A Novel Homomorphic Encryption and Consortium Blockchain-based Hybrid Deep Learning Model for Industrial Internet of Medical Things

Securing Electronic Medical Records (EMRs) is one of the most critical applications of cryptography over the Internet due to the value and importance of data contained in such EMRs. Although blockchain-based healthcare systems can provide security, privacy, and immutability to EMRs, several outstand...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 10; no. 5; pp. 1 - 18
Main Authors Ali, Aitizaz, Pasha, Muhammad Fermi, Guerrieri, Antonio, Guzzo, Antonella, Sun, Xiaobing, Saeed, Aamir, Hussain, Amir, Fortino, Giancarlo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Securing Electronic Medical Records (EMRs) is one of the most critical applications of cryptography over the Internet due to the value and importance of data contained in such EMRs. Although blockchain-based healthcare systems can provide security, privacy, and immutability to EMRs, several outstanding security and latency issues are associated with existing schemes. For example, some researchers have used the blockchain as a storage tool which increases delay and adversely affects the blockchain performance since it stores a copy of each transaction. A distributed ledger also requires appropriate space and computational power with increased data size. In addition, existing healthcare-based approaches usually rely on centralized servers connected to clouds, which are vulnerable to denial of service (DoS), distributed DoS (DDoS), and collusion attacks. This paper proposes a novel hybrid-deep learning-based homomorphic encryption (HE) model for the Industrial Internet of Medical Things (IIoMT) to cope with such challenges using a consortium blockchain. Integrating HE with the proposed IIoMT system is a vital contribution of this work. The use of HE while outsourcing to the cloud the storage provides a unique facility to perform any statistical and machine learning operation on the encrypted EMR data, hence providing resistance to collusion and phishing attacks. Our proposed model uses a pre-trained hybrid deep learning model in the cloud and deploys the trained model into blockchain-based edge devices in order to classify and train local models using EMRs. This is further conditioned on the private data of each edge and IoT device connected with the consortium blockchain. All local models obtained are aggregated to the cloud to update a global model, which is finally disseminated to the edge nodes. Our proposed approach provides more privacy and security than conventional models and can deliver high efficiency and low end-to-end latency for users. Comparative simulation analysis with state-of-the-art approaches is carried out using benchmark performance metrics, which show that our proposed model provides enhanced security, efficiency, and transparency.
AbstractList Securing Electronic Medical Records (EMRs) is one of the most critical applications of cryptography over the Internet due to the value and importance of data contained in such EMRs. Although blockchain-based healthcare systems can provide security, privacy, and immutability to EMRs, several outstanding security and latency issues are associated with existing schemes. For example, some researchers have used the blockchain as a storage tool which increases delay and adversely affects the blockchain performance since it stores a copy of each transaction. A distributed ledger also requires appropriate space and computational power with increased data size. In addition, existing healthcare-based approaches usually rely on centralized servers connected to clouds, which are vulnerable to denial of service (DoS), distributed DoS (DDoS), and collusion attacks. This paper proposes a novel hybrid-deep learning-based homomorphic encryption (HE) model for the Industrial Internet of Medical Things (IIoMT) to cope with such challenges using a consortium blockchain. Integrating HE with the proposed IIoMT system is a vital contribution of this work. The use of HE while outsourcing to the cloud the storage provides a unique facility to perform any statistical and machine learning operation on the encrypted EMR data, hence providing resistance to collusion and phishing attacks. Our proposed model uses a pre-trained hybrid deep learning model in the cloud and deploys the trained model into blockchain-based edge devices in order to classify and train local models using EMRs. This is further conditioned on the private data of each edge and IoT device connected with the consortium blockchain. All local models obtained are aggregated to the cloud to update a global model, which is finally disseminated to the edge nodes. Our proposed approach provides more privacy and security than conventional models and can deliver high efficiency and low end-to-end latency for users. Comparative simulation analysis with state-of-the-art approaches is carried out using benchmark performance metrics, which show that our proposed model provides enhanced security, efficiency, and transparency.
Author Ali, Aitizaz
Pasha, Muhammad Fermi
Hussain, Amir
Saeed, Aamir
Guzzo, Antonella
Fortino, Giancarlo
Guerrieri, Antonio
Sun, Xiaobing
Author_xml – sequence: 1
  givenname: Aitizaz
  orcidid: 0000-0002-4853-5093
  surname: Ali
  fullname: Ali, Aitizaz
  organization: School of IT, UNITAR International University, Kelana Jaya, Malaysia
– sequence: 2
  givenname: Muhammad Fermi
  orcidid: 0000-0002-9848-8950
  surname: Pasha
  fullname: Pasha, Muhammad Fermi
  organization: School of IT, Monash University, Subang Jaya, Malaysia
– sequence: 3
  givenname: Antonio
  orcidid: 0000-0003-1469-9484
  surname: Guerrieri
  fullname: Guerrieri, Antonio
  organization: ICAR-CNR - Institute for high performance computing and networking - National Research Council of Italy, Rende (CS), Italy
– sequence: 4
  givenname: Antonella
  orcidid: 0000-0003-3159-0536
  surname: Guzzo
  fullname: Guzzo, Antonella
  organization: Dept. of Computer, Modeling, Electronic, and System Engineering, University of Calabria, Rende (CS), Italy
– sequence: 5
  givenname: Xiaobing
  orcidid: 0000-0001-5165-5080
  surname: Sun
  fullname: Sun, Xiaobing
  organization: Yangzhou University, China
– sequence: 6
  givenname: Aamir
  surname: Saeed
  fullname: Saeed, Aamir
  organization: Department of Computer Engineering, UET Jalozai Campus, Peshawar,Pakistan
– sequence: 7
  givenname: Amir
  surname: Hussain
  fullname: Hussain, Amir
  organization: School of Computing, Edinburgh Napier University, Scotland, U.K
– sequence: 8
  givenname: Giancarlo
  orcidid: 0000-0002-4039-891X
  surname: Fortino
  fullname: Fortino, Giancarlo
  organization: Dept. of Computer, Modeling, Electronic, and System Engineering, University of Calabria, Rende (CS), Italy
BookMark eNp9kU1rGzEQhkVJoGmaH1DoQdDzOvra1eqYum4dcJJDHOht0WpHtdK1tJXkgs_949XiHEIPZQ7zwfvOwDPv0JkPHhD6QMmCUqKut_ePqwUjjC84a2siyRt0wTgXFWfq-9lcM1mJRsm36CqlZ0IIZW3DOb9Af27wffgNI16HfYk47ZzBK2_iccoueKz9gJfBpxCzO-zx5zGYn2anna96nWDA62Mf3YC_AEx4Azp653_guzCUjTZEfOuHQ8rR6bGUGaKHjIPFdzA4U2bbXZGn9-jc6jHB1Uu-RE9fV9vluto8fLtd3mwqw5TIle7bdpCaqMZQI4BrS6yhLfDaikbWRhlDWEOFtMYYq4DVStOB9rYXkpWWX6JPp71TDL8OkHL3HA7Rl5NdwdEIRWRDioqeVCaGlCLYbopur-Oxo6SbcXcz7m7G3b3gLh75j8e4rGeAOWo3_tf58eR0APDqEq2ZKB_6C8uzkQ8
CODEN ITNSD5
CitedBy_id crossref_primary_10_3390_s23167162
crossref_primary_10_3390_a16080366
crossref_primary_10_3390_informatics11030047
crossref_primary_10_3390_math12101481
crossref_primary_10_3390_s23177476
crossref_primary_10_1016_j_engappai_2023_107831
crossref_primary_10_1016_j_compeleceng_2024_109737
crossref_primary_10_3390_info15110723
crossref_primary_10_1016_j_sysarc_2024_103132
crossref_primary_10_1007_s11227_024_06782_7
crossref_primary_10_1007_s42979_024_03116_5
crossref_primary_10_3390_app15063225
crossref_primary_10_1109_JIOT_2024_3487154
crossref_primary_10_1016_j_eswa_2024_124151
crossref_primary_10_1109_TAP_2024_3349782
crossref_primary_10_1002_spy2_460
crossref_primary_10_1109_ACCESS_2025_3535821
crossref_primary_10_3390_electronics13152962
crossref_primary_10_1016_j_heliyon_2024_e34458
crossref_primary_10_3390_s23187740
crossref_primary_10_3390_sym15091627
Cites_doi 10.3390/s22020528
10.3390/s22062112
10.1007/978-3-030-23813-1_16
10.1145/3577926
10.1109/JIOT.2023.3268278
10.1016/j.future.2022.07.012
10.1109/TEM.2019.2928280
10.1109/icc.2011.5962757
10.1109/ACCESS.2020.2968985
10.1109/TNSE.2019.2961932
10.1109/TNSE.2020.3040446
10.1145/3462763
10.1109/ACCESS.2020.2977048
10.1155/2020/8832341
10.1109/OJCS.2021.3070714
10.1109/MCE.2021.3140048
10.1007/978-3-319-60055-0_12
10.1109/ACCESS.2021.3118642
10.1109/TII.2021.3051607
10.1109/TII.2022.3161631
10.1109/TNSE.2022.3227317
10.1109/TII.2020.3007817
10.1002/ett.4502
10.3390/app11219999
10.1016/j.compeleceng.2021.107209
10.1109/OBD.2016.11
10.1109/JIOT.2020.3030689
10.1109/TIFS.2021.3107146
10.1109/JIOT.2021.3058946
10.1109/TEM.2019.2956897
10.1109/ACCESS.2022.3177211
10.1109/JBHI.2022.3143576
10.1109/TEM.2020.3013507
10.1109/IJCNN52387.2021.9534453
10.1109/TETC.2020.2993032
10.1109/TNSE.2022.3168025
10.1109/TVT.2021.3058689
10.1016/j.irbm.2021.05.003
10.1007/s00521-020-05129-6
10.1109/TNSE.2021.3050781
10.1007/s10916-018-0993-7
10.1109/TCSS.2022.3186945
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2023.3285070
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 18
ExternalDocumentID 10_1109_TNSE_2023_3285070
10152463
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-ab88d7a096c1c4e3af0fc18e35f4675c9cc026147fcccf9e259a1d1bfb4729e23
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 08:23:34 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Tue Jul 01 03:10:47 EDT 2025
Wed Aug 27 02:14:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-ab88d7a096c1c4e3af0fc18e35f4675c9cc026147fcccf9e259a1d1bfb4729e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9848-8950
0000-0002-4853-5093
0000-0003-3159-0536
0000-0001-5165-5080
0000-0002-4039-891X
0000-0003-1469-9484
PQID 2866490760
PQPubID 2040409
PageCount 18
ParticipantIDs crossref_primary_10_1109_TNSE_2023_3285070
proquest_journals_2866490760
ieee_primary_10152463
crossref_citationtrail_10_1109_TNSE_2023_3285070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
landuyt (ref40) 2021
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
chen (ref8) 2020; 31
miriam (ref38) 2023; 35
References_xml – volume: 35
  year: 2023
  ident: ref38
  article-title: Secured cyber security algorithm for healthcare system using blockchain technology
  publication-title: Intell Automat Soft Comput
– ident: ref10
  doi: 10.3390/s22020528
– ident: ref7
  doi: 10.3390/s22062112
– ident: ref44
  doi: 10.1007/978-3-030-23813-1_16
– ident: ref37
  doi: 10.1145/3577926
– ident: ref36
  doi: 10.1109/JIOT.2023.3268278
– ident: ref16
  doi: 10.1016/j.future.2022.07.012
– ident: ref1
  doi: 10.1109/TEM.2019.2928280
– ident: ref4
  doi: 10.1109/icc.2011.5962757
– ident: ref2
  doi: 10.1109/ACCESS.2020.2968985
– ident: ref28
  doi: 10.1109/TNSE.2019.2961932
– volume: 31
  start-page: 2430
  year: 2020
  ident: ref8
  article-title: Label-less learning for emotion cognition
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref14
  doi: 10.1109/TNSE.2020.3040446
– ident: ref5
  doi: 10.1145/3462763
– ident: ref11
  doi: 10.1109/ACCESS.2020.2977048
– ident: ref21
  doi: 10.1155/2020/8832341
– ident: ref12
  doi: 10.1109/OJCS.2021.3070714
– ident: ref34
  doi: 10.1109/MCE.2021.3140048
– ident: ref6
  doi: 10.1007/978-3-319-60055-0_12
– ident: ref19
  doi: 10.1109/ACCESS.2021.3118642
– ident: ref43
  doi: 10.1109/TII.2021.3051607
– ident: ref25
  doi: 10.1109/TII.2022.3161631
– ident: ref30
  doi: 10.1109/TNSE.2022.3227317
– ident: ref3
  doi: 10.1109/TII.2020.3007817
– ident: ref39
  doi: 10.1002/ett.4502
– ident: ref9
  doi: 10.3390/app11219999
– ident: ref15
  doi: 10.1016/j.compeleceng.2021.107209
– ident: ref22
  doi: 10.1109/OBD.2016.11
– ident: ref17
  doi: 10.1109/JIOT.2020.3030689
– ident: ref42
  doi: 10.1109/TIFS.2021.3107146
– ident: ref18
  doi: 10.1109/JIOT.2021.3058946
– ident: ref13
  doi: 10.1109/TEM.2019.2956897
– ident: ref35
  doi: 10.1109/ACCESS.2022.3177211
– ident: ref29
  doi: 10.1109/JBHI.2022.3143576
– ident: ref26
  doi: 10.1109/TEM.2020.3013507
– ident: ref31
  doi: 10.1109/IJCNN52387.2021.9534453
– ident: ref45
  doi: 10.1109/TETC.2020.2993032
– ident: ref23
  doi: 10.1109/TNSE.2022.3168025
– ident: ref20
  doi: 10.1109/TVT.2021.3058689
– ident: ref32
  doi: 10.1016/j.irbm.2021.05.003
– ident: ref33
  doi: 10.1007/s00521-020-05129-6
– ident: ref24
  doi: 10.1109/TNSE.2021.3050781
– start-page: 1
  year: 2021
  ident: ref40
  article-title: A descriptive study of assumptions in STRIDE security threat modeling
  publication-title: Softw Syst Model
– ident: ref41
  doi: 10.1007/s10916-018-0993-7
– ident: ref27
  doi: 10.1109/TCSS.2022.3186945
SSID ssj0001286333
Score 2.4001102
Snippet Securing Electronic Medical Records (EMRs) is one of the most critical applications of cryptography over the Internet due to the value and importance of data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Blockchain
Blockchains
Cloud computing
Consortia
Cryptography
Cybersecurity
Data models
Data privacy
Deep learning
Denial of service attacks
Distributed ledger
Electronic health records
Electronic Medical Records
Encryption
Health care
Homomorphic encryption
Hybrid Deep Learning
Industrial Internet of Medical Things
Internet
Internet of medical things
Machine Learning
Medical services
Performance measurement
Privacy
Security
Smart contracts
Title A Novel Homomorphic Encryption and Consortium Blockchain-based Hybrid Deep Learning Model for Industrial Internet of Medical Things
URI https://ieeexplore.ieee.org/document/10152463
https://www.proquest.com/docview/2866490760
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAEz3wKoilgObAqVLSJHayyZHHohUSewEkblEyGcOKJUGQrUSv_eOMHS9sqUAolxzsyMqMPd94Hp8QB8goOmEo78VlSh4jcOVlutJeEKGifqCkti2FzkfJ8EqdXcfXrljd1sIQkU0-I9-82lh-1eDUXJXxDmdroxK5KBbZc-uKteYuVNJESukil2GQ_bocXQx8Qw_uyyhl3BP8Y3ssmcp_J7A1K6erYjRbUJdNcudP29LHP-96NX55xWtixQFMOOw0Yl0sUL0hvs21Hfwu_h7CqPlNExg29_zwnx4jDGp8fLbnBxR1BYbIk5H5eHoPR2zv7vC2GNeesXkVDJ9NmRecED2A6896A4ZUbQIMgeGNDQS6-0ZqodHgQkLQMYVuiqvTweXx0HNkDB5GmWq9okzTql-wx4Mhi1EWOtAYpiRjzWdtjBmicedUXyOizojdqiKswlKXivE7RXJLLNVNTdsCKsmwrlBKSxkriUHap4r91CKOMranlPZEMBNTjq5TuSHMmOTWYwmy3Eg2N5LNnWR74ufrlIeuTcdngzeNpOYGdkLqid2ZMuRuJz_lrFWJykz8cueDaT_Esvl6l3i2K5baxyntMVJpy32roS9EGOYi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKewAOtECrLi1lDpyQEpLYySbHtmyVQpsLW6m3KJmMYdVtUpUsUrnyxxk7XlhARSiXHGzFyow9bzwfT4jXyCg6YSjvxXVKHiNw5WW60V4QoaJxoKS2LYXOiyS_UO8v40tXrG5rYYjIJp-Rb15tLL_pcGGuyniHs7VRiXwgNtjwx-FQrrVypZImUkoXuwyD7O20-DjxDUG4L6OUkU_wm_WxdCp_ncHWsJxsimK5pCGf5Mpf9LWP3_7o1vjfa94STxzEhMNBJ56KNWqficcrjQefi--HUHRfaQ55d80P_-sZwqTF2zt7gkDVNmCoPBmbzxbXcMQW7wo_V7PWM1avgfzOFHrBO6IbcB1aP4GhVZsDg2D4xQcCw40j9dBpcEEhGLhCt8XFyWR6nHuOjsHDKFO9V9Vp2owr9nkwZEHKSgcaw5RkrPm0jTFDNA6dGmtE1BmxY1WFTVjrWjGCp0juiPW2a2lXQCMZ2FVKaSljJTFIx9Swp1rFUcYWldKRCJZiKtH1KjeUGfPS-ixBVhrJlkaypZPsSLz5OeVmaNTxr8HbRlIrAwchjcT-UhlKt5e_lKxVicpMBPPFPdNeiYf59PysPDstPuyJR-ZLQxravljvbxf0knFLXx9Ybf0BaSTpaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Homomorphic+Encryption+and+Consortium+Blockchain-Based+Hybrid+Deep+Learning+Model+for+Industrial+Internet+of+Medical+Things&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Aitizaz+Ali&rft.au=Muhammad+Fermi+Pasha&rft.au=Guerrieri%2C+Antonio&rft.au=Guzzo%2C+Antonella&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=10&rft.issue=5&rft.spage=2402&rft_id=info:doi/10.1109%2FTNSE.2023.3285070&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon