Probabilistic+Optimal+Power+Flow&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Li%2C+Yuanzheng&rft.au=He%2C+Shangyang&rft.au=Yang%2C+Li&rft.au=Ding%2C+Qiang&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=11&rft.issue=6&rft.spage=5432&rft_id=info:doi/10.1109%2FTNSE.2023.3290147&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon