Dynamical friction from self-interacting dark matter
Context. Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted during inspiral potentially allow one to detect DM spikes around black holes. This is because the dynamical friction force experienced by the ins...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 690; p. A299 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.10.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted during inspiral potentially allow one to detect DM spikes around black holes. This is because the dynamical friction force experienced by the inspiralling black hole alters the orbital period and thus the gravitational wave signal.
Aims.
The dynamical friction arising from DM can potentially differ from the collisionless case when DM is subject to self-interactions. This paper aims to understand how self-interactions impact dynamical friction.
Methods.
To study the dynamical friction force, we use idealised
N
-body simulations, where we include self-interacting dark matter.
Results.
We find that the dynamical friction force for inspiralling black holes would be typically enhanced by DM self-interactions compared to a collisionless medium (ignoring differences in the DM density). At lower velocities below the sound speed, we find that the dynamical friction force can be reduced by the presence of self-interactions.
Conclusions.
DM self-interactions have a significant effect on the dynamical friction for black hole mergers. Assuming the Chandrasekhar formula may underpredict the deceleration due to dynamical friction. |
---|---|
AbstractList | Context.
Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted during inspiral potentially allow one to detect DM spikes around black holes. This is because the dynamical friction force experienced by the inspiralling black hole alters the orbital period and thus the gravitational wave signal.
Aims.
The dynamical friction arising from DM can potentially differ from the collisionless case when DM is subject to self-interactions. This paper aims to understand how self-interactions impact dynamical friction.
Methods.
To study the dynamical friction force, we use idealised
N
-body simulations, where we include self-interacting dark matter.
Results.
We find that the dynamical friction force for inspiralling black holes would be typically enhanced by DM self-interactions compared to a collisionless medium (ignoring differences in the DM density). At lower velocities below the sound speed, we find that the dynamical friction force can be reduced by the presence of self-interactions.
Conclusions.
DM self-interactions have a significant effect on the dynamical friction for black hole mergers. Assuming the Chandrasekhar formula may underpredict the deceleration due to dynamical friction. |
Author | Fischer, Moritz S. Sagunski, Laura |
Author_xml | – sequence: 1 givenname: Moritz S. orcidid: 0000-0002-6619-4480 surname: Fischer fullname: Fischer, Moritz S. – sequence: 2 givenname: Laura orcidid: 0000-0002-3506-3306 surname: Sagunski fullname: Sagunski, Laura |
BookMark | eNp9T7tOAzEQtFCQuAS-gOZ-wMSPPR8uUXgEKRIN1Naez0aGeyDbTf4en0ApKKh2drSzM7Mmq2meHCHXnN1w1vAtYwyokopvBRPQcMngjFQcpKCsBbUi1enigqxT-iir4LeyInB_nHAMFofax2BzmKcC5rFObvA0TNlFLOz0XvcYP-sRc2EuybnHIbmr37khb48Pr7s9Pbw8Pe_uDtQKDZmi1d41i3MjJGrtAftOFkZBgQqYB9l1vQYruWhby7RA31ulfNOxHlFuiP75a-OcUnTe2JBxyZgjhsFwZpb6ZrEwSzlzql-08o_2K4YR4_Ff1Tdt7F6W |
CitedBy_id | crossref_primary_10_3847_1538_4357_adb621 crossref_primary_10_1103_PhysRevD_110_123509 crossref_primary_10_1051_0004_6361_202449849 crossref_primary_10_1051_0004_6361_202452551 crossref_primary_10_1088_1361_6382_ad8a11 |
Cites_doi | 10.1016/j.physrep.2017.11.004 10.1093/nsr/nwx116 10.1051/0004-6361/202449872 10.1103/PhysRevD.106.043507 10.1103/PhysRevD.97.064003 10.1103/PhysRevD.107.103033 10.1088/1674-1137/abc680 10.1088/1475-7516/2020/01/001 10.3390/universe8030179 10.1103/PhysRevD.88.063522 10.1103/PhysRevD.89.104059 10.1103/PhysRevD.109.015022 10.1093/mnras/stab3241 10.1103/PhysRevD.105.043009 10.3847/2041-8213/ad50cd 10.3847/2041-8213/acdd02 10.1103/PhysRevD.104.043013 10.3847/2041-8213/ad2465 10.1103/PhysRevD.109.123041 10.1093/mnras/stz1815 10.1103/PhysRevD.107.083003 10.1088/1475-7516/2023/05/027 10.1093/mnras/stae664 10.1103/PhysRevLett.83.1719 10.1103/PhysRevLett.113.151302 10.1093/mnras/stad1705 10.1086/144517 10.1093/mnras/stac1294 10.1038/scientificamerican1081-74 10.1093/mnras/stac2207 10.1103/PhysRevD.105.063029 10.1086/378086 10.1088/1475-7516/2022/09/077 10.1093/mnras/stae2038 10.1103/PhysRevD.103.035006 10.1515/9781400828722 10.1093/mnras/stad1786 10.1109/MCSE.2007.55 10.3847/2041-8213/aa91c9 10.1103/PhysRevD.105.063523 10.1093/mnras/stae1989 10.1093/mnras/stu1713 10.1111/j.1365-2966.2012.21439.x 10.1103/PhysRevD.108.L121502 10.1103/PhysRevD.108.103517 10.1093/mnras/stac1094 10.1093/mnras/stv2443 10.1093/mnras/stab1198 10.1086/182131 10.1103/PhysRevD.64.043504 10.1103/PhysRevLett.84.3760 10.1093/mnras/stz2613 10.1103/PhysRevD.109.043504 10.1093/mnras/stac2521 10.1103/PhysRevD.72.103517 10.1111/j.1365-2966.2011.18684.x 10.1088/0004-637X/804/2/131 10.1086/519302 10.1103/PhysRevD.91.044045 10.1103/PhysRevD.98.023021 10.1051/0004-6361:20041175 10.1103/PhysRevD.102.083006 10.1086/158202 10.3847/1538-4357/acbd49 10.1111/j.1365-2966.2005.09630.x 10.1088/1475-7516/2021/01/024 10.1103/PhysRevD.109.103526 10.1093/mnras/stab3544 10.1086/181708 10.1093/mnras/stz1816 10.1051/0004-6361/202449849 10.1086/306858 10.1093/mnras/stad2717 10.1111/j.1365-2966.2005.09655.x 10.1051/0004-6361/202346844 10.1103/PhysRevD.89.023506 10.1093/mnras/stae699 10.1103/PhysRevLett.133.021401 10.1088/0004-637X/774/1/48 10.1002/andp.19163540702 10.1111/j.1365-2966.2010.17711.x 10.3847/2041-8213/acdac6 10.1103/PhysRevLett.116.061102 10.1007/s40065-021-00357-7 10.1016/j.dark.2023.101291 10.3847/2041-8213/ad394b 10.1093/mnras/stt2097 10.1088/1475-7516/2024/06/024 10.1038/s41586-020-2649-2 10.1103/PhysRevD.109.063501 10.1103/PhysRevLett.119.161101 10.1093/mnras/181.3.375 10.1051/0004-6361/202243205 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1051/0004-6361/202451304 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202451304 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 |
ID | FETCH-LOGICAL-c294t-ac9fe50004523a99f4adb3e5064f4a640f43bbd94c31277c092afdc66f5b0daa3 |
ISSN | 0004-6361 |
IngestDate | Tue Jul 01 02:08:22 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-ac9fe50004523a99f4adb3e5064f4a640f43bbd94c31277c092afdc66f5b0daa3 |
ORCID | 0000-0002-6619-4480 0000-0002-3506-3306 |
OpenAccessLink | https://www.aanda.org/10.1051/0004-6361/202451304/pdf |
ParticipantIDs | crossref_citationtrail_10_1051_0004_6361_202451304 crossref_primary_10_1051_0004_6361_202451304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2024 |
References | Hunter (R58) 2007; 9 Ullio (R98) 2001; 64 Yang (R103) 2023; 946 Springel (R92) 2005; 364 R21 R23 Despali (R35) 2022; 516 Pollack (R81) 2015; 804 Koda (R70) 2011; 415 R28 Alvarez (R9) 2021; 104 Abbott (R4) 2019; 9 R5 Beck (R15) 2016; 455 Vogelsberger (R99) 2014; 444 Fischer (R44) 2022; 516 Chan (R29) 2024; 962 Mukherjee (R78) 2024; 533 Bertone (R20) 2005; 72 Fischer (R47) 2024; 529 Harris (R54) 2020; 585 R33 Hulse (R57) 1975; 195 Kahlhoefer (R65) 2014; 437 Outmezguine (R80) 2023; 523 R37 Fischer (R46) 2024; 689 Gingold (R49) 1977; 181 Wang (R100) 2022; 105 Fitts (R48) 2019; 490 Just (R63) 2010; 411 Traykova (R96) 2023; 108 Coogan (R32) 2022; 105 Weisberg (R101) 1981; 245 Sagunski (R88) 2021; 2021 Fischer (R45) 2023; 523 Spergel (R91) 2000; 84 Alachkar (R7) 2023; 107 Abbott (R2) 2017; 119 Sabarish (R86) 2024; 529 Kong (R71) 2024; 965 Eckert (R38) 2022; 666 Gondolo (R51) 1999; 83 Fields (R41) 2014; 113 Boudon (R26) 2023; 108 Baiotti (R13) 2022; 11 Tang (R94) 2021; 45 Abbott (R3) 2017; 848 Antoniadis (R12) 2023; 678 Bettwieser (R22) 1986; 161 Taylor (R95) 1976; 206 Agazie (R6) 2023; 951 Ragagnin (R82) 2024; 687 Fischer (R43) 2021; 510 Groth (R53) 2023; 526 Glennon (R50) 2024; 109 Hu (R56) 2017; 4 R66 Dehnen (R34) 2012; 425 R68 Barausse (R14) 2014; 89 Yang (R104) 2024; 533 Just (R62) 1986; 164 Monaghan (R76) 1985; 149 Gopika (R52) 2023; 42 Boey (R24) 2024; 109 Berezhiani (R18) 2024; 2024 Abbott (R1) 2016; 116 Just (R60) 1990; 232 Ostriker (R79) 1999; 513 R77 Reardon (R83) 2023; 951 Becker (R17) 2022; 105 Alonso-Álvarez (R8) 2024; 133 Kim (R69) 2007; 665 Fischer (R42) 2021; 505 Zeng (R106) 2022; 513 Boudon (R27) 2024; 109 Andrade (R11) 2021; 510 Shapiro (R90) 2014; 89 Macedo (R74) 2013; 774 Shapiro (R89) 2018; 98 Becker (R16) 2023; 107 Yue (R105) 2018; 97 Yang (R102) 2022; 2022 Tulin (R97) 2018; 730 Just (R61) 2005; 431 Dolag (R36) 2005; 364 Robertson (R85) 2019; 488 Milosavljević (R75) 2003; 596 John (R59) 2024; 109 Harvey (R55) 2019; 488 Colquhoun (R31) 2021; 103 Sadeghian (R87) 2013; 88 Szölgyén (R93) 2022; 513 Kremer (R72) 2022; 8 Zhang (R107) 2024; 968 Kadota (R64) 2024; 109 Eda (R39) 2015; 91 R10 Boudon (R25) 2022; 106 Lancaster (R73) 2020; 2020 Kavanagh (R67) 2020; 102 Chandrasekhar (R30) 1943; 97 R19 Einstein (R40) 1916; 354 Rephaeli (R84) 1980; 240 |
References_xml | – volume: 730 start-page: 1 year: 2018 ident: R97 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.11.004 – volume: 4 start-page: 685 year: 2017 ident: R56 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx116 – volume: 687 start-page: A270 year: 2024 ident: R82 publication-title: A&A doi: 10.1051/0004-6361/202449872 – volume: 106 start-page: 043507 year: 2022 ident: R25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.043507 – volume: 97 start-page: 064003 year: 2018 ident: R105 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.064003 – volume: 107 start-page: 103033 year: 2023 ident: R7 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.103033 – volume: 45 start-page: 015110 year: 2021 ident: R94 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/abc680 – ident: R10 – volume: 2020 start-page: 001 year: 2020 ident: R73 publication-title: JCAP doi: 10.1088/1475-7516/2020/01/001 – volume: 8 start-page: 179 year: 2022 ident: R72 publication-title: Universe doi: 10.3390/universe8030179 – volume: 88 start-page: 063522 year: 2013 ident: R87 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.063522 – ident: R33 – volume: 89 start-page: 104059 year: 2014 ident: R14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.104059 – volume: 161 start-page: 102 year: 1986 ident: R22 publication-title: A&A – volume: 109 start-page: 015022 year: 2024 ident: R64 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.015022 – volume: 510 start-page: 54 year: 2021 ident: R11 publication-title: MNRAS doi: 10.1093/mnras/stab3241 – ident: R68 – volume: 105 start-page: 043009 year: 2022 ident: R32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.043009 – volume: 968 start-page: L13 year: 2024 ident: R107 publication-title: ApJ doi: 10.3847/2041-8213/ad50cd – volume: 951 start-page: L6 year: 2023 ident: R83 publication-title: ApJ doi: 10.3847/2041-8213/acdd02 – volume: 104 start-page: 043013 year: 2021 ident: R9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.043013 – volume: 962 start-page: L40 year: 2024 ident: R29 publication-title: ApJ doi: 10.3847/2041-8213/ad2465 – volume: 109 start-page: 123041 year: 2024 ident: R59 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.123041 – ident: R19 – volume: 488 start-page: 3646 year: 2019 ident: R85 publication-title: MNRAS doi: 10.1093/mnras/stz1815 – volume: 107 start-page: 083003 year: 2023 ident: R16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.083003 – ident: R28 doi: 10.1088/1475-7516/2023/05/027 – volume: 529 start-page: 2032 year: 2024 ident: R86 publication-title: MNRAS doi: 10.1093/mnras/stae664 – volume: 83 start-page: 1719 year: 1999 ident: R51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1719 – volume: 113 start-page: 151302 year: 2014 ident: R41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.151302 – volume: 523 start-page: 4786 year: 2023 ident: R80 publication-title: MNRAS doi: 10.1093/mnras/stad1705 – volume: 97 start-page: 255 year: 1943 ident: R30 publication-title: ApJ doi: 10.1086/144517 – volume: 513 start-page: 5465 year: 2022 ident: R93 publication-title: MNRAS doi: 10.1093/mnras/stac1294 – volume: 245 start-page: 74 year: 1981 ident: R101 publication-title: Sci. Am. doi: 10.1038/scientificamerican1081-74 – volume: 516 start-page: 1923 year: 2022 ident: R44 publication-title: MNRAS doi: 10.1093/mnras/stac2207 – volume: 105 start-page: 063029 year: 2022 ident: R17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.063029 – volume: 596 start-page: 860 year: 2003 ident: R75 publication-title: ApJ doi: 10.1086/378086 – volume: 2022 start-page: 077 year: 2022 ident: R102 publication-title: JCAP doi: 10.1088/1475-7516/2022/09/077 – volume: 533 start-page: 4007 year: 2024 ident: R104 publication-title: MNRAS doi: 10.1093/mnras/stae2038 – volume: 103 start-page: 035006 year: 2021 ident: R31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.035006 – ident: R23 doi: 10.1515/9781400828722 – volume: 523 start-page: 5915 year: 2023 ident: R45 publication-title: MNRAS doi: 10.1093/mnras/stad1786 – volume: 9 start-page: 90 year: 2007 ident: R58 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – ident: R37 – volume: 848 start-page: L12 year: 2017 ident: R3 publication-title: ApJ doi: 10.3847/2041-8213/aa91c9 – volume: 105 start-page: 063523 year: 2022 ident: R100 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.063523 – volume: 533 start-page: 2335 year: 2024 ident: R78 publication-title: MNRAS doi: 10.1093/mnras/stae1989 – volume: 444 start-page: 3684 year: 2014 ident: R99 publication-title: MNRAS doi: 10.1093/mnras/stu1713 – volume: 425 start-page: 1068 year: 2012 ident: R34 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21439.x – volume: 108 start-page: L121502 year: 2023 ident: R96 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.L121502 – volume: 108 start-page: 103517 year: 2023 ident: R26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.103517 – volume: 164 start-page: 337 year: 1986 ident: R62 publication-title: A&A – volume: 513 start-page: 4845 year: 2022 ident: R106 publication-title: MNRAS doi: 10.1093/mnras/stac1094 – volume: 455 start-page: 2110 year: 2016 ident: R15 publication-title: MNRAS doi: 10.1093/mnras/stv2443 – volume: 505 start-page: 851 year: 2021 ident: R42 publication-title: MNRAS doi: 10.1093/mnras/stab1198 – volume: 206 start-page: L53 year: 1976 ident: R95 publication-title: ApJ doi: 10.1086/182131 – volume: 64 start-page: 043504 year: 2001 ident: R98 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.64.043504 – volume: 84 start-page: 3760 year: 2000 ident: R91 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.3760 – volume: 490 start-page: 962 year: 2019 ident: R48 publication-title: MNRAS doi: 10.1093/mnras/stz2613 – volume: 109 start-page: 043504 year: 2024 ident: R27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.043504 – volume: 516 start-page: 4543 year: 2022 ident: R35 publication-title: MNRAS doi: 10.1093/mnras/stac2521 – volume: 72 start-page: 103517 year: 2005 ident: R20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.103517 – volume: 415 start-page: 1125 year: 2011 ident: R70 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18684.x – volume: 149 start-page: 135 year: 1985 ident: R76 publication-title: A&A – volume: 804 start-page: 131 year: 2015 ident: R81 publication-title: ApJ doi: 10.1088/0004-637X/804/2/131 – volume: 665 start-page: 432 year: 2007 ident: R69 publication-title: ApJ doi: 10.1086/519302 – volume: 91 start-page: 044045 year: 2015 ident: R39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.044045 – ident: R5 – volume: 98 start-page: 023021 year: 2018 ident: R89 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.023021 – volume: 9 start-page: 031040 year: 2019 ident: R4 publication-title: Phys. Rev. X – volume: 431 start-page: 861 year: 2005 ident: R61 publication-title: A&A doi: 10.1051/0004-6361:20041175 – volume: 102 start-page: 083006 year: 2020 ident: R67 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.083006 – volume: 240 start-page: 20 year: 1980 ident: R84 publication-title: ApJ doi: 10.1086/158202 – volume: 946 start-page: 47 year: 2023 ident: R103 publication-title: ApJ doi: 10.3847/1538-4357/acbd49 – volume: 364 start-page: 753 year: 2005 ident: R36 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09630.x – volume: 2021 start-page: 024 year: 2021 ident: R88 publication-title: JCAP doi: 10.1088/1475-7516/2021/01/024 – volume: 109 start-page: 103526 year: 2024 ident: R24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.103526 – volume: 510 start-page: 4080 year: 2021 ident: R43 publication-title: MNRAS doi: 10.1093/mnras/stab3544 – volume: 195 start-page: L51 year: 1975 ident: R57 publication-title: ApJ doi: 10.1086/181708 – volume: 488 start-page: 1572 year: 2019 ident: R55 publication-title: MNRAS doi: 10.1093/mnras/stz1816 – volume: 689 start-page: A300 year: 2024 ident: R46 publication-title: A&A doi: 10.1051/0004-6361/202449849 – volume: 513 start-page: 252 year: 1999 ident: R79 publication-title: ApJ doi: 10.1086/306858 – volume: 526 start-page: 616 year: 2023 ident: R53 publication-title: MNRAS doi: 10.1093/mnras/stad2717 – volume: 364 start-page: 1105 year: 2005 ident: R92 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09655.x – volume: 678 start-page: A50 year: 2023 ident: R12 publication-title: A&A doi: 10.1051/0004-6361/202346844 – volume: 89 start-page: 023506 year: 2014 ident: R90 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.023506 – volume: 529 start-page: 2327 year: 2024 ident: R47 publication-title: MNRAS doi: 10.1093/mnras/stae699 – volume: 133 start-page: 021401 year: 2024 ident: R8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.021401 – ident: R21 – volume: 774 start-page: 48 year: 2013 ident: R74 publication-title: ApJ doi: 10.1088/0004-637X/774/1/48 – volume: 354 start-page: 769 year: 1916 ident: R40 publication-title: Ann. Phys. doi: 10.1002/andp.19163540702 – volume: 411 start-page: 653 year: 2010 ident: R63 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17711.x – volume: 951 start-page: L8 year: 2023 ident: R6 publication-title: ApJ doi: 10.3847/2041-8213/acdac6 – ident: R77 – volume: 116 start-page: 061102 year: 2016 ident: R1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – volume: 11 start-page: 105 year: 2022 ident: R13 publication-title: Arab. J. Math. doi: 10.1007/s40065-021-00357-7 – volume: 42 start-page: 101291 year: 2023 ident: R52 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2023.101291 – volume: 965 start-page: L19 year: 2024 ident: R71 publication-title: ApJ doi: 10.3847/2041-8213/ad394b – volume: 437 start-page: 2865 year: 2014 ident: R65 publication-title: MNRAS doi: 10.1093/mnras/stt2097 – volume: 2024 start-page: 024 year: 2024 ident: R18 publication-title: JCAP doi: 10.1088/1475-7516/2024/06/024 – volume: 585 start-page: 357 year: 2020 ident: R54 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 109 start-page: 063501 year: 2024 ident: R50 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.063501 – volume: 119 start-page: 161101 year: 2017 ident: R2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.161101 – ident: R66 – volume: 232 start-page: 447 year: 1990 ident: R60 publication-title: A&A – volume: 181 start-page: 375 year: 1977 ident: R49 publication-title: MNRAS doi: 10.1093/mnras/181.3.375 – volume: 666 start-page: A41 year: 2022 ident: R38 publication-title: A&A doi: 10.1051/0004-6361/202243205 |
SSID | ssj0002183 |
Score | 2.4901986 |
Snippet | Context.
Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | A299 |
Title | Dynamical friction from self-interacting dark matter |
Volume | 690 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA9-cODL4ceJeip5kHtZs6Zt2jWPix-ooBycgm_LNE1kUXdlt774cH_7ZTpttngi6ktJQzsL_c1OJpP5zTC2B0mRgnW5SI2UQoFMhe4ZJyA-BKfyyGWAbOTLq-zsRl3cprezRpcVu6TMu-blTV7JV1D1cx5XZMl-Atkg1E_4scfXXz3C_vohjI-pnTxyECdD6vld0UWm9sEJLARRUaBGd50CJvedRyibXNym7OwUA-HjR6rBBHhHkY4qFEuVsFqhgtPhtIH4cjwZli-dP90QoYG756YHNnKtoR1OiFVITJuZSCWyhCqkdy1ZRZVgimodK6zNZkZtPmvD14-pz9F_Ftn_6SmFkaQiAQVPe_3SqWZLUHPs_mplCvmC1Ul5GuFJuRqgmEEQMs8WY79DqHje53_DIoyeH-186HebglNpdBDmDoKQllPS8i6ul9n3elvA-4TxCpuzo1W2EfDhv3i_hc4q-_abRmtMBSXgjRJwVAL-Wgk4KgEnJfjBbk5Pro_ORN0KQ5hYq1KA0c6mlQMeJ6C1U1DkicVqg36YKelUkueFViaJ_OcwUsfgCpNlLs1lAZCss4XReGQ3GMfsQmNkz3n3SMmiAI386Mz2DOjoUNpNFjffYmDqOvHYruRh8A4Km2w_vPREZVLee3zrc4__ZEszVd1mC-Xk2e54X7DMdyvU_wHXllZ8 |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+friction+from+self-interacting+dark+matter&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Fischer%2C+Moritz+S.&rft.au=Sagunski%2C+Laura&rft.date=2024-10-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=690&rft.spage=A299&rft_id=info:doi/10.1051%2F0004-6361%2F202451304&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202451304 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |