Dynamical friction from self-interacting dark matter

Context. Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted during inspiral potentially allow one to detect DM spikes around black holes. This is because the dynamical friction force experienced by the ins...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 690; p. A299
Main Authors Fischer, Moritz S., Sagunski, Laura
Format Journal Article
LanguageEnglish
Published 01.10.2024
Online AccessGet full text

Cover

Loading…
Abstract Context. Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted during inspiral potentially allow one to detect DM spikes around black holes. This is because the dynamical friction force experienced by the inspiralling black hole alters the orbital period and thus the gravitational wave signal. Aims. The dynamical friction arising from DM can potentially differ from the collisionless case when DM is subject to self-interactions. This paper aims to understand how self-interactions impact dynamical friction. Methods. To study the dynamical friction force, we use idealised N -body simulations, where we include self-interacting dark matter. Results. We find that the dynamical friction force for inspiralling black holes would be typically enhanced by DM self-interactions compared to a collisionless medium (ignoring differences in the DM density). At lower velocities below the sound speed, we find that the dynamical friction force can be reduced by the presence of self-interactions. Conclusions. DM self-interactions have a significant effect on the dynamical friction for black hole mergers. Assuming the Chandrasekhar formula may underpredict the deceleration due to dynamical friction.
AbstractList Context. Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted during inspiral potentially allow one to detect DM spikes around black holes. This is because the dynamical friction force experienced by the inspiralling black hole alters the orbital period and thus the gravitational wave signal. Aims. The dynamical friction arising from DM can potentially differ from the collisionless case when DM is subject to self-interactions. This paper aims to understand how self-interactions impact dynamical friction. Methods. To study the dynamical friction force, we use idealised N -body simulations, where we include self-interacting dark matter. Results. We find that the dynamical friction force for inspiralling black holes would be typically enhanced by DM self-interactions compared to a collisionless medium (ignoring differences in the DM density). At lower velocities below the sound speed, we find that the dynamical friction force can be reduced by the presence of self-interactions. Conclusions. DM self-interactions have a significant effect on the dynamical friction for black hole mergers. Assuming the Chandrasekhar formula may underpredict the deceleration due to dynamical friction.
Author Fischer, Moritz S.
Sagunski, Laura
Author_xml – sequence: 1
  givenname: Moritz S.
  orcidid: 0000-0002-6619-4480
  surname: Fischer
  fullname: Fischer, Moritz S.
– sequence: 2
  givenname: Laura
  orcidid: 0000-0002-3506-3306
  surname: Sagunski
  fullname: Sagunski, Laura
BookMark eNp9T7tOAzEQtFCQuAS-gOZ-wMSPPR8uUXgEKRIN1Naez0aGeyDbTf4en0ApKKh2drSzM7Mmq2meHCHXnN1w1vAtYwyokopvBRPQcMngjFQcpKCsBbUi1enigqxT-iir4LeyInB_nHAMFofax2BzmKcC5rFObvA0TNlFLOz0XvcYP-sRc2EuybnHIbmr37khb48Pr7s9Pbw8Pe_uDtQKDZmi1d41i3MjJGrtAftOFkZBgQqYB9l1vQYruWhby7RA31ulfNOxHlFuiP75a-OcUnTe2JBxyZgjhsFwZpb6ZrEwSzlzql-08o_2K4YR4_Ff1Tdt7F6W
CitedBy_id crossref_primary_10_3847_1538_4357_adb621
crossref_primary_10_1103_PhysRevD_110_123509
crossref_primary_10_1051_0004_6361_202449849
crossref_primary_10_1051_0004_6361_202452551
crossref_primary_10_1088_1361_6382_ad8a11
Cites_doi 10.1016/j.physrep.2017.11.004
10.1093/nsr/nwx116
10.1051/0004-6361/202449872
10.1103/PhysRevD.106.043507
10.1103/PhysRevD.97.064003
10.1103/PhysRevD.107.103033
10.1088/1674-1137/abc680
10.1088/1475-7516/2020/01/001
10.3390/universe8030179
10.1103/PhysRevD.88.063522
10.1103/PhysRevD.89.104059
10.1103/PhysRevD.109.015022
10.1093/mnras/stab3241
10.1103/PhysRevD.105.043009
10.3847/2041-8213/ad50cd
10.3847/2041-8213/acdd02
10.1103/PhysRevD.104.043013
10.3847/2041-8213/ad2465
10.1103/PhysRevD.109.123041
10.1093/mnras/stz1815
10.1103/PhysRevD.107.083003
10.1088/1475-7516/2023/05/027
10.1093/mnras/stae664
10.1103/PhysRevLett.83.1719
10.1103/PhysRevLett.113.151302
10.1093/mnras/stad1705
10.1086/144517
10.1093/mnras/stac1294
10.1038/scientificamerican1081-74
10.1093/mnras/stac2207
10.1103/PhysRevD.105.063029
10.1086/378086
10.1088/1475-7516/2022/09/077
10.1093/mnras/stae2038
10.1103/PhysRevD.103.035006
10.1515/9781400828722
10.1093/mnras/stad1786
10.1109/MCSE.2007.55
10.3847/2041-8213/aa91c9
10.1103/PhysRevD.105.063523
10.1093/mnras/stae1989
10.1093/mnras/stu1713
10.1111/j.1365-2966.2012.21439.x
10.1103/PhysRevD.108.L121502
10.1103/PhysRevD.108.103517
10.1093/mnras/stac1094
10.1093/mnras/stv2443
10.1093/mnras/stab1198
10.1086/182131
10.1103/PhysRevD.64.043504
10.1103/PhysRevLett.84.3760
10.1093/mnras/stz2613
10.1103/PhysRevD.109.043504
10.1093/mnras/stac2521
10.1103/PhysRevD.72.103517
10.1111/j.1365-2966.2011.18684.x
10.1088/0004-637X/804/2/131
10.1086/519302
10.1103/PhysRevD.91.044045
10.1103/PhysRevD.98.023021
10.1051/0004-6361:20041175
10.1103/PhysRevD.102.083006
10.1086/158202
10.3847/1538-4357/acbd49
10.1111/j.1365-2966.2005.09630.x
10.1088/1475-7516/2021/01/024
10.1103/PhysRevD.109.103526
10.1093/mnras/stab3544
10.1086/181708
10.1093/mnras/stz1816
10.1051/0004-6361/202449849
10.1086/306858
10.1093/mnras/stad2717
10.1111/j.1365-2966.2005.09655.x
10.1051/0004-6361/202346844
10.1103/PhysRevD.89.023506
10.1093/mnras/stae699
10.1103/PhysRevLett.133.021401
10.1088/0004-637X/774/1/48
10.1002/andp.19163540702
10.1111/j.1365-2966.2010.17711.x
10.3847/2041-8213/acdac6
10.1103/PhysRevLett.116.061102
10.1007/s40065-021-00357-7
10.1016/j.dark.2023.101291
10.3847/2041-8213/ad394b
10.1093/mnras/stt2097
10.1088/1475-7516/2024/06/024
10.1038/s41586-020-2649-2
10.1103/PhysRevD.109.063501
10.1103/PhysRevLett.119.161101
10.1093/mnras/181.3.375
10.1051/0004-6361/202243205
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/0004-6361/202451304
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202451304
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
ID FETCH-LOGICAL-c294t-ac9fe50004523a99f4adb3e5064f4a640f43bbd94c31277c092afdc66f5b0daa3
ISSN 0004-6361
IngestDate Tue Jul 01 02:08:22 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-ac9fe50004523a99f4adb3e5064f4a640f43bbd94c31277c092afdc66f5b0daa3
ORCID 0000-0002-6619-4480
0000-0002-3506-3306
OpenAccessLink https://www.aanda.org/10.1051/0004-6361/202451304/pdf
ParticipantIDs crossref_citationtrail_10_1051_0004_6361_202451304
crossref_primary_10_1051_0004_6361_202451304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2024
References Hunter (R58) 2007; 9
Ullio (R98) 2001; 64
Yang (R103) 2023; 946
Springel (R92) 2005; 364
R21
R23
Despali (R35) 2022; 516
Pollack (R81) 2015; 804
Koda (R70) 2011; 415
R28
Alvarez (R9) 2021; 104
Abbott (R4) 2019; 9
R5
Beck (R15) 2016; 455
Vogelsberger (R99) 2014; 444
Fischer (R44) 2022; 516
Chan (R29) 2024; 962
Mukherjee (R78) 2024; 533
Bertone (R20) 2005; 72
Fischer (R47) 2024; 529
Harris (R54) 2020; 585
R33
Hulse (R57) 1975; 195
Kahlhoefer (R65) 2014; 437
Outmezguine (R80) 2023; 523
R37
Fischer (R46) 2024; 689
Gingold (R49) 1977; 181
Wang (R100) 2022; 105
Fitts (R48) 2019; 490
Just (R63) 2010; 411
Traykova (R96) 2023; 108
Coogan (R32) 2022; 105
Weisberg (R101) 1981; 245
Sagunski (R88) 2021; 2021
Fischer (R45) 2023; 523
Spergel (R91) 2000; 84
Alachkar (R7) 2023; 107
Abbott (R2) 2017; 119
Sabarish (R86) 2024; 529
Kong (R71) 2024; 965
Eckert (R38) 2022; 666
Gondolo (R51) 1999; 83
Fields (R41) 2014; 113
Boudon (R26) 2023; 108
Baiotti (R13) 2022; 11
Tang (R94) 2021; 45
Abbott (R3) 2017; 848
Antoniadis (R12) 2023; 678
Bettwieser (R22) 1986; 161
Taylor (R95) 1976; 206
Agazie (R6) 2023; 951
Ragagnin (R82) 2024; 687
Fischer (R43) 2021; 510
Groth (R53) 2023; 526
Glennon (R50) 2024; 109
Hu (R56) 2017; 4
R66
Dehnen (R34) 2012; 425
R68
Barausse (R14) 2014; 89
Yang (R104) 2024; 533
Just (R62) 1986; 164
Monaghan (R76) 1985; 149
Gopika (R52) 2023; 42
Boey (R24) 2024; 109
Berezhiani (R18) 2024; 2024
Abbott (R1) 2016; 116
Just (R60) 1990; 232
Ostriker (R79) 1999; 513
R77
Reardon (R83) 2023; 951
Becker (R17) 2022; 105
Alonso-Álvarez (R8) 2024; 133
Kim (R69) 2007; 665
Fischer (R42) 2021; 505
Zeng (R106) 2022; 513
Boudon (R27) 2024; 109
Andrade (R11) 2021; 510
Shapiro (R90) 2014; 89
Macedo (R74) 2013; 774
Shapiro (R89) 2018; 98
Becker (R16) 2023; 107
Yue (R105) 2018; 97
Yang (R102) 2022; 2022
Tulin (R97) 2018; 730
Just (R61) 2005; 431
Dolag (R36) 2005; 364
Robertson (R85) 2019; 488
Milosavljević (R75) 2003; 596
John (R59) 2024; 109
Harvey (R55) 2019; 488
Colquhoun (R31) 2021; 103
Sadeghian (R87) 2013; 88
Szölgyén (R93) 2022; 513
Kremer (R72) 2022; 8
Zhang (R107) 2024; 968
Kadota (R64) 2024; 109
Eda (R39) 2015; 91
R10
Boudon (R25) 2022; 106
Lancaster (R73) 2020; 2020
Kavanagh (R67) 2020; 102
Chandrasekhar (R30) 1943; 97
R19
Einstein (R40) 1916; 354
Rephaeli (R84) 1980; 240
References_xml – volume: 730
  start-page: 1
  year: 2018
  ident: R97
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2017.11.004
– volume: 4
  start-page: 685
  year: 2017
  ident: R56
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx116
– volume: 687
  start-page: A270
  year: 2024
  ident: R82
  publication-title: A&A
  doi: 10.1051/0004-6361/202449872
– volume: 106
  start-page: 043507
  year: 2022
  ident: R25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.043507
– volume: 97
  start-page: 064003
  year: 2018
  ident: R105
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.064003
– volume: 107
  start-page: 103033
  year: 2023
  ident: R7
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.103033
– volume: 45
  start-page: 015110
  year: 2021
  ident: R94
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/abc680
– ident: R10
– volume: 2020
  start-page: 001
  year: 2020
  ident: R73
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/01/001
– volume: 8
  start-page: 179
  year: 2022
  ident: R72
  publication-title: Universe
  doi: 10.3390/universe8030179
– volume: 88
  start-page: 063522
  year: 2013
  ident: R87
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.063522
– ident: R33
– volume: 89
  start-page: 104059
  year: 2014
  ident: R14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.104059
– volume: 161
  start-page: 102
  year: 1986
  ident: R22
  publication-title: A&A
– volume: 109
  start-page: 015022
  year: 2024
  ident: R64
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.015022
– volume: 510
  start-page: 54
  year: 2021
  ident: R11
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3241
– ident: R68
– volume: 105
  start-page: 043009
  year: 2022
  ident: R32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.043009
– volume: 968
  start-page: L13
  year: 2024
  ident: R107
  publication-title: ApJ
  doi: 10.3847/2041-8213/ad50cd
– volume: 951
  start-page: L6
  year: 2023
  ident: R83
  publication-title: ApJ
  doi: 10.3847/2041-8213/acdd02
– volume: 104
  start-page: 043013
  year: 2021
  ident: R9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.043013
– volume: 962
  start-page: L40
  year: 2024
  ident: R29
  publication-title: ApJ
  doi: 10.3847/2041-8213/ad2465
– volume: 109
  start-page: 123041
  year: 2024
  ident: R59
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.123041
– ident: R19
– volume: 488
  start-page: 3646
  year: 2019
  ident: R85
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1815
– volume: 107
  start-page: 083003
  year: 2023
  ident: R16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.083003
– ident: R28
  doi: 10.1088/1475-7516/2023/05/027
– volume: 529
  start-page: 2032
  year: 2024
  ident: R86
  publication-title: MNRAS
  doi: 10.1093/mnras/stae664
– volume: 83
  start-page: 1719
  year: 1999
  ident: R51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1719
– volume: 113
  start-page: 151302
  year: 2014
  ident: R41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.151302
– volume: 523
  start-page: 4786
  year: 2023
  ident: R80
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1705
– volume: 97
  start-page: 255
  year: 1943
  ident: R30
  publication-title: ApJ
  doi: 10.1086/144517
– volume: 513
  start-page: 5465
  year: 2022
  ident: R93
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1294
– volume: 245
  start-page: 74
  year: 1981
  ident: R101
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1081-74
– volume: 516
  start-page: 1923
  year: 2022
  ident: R44
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2207
– volume: 105
  start-page: 063029
  year: 2022
  ident: R17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.063029
– volume: 596
  start-page: 860
  year: 2003
  ident: R75
  publication-title: ApJ
  doi: 10.1086/378086
– volume: 2022
  start-page: 077
  year: 2022
  ident: R102
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/09/077
– volume: 533
  start-page: 4007
  year: 2024
  ident: R104
  publication-title: MNRAS
  doi: 10.1093/mnras/stae2038
– volume: 103
  start-page: 035006
  year: 2021
  ident: R31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.035006
– ident: R23
  doi: 10.1515/9781400828722
– volume: 523
  start-page: 5915
  year: 2023
  ident: R45
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1786
– volume: 9
  start-page: 90
  year: 2007
  ident: R58
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: R37
– volume: 848
  start-page: L12
  year: 2017
  ident: R3
  publication-title: ApJ
  doi: 10.3847/2041-8213/aa91c9
– volume: 105
  start-page: 063523
  year: 2022
  ident: R100
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.063523
– volume: 533
  start-page: 2335
  year: 2024
  ident: R78
  publication-title: MNRAS
  doi: 10.1093/mnras/stae1989
– volume: 444
  start-page: 3684
  year: 2014
  ident: R99
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1713
– volume: 425
  start-page: 1068
  year: 2012
  ident: R34
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21439.x
– volume: 108
  start-page: L121502
  year: 2023
  ident: R96
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.L121502
– volume: 108
  start-page: 103517
  year: 2023
  ident: R26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.103517
– volume: 164
  start-page: 337
  year: 1986
  ident: R62
  publication-title: A&A
– volume: 513
  start-page: 4845
  year: 2022
  ident: R106
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1094
– volume: 455
  start-page: 2110
  year: 2016
  ident: R15
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2443
– volume: 505
  start-page: 851
  year: 2021
  ident: R42
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1198
– volume: 206
  start-page: L53
  year: 1976
  ident: R95
  publication-title: ApJ
  doi: 10.1086/182131
– volume: 64
  start-page: 043504
  year: 2001
  ident: R98
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.64.043504
– volume: 84
  start-page: 3760
  year: 2000
  ident: R91
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.3760
– volume: 490
  start-page: 962
  year: 2019
  ident: R48
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2613
– volume: 109
  start-page: 043504
  year: 2024
  ident: R27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.043504
– volume: 516
  start-page: 4543
  year: 2022
  ident: R35
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2521
– volume: 72
  start-page: 103517
  year: 2005
  ident: R20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.103517
– volume: 415
  start-page: 1125
  year: 2011
  ident: R70
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18684.x
– volume: 149
  start-page: 135
  year: 1985
  ident: R76
  publication-title: A&A
– volume: 804
  start-page: 131
  year: 2015
  ident: R81
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/2/131
– volume: 665
  start-page: 432
  year: 2007
  ident: R69
  publication-title: ApJ
  doi: 10.1086/519302
– volume: 91
  start-page: 044045
  year: 2015
  ident: R39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.044045
– ident: R5
– volume: 98
  start-page: 023021
  year: 2018
  ident: R89
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.023021
– volume: 9
  start-page: 031040
  year: 2019
  ident: R4
  publication-title: Phys. Rev. X
– volume: 431
  start-page: 861
  year: 2005
  ident: R61
  publication-title: A&A
  doi: 10.1051/0004-6361:20041175
– volume: 102
  start-page: 083006
  year: 2020
  ident: R67
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.083006
– volume: 240
  start-page: 20
  year: 1980
  ident: R84
  publication-title: ApJ
  doi: 10.1086/158202
– volume: 946
  start-page: 47
  year: 2023
  ident: R103
  publication-title: ApJ
  doi: 10.3847/1538-4357/acbd49
– volume: 364
  start-page: 753
  year: 2005
  ident: R36
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09630.x
– volume: 2021
  start-page: 024
  year: 2021
  ident: R88
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/01/024
– volume: 109
  start-page: 103526
  year: 2024
  ident: R24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.103526
– volume: 510
  start-page: 4080
  year: 2021
  ident: R43
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3544
– volume: 195
  start-page: L51
  year: 1975
  ident: R57
  publication-title: ApJ
  doi: 10.1086/181708
– volume: 488
  start-page: 1572
  year: 2019
  ident: R55
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1816
– volume: 689
  start-page: A300
  year: 2024
  ident: R46
  publication-title: A&A
  doi: 10.1051/0004-6361/202449849
– volume: 513
  start-page: 252
  year: 1999
  ident: R79
  publication-title: ApJ
  doi: 10.1086/306858
– volume: 526
  start-page: 616
  year: 2023
  ident: R53
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2717
– volume: 364
  start-page: 1105
  year: 2005
  ident: R92
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09655.x
– volume: 678
  start-page: A50
  year: 2023
  ident: R12
  publication-title: A&A
  doi: 10.1051/0004-6361/202346844
– volume: 89
  start-page: 023506
  year: 2014
  ident: R90
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.023506
– volume: 529
  start-page: 2327
  year: 2024
  ident: R47
  publication-title: MNRAS
  doi: 10.1093/mnras/stae699
– volume: 133
  start-page: 021401
  year: 2024
  ident: R8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.133.021401
– ident: R21
– volume: 774
  start-page: 48
  year: 2013
  ident: R74
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/1/48
– volume: 354
  start-page: 769
  year: 1916
  ident: R40
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19163540702
– volume: 411
  start-page: 653
  year: 2010
  ident: R63
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17711.x
– volume: 951
  start-page: L8
  year: 2023
  ident: R6
  publication-title: ApJ
  doi: 10.3847/2041-8213/acdac6
– ident: R77
– volume: 116
  start-page: 061102
  year: 2016
  ident: R1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
– volume: 11
  start-page: 105
  year: 2022
  ident: R13
  publication-title: Arab. J. Math.
  doi: 10.1007/s40065-021-00357-7
– volume: 42
  start-page: 101291
  year: 2023
  ident: R52
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2023.101291
– volume: 965
  start-page: L19
  year: 2024
  ident: R71
  publication-title: ApJ
  doi: 10.3847/2041-8213/ad394b
– volume: 437
  start-page: 2865
  year: 2014
  ident: R65
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2097
– volume: 2024
  start-page: 024
  year: 2024
  ident: R18
  publication-title: JCAP
  doi: 10.1088/1475-7516/2024/06/024
– volume: 585
  start-page: 357
  year: 2020
  ident: R54
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 109
  start-page: 063501
  year: 2024
  ident: R50
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.063501
– volume: 119
  start-page: 161101
  year: 2017
  ident: R2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.161101
– ident: R66
– volume: 232
  start-page: 447
  year: 1990
  ident: R60
  publication-title: A&A
– volume: 181
  start-page: 375
  year: 1977
  ident: R49
  publication-title: MNRAS
  doi: 10.1093/mnras/181.3.375
– volume: 666
  start-page: A41
  year: 2022
  ident: R38
  publication-title: A&A
  doi: 10.1051/0004-6361/202243205
SSID ssj0002183
Score 2.4901986
Snippet Context. Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage A299
Title Dynamical friction from self-interacting dark matter
Volume 690
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA9-cODL4ceJeip5kHtZs6Zt2jWPix-ooBycgm_LNE1kUXdlt774cH_7ZTpttngi6ktJQzsL_c1OJpP5zTC2B0mRgnW5SI2UQoFMhe4ZJyA-BKfyyGWAbOTLq-zsRl3cprezRpcVu6TMu-blTV7JV1D1cx5XZMl-Atkg1E_4scfXXz3C_vohjI-pnTxyECdD6vld0UWm9sEJLARRUaBGd50CJvedRyibXNym7OwUA-HjR6rBBHhHkY4qFEuVsFqhgtPhtIH4cjwZli-dP90QoYG756YHNnKtoR1OiFVITJuZSCWyhCqkdy1ZRZVgimodK6zNZkZtPmvD14-pz9F_Ftn_6SmFkaQiAQVPe_3SqWZLUHPs_mplCvmC1Ul5GuFJuRqgmEEQMs8WY79DqHje53_DIoyeH-186HebglNpdBDmDoKQllPS8i6ul9n3elvA-4TxCpuzo1W2EfDhv3i_hc4q-_abRmtMBSXgjRJwVAL-Wgk4KgEnJfjBbk5Pro_ORN0KQ5hYq1KA0c6mlQMeJ6C1U1DkicVqg36YKelUkueFViaJ_OcwUsfgCpNlLs1lAZCss4XReGQ3GMfsQmNkz3n3SMmiAI386Mz2DOjoUNpNFjffYmDqOvHYruRh8A4Km2w_vPREZVLee3zrc4__ZEszVd1mC-Xk2e54X7DMdyvU_wHXllZ8
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+friction+from+self-interacting+dark+matter&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Fischer%2C+Moritz+S.&rft.au=Sagunski%2C+Laura&rft.date=2024-10-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=690&rft.spage=A299&rft_id=info:doi/10.1051%2F0004-6361%2F202451304&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202451304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon