A Novel Homomorphic Encryption and Consortium Blockchain-based Hybrid Deep Learning Model for Industrial Internet of Medical Things
Securing Electronic Medical Records (EMRs) is one of the most critical applications of cryptography over the Internet due to the value and importance of data contained in such EMRs. Although blockchain-based healthcare systems can provide security, privacy, and immutability to EMRs, several outstand...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 10; no. 5; pp. 1 - 18 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Securing Electronic Medical Records (EMRs) is one of the most critical applications of cryptography over the Internet due to the value and importance of data contained in such EMRs. Although blockchain-based healthcare systems can provide security, privacy, and immutability to EMRs, several outstanding security and latency issues are associated with existing schemes. For example, some researchers have used the blockchain as a storage tool which increases delay and adversely affects the blockchain performance since it stores a copy of each transaction. A distributed ledger also requires appropriate space and computational power with increased data size. In addition, existing healthcare-based approaches usually rely on centralized servers connected to clouds, which are vulnerable to denial of service (DoS), distributed DoS (DDoS), and collusion attacks. This paper proposes a novel hybrid-deep learning-based homomorphic encryption (HE) model for the Industrial Internet of Medical Things (IIoMT) to cope with such challenges using a consortium blockchain. Integrating HE with the proposed IIoMT system is a vital contribution of this work. The use of HE while outsourcing to the cloud the storage provides a unique facility to perform any statistical and machine learning operation on the encrypted EMR data, hence providing resistance to collusion and phishing attacks. Our proposed model uses a pre-trained hybrid deep learning model in the cloud and deploys the trained model into blockchain-based edge devices in order to classify and train local models using EMRs. This is further conditioned on the private data of each edge and IoT device connected with the consortium blockchain. All local models obtained are aggregated to the cloud to update a global model, which is finally disseminated to the edge nodes. Our proposed approach provides more privacy and security than conventional models and can deliver high efficiency and low end-to-end latency for users. Comparative simulation analysis with state-of-the-art approaches is carried out using benchmark performance metrics, which show that our proposed model provides enhanced security, efficiency, and transparency. |
---|---|
AbstractList | Securing Electronic Medical Records (EMRs) is one of the most critical applications of cryptography over the Internet due to the value and importance of data contained in such EMRs. Although blockchain-based healthcare systems can provide security, privacy, and immutability to EMRs, several outstanding security and latency issues are associated with existing schemes. For example, some researchers have used the blockchain as a storage tool which increases delay and adversely affects the blockchain performance since it stores a copy of each transaction. A distributed ledger also requires appropriate space and computational power with increased data size. In addition, existing healthcare-based approaches usually rely on centralized servers connected to clouds, which are vulnerable to denial of service (DoS), distributed DoS (DDoS), and collusion attacks. This paper proposes a novel hybrid-deep learning-based homomorphic encryption (HE) model for the Industrial Internet of Medical Things (IIoMT) to cope with such challenges using a consortium blockchain. Integrating HE with the proposed IIoMT system is a vital contribution of this work. The use of HE while outsourcing to the cloud the storage provides a unique facility to perform any statistical and machine learning operation on the encrypted EMR data, hence providing resistance to collusion and phishing attacks. Our proposed model uses a pre-trained hybrid deep learning model in the cloud and deploys the trained model into blockchain-based edge devices in order to classify and train local models using EMRs. This is further conditioned on the private data of each edge and IoT device connected with the consortium blockchain. All local models obtained are aggregated to the cloud to update a global model, which is finally disseminated to the edge nodes. Our proposed approach provides more privacy and security than conventional models and can deliver high efficiency and low end-to-end latency for users. Comparative simulation analysis with state-of-the-art approaches is carried out using benchmark performance metrics, which show that our proposed model provides enhanced security, efficiency, and transparency. |
Author | Ali, Aitizaz Pasha, Muhammad Fermi Hussain, Amir Saeed, Aamir Guzzo, Antonella Fortino, Giancarlo Guerrieri, Antonio Sun, Xiaobing |
Author_xml | – sequence: 1 givenname: Aitizaz orcidid: 0000-0002-4853-5093 surname: Ali fullname: Ali, Aitizaz organization: School of IT, UNITAR International University, Kelana Jaya, Malaysia – sequence: 2 givenname: Muhammad Fermi orcidid: 0000-0002-9848-8950 surname: Pasha fullname: Pasha, Muhammad Fermi organization: School of IT, Monash University, Subang Jaya, Malaysia – sequence: 3 givenname: Antonio orcidid: 0000-0003-1469-9484 surname: Guerrieri fullname: Guerrieri, Antonio organization: ICAR-CNR - Institute for high performance computing and networking - National Research Council of Italy, Rende (CS), Italy – sequence: 4 givenname: Antonella orcidid: 0000-0003-3159-0536 surname: Guzzo fullname: Guzzo, Antonella organization: Dept. of Computer, Modeling, Electronic, and System Engineering, University of Calabria, Rende (CS), Italy – sequence: 5 givenname: Xiaobing orcidid: 0000-0001-5165-5080 surname: Sun fullname: Sun, Xiaobing organization: Yangzhou University, China – sequence: 6 givenname: Aamir surname: Saeed fullname: Saeed, Aamir organization: Department of Computer Engineering, UET Jalozai Campus, Peshawar,Pakistan – sequence: 7 givenname: Amir surname: Hussain fullname: Hussain, Amir organization: School of Computing, Edinburgh Napier University, Scotland, U.K – sequence: 8 givenname: Giancarlo orcidid: 0000-0002-4039-891X surname: Fortino fullname: Fortino, Giancarlo organization: Dept. of Computer, Modeling, Electronic, and System Engineering, University of Calabria, Rende (CS), Italy |
BookMark | eNp9kU1rGzEQhkVJoGmaH1DoQdDzOvra1eqYum4dcJJDHOht0WpHtdK1tJXkgs_949XiHEIPZQ7zwfvOwDPv0JkPHhD6QMmCUqKut_ePqwUjjC84a2siyRt0wTgXFWfq-9lcM1mJRsm36CqlZ0IIZW3DOb9Af27wffgNI16HfYk47ZzBK2_iccoueKz9gJfBpxCzO-zx5zGYn2anna96nWDA62Mf3YC_AEx4Azp653_guzCUjTZEfOuHQ8rR6bGUGaKHjIPFdzA4U2bbXZGn9-jc6jHB1Uu-RE9fV9vluto8fLtd3mwqw5TIle7bdpCaqMZQI4BrS6yhLfDaikbWRhlDWEOFtMYYq4DVStOB9rYXkpWWX6JPp71TDL8OkHL3HA7Rl5NdwdEIRWRDioqeVCaGlCLYbopur-Oxo6SbcXcz7m7G3b3gLh75j8e4rGeAOWo3_tf58eR0APDqEq2ZKB_6C8uzkQ8 |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_3390_s23167162 crossref_primary_10_3390_a16080366 crossref_primary_10_3390_informatics11030047 crossref_primary_10_3390_math12101481 crossref_primary_10_3390_s23177476 crossref_primary_10_1016_j_engappai_2023_107831 crossref_primary_10_1016_j_compeleceng_2024_109737 crossref_primary_10_3390_info15110723 crossref_primary_10_1016_j_sysarc_2024_103132 crossref_primary_10_1007_s11227_024_06782_7 crossref_primary_10_1007_s42979_024_03116_5 crossref_primary_10_3390_app15063225 crossref_primary_10_1109_JIOT_2024_3487154 crossref_primary_10_1016_j_eswa_2024_124151 crossref_primary_10_1109_TAP_2024_3349782 crossref_primary_10_1002_spy2_460 crossref_primary_10_1109_ACCESS_2025_3535821 crossref_primary_10_3390_electronics13152962 crossref_primary_10_1016_j_heliyon_2024_e34458 crossref_primary_10_3390_s23187740 crossref_primary_10_3390_sym15091627 |
Cites_doi | 10.3390/s22020528 10.3390/s22062112 10.1007/978-3-030-23813-1_16 10.1145/3577926 10.1109/JIOT.2023.3268278 10.1016/j.future.2022.07.012 10.1109/TEM.2019.2928280 10.1109/icc.2011.5962757 10.1109/ACCESS.2020.2968985 10.1109/TNSE.2019.2961932 10.1109/TNSE.2020.3040446 10.1145/3462763 10.1109/ACCESS.2020.2977048 10.1155/2020/8832341 10.1109/OJCS.2021.3070714 10.1109/MCE.2021.3140048 10.1007/978-3-319-60055-0_12 10.1109/ACCESS.2021.3118642 10.1109/TII.2021.3051607 10.1109/TII.2022.3161631 10.1109/TNSE.2022.3227317 10.1109/TII.2020.3007817 10.1002/ett.4502 10.3390/app11219999 10.1016/j.compeleceng.2021.107209 10.1109/OBD.2016.11 10.1109/JIOT.2020.3030689 10.1109/TIFS.2021.3107146 10.1109/JIOT.2021.3058946 10.1109/TEM.2019.2956897 10.1109/ACCESS.2022.3177211 10.1109/JBHI.2022.3143576 10.1109/TEM.2020.3013507 10.1109/IJCNN52387.2021.9534453 10.1109/TETC.2020.2993032 10.1109/TNSE.2022.3168025 10.1109/TVT.2021.3058689 10.1016/j.irbm.2021.05.003 10.1007/s00521-020-05129-6 10.1109/TNSE.2021.3050781 10.1007/s10916-018-0993-7 10.1109/TCSS.2022.3186945 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2023.3285070 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 18 |
ExternalDocumentID | 10_1109_TNSE_2023_3285070 10152463 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-ab88d7a096c1c4e3af0fc18e35f4675c9cc026147fcccf9e259a1d1bfb4729e23 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 08:23:34 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Tue Jul 01 03:10:47 EDT 2025 Wed Aug 27 02:14:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-ab88d7a096c1c4e3af0fc18e35f4675c9cc026147fcccf9e259a1d1bfb4729e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9848-8950 0000-0002-4853-5093 0000-0003-3159-0536 0000-0001-5165-5080 0000-0002-4039-891X 0000-0003-1469-9484 |
PQID | 2866490760 |
PQPubID | 2040409 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1109_TNSE_2023_3285070 proquest_journals_2866490760 ieee_primary_10152463 crossref_citationtrail_10_1109_TNSE_2023_3285070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 landuyt (ref40) 2021 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref5 chen (ref8) 2020; 31 miriam (ref38) 2023; 35 |
References_xml | – volume: 35 year: 2023 ident: ref38 article-title: Secured cyber security algorithm for healthcare system using blockchain technology publication-title: Intell Automat Soft Comput – ident: ref10 doi: 10.3390/s22020528 – ident: ref7 doi: 10.3390/s22062112 – ident: ref44 doi: 10.1007/978-3-030-23813-1_16 – ident: ref37 doi: 10.1145/3577926 – ident: ref36 doi: 10.1109/JIOT.2023.3268278 – ident: ref16 doi: 10.1016/j.future.2022.07.012 – ident: ref1 doi: 10.1109/TEM.2019.2928280 – ident: ref4 doi: 10.1109/icc.2011.5962757 – ident: ref2 doi: 10.1109/ACCESS.2020.2968985 – ident: ref28 doi: 10.1109/TNSE.2019.2961932 – volume: 31 start-page: 2430 year: 2020 ident: ref8 article-title: Label-less learning for emotion cognition publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref14 doi: 10.1109/TNSE.2020.3040446 – ident: ref5 doi: 10.1145/3462763 – ident: ref11 doi: 10.1109/ACCESS.2020.2977048 – ident: ref21 doi: 10.1155/2020/8832341 – ident: ref12 doi: 10.1109/OJCS.2021.3070714 – ident: ref34 doi: 10.1109/MCE.2021.3140048 – ident: ref6 doi: 10.1007/978-3-319-60055-0_12 – ident: ref19 doi: 10.1109/ACCESS.2021.3118642 – ident: ref43 doi: 10.1109/TII.2021.3051607 – ident: ref25 doi: 10.1109/TII.2022.3161631 – ident: ref30 doi: 10.1109/TNSE.2022.3227317 – ident: ref3 doi: 10.1109/TII.2020.3007817 – ident: ref39 doi: 10.1002/ett.4502 – ident: ref9 doi: 10.3390/app11219999 – ident: ref15 doi: 10.1016/j.compeleceng.2021.107209 – ident: ref22 doi: 10.1109/OBD.2016.11 – ident: ref17 doi: 10.1109/JIOT.2020.3030689 – ident: ref42 doi: 10.1109/TIFS.2021.3107146 – ident: ref18 doi: 10.1109/JIOT.2021.3058946 – ident: ref13 doi: 10.1109/TEM.2019.2956897 – ident: ref35 doi: 10.1109/ACCESS.2022.3177211 – ident: ref29 doi: 10.1109/JBHI.2022.3143576 – ident: ref26 doi: 10.1109/TEM.2020.3013507 – ident: ref31 doi: 10.1109/IJCNN52387.2021.9534453 – ident: ref45 doi: 10.1109/TETC.2020.2993032 – ident: ref23 doi: 10.1109/TNSE.2022.3168025 – ident: ref20 doi: 10.1109/TVT.2021.3058689 – ident: ref32 doi: 10.1016/j.irbm.2021.05.003 – ident: ref33 doi: 10.1007/s00521-020-05129-6 – ident: ref24 doi: 10.1109/TNSE.2021.3050781 – start-page: 1 year: 2021 ident: ref40 article-title: A descriptive study of assumptions in STRIDE security threat modeling publication-title: Softw Syst Model – ident: ref41 doi: 10.1007/s10916-018-0993-7 – ident: ref27 doi: 10.1109/TCSS.2022.3186945 |
SSID | ssj0001286333 |
Score | 2.4001102 |
Snippet | Securing Electronic Medical Records (EMRs) is one of the most critical applications of cryptography over the Internet due to the value and importance of data... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Blockchain Blockchains Cloud computing Consortia Cryptography Cybersecurity Data models Data privacy Deep learning Denial of service attacks Distributed ledger Electronic health records Electronic Medical Records Encryption Health care Homomorphic encryption Hybrid Deep Learning Industrial Internet of Medical Things Internet Internet of medical things Machine Learning Medical services Performance measurement Privacy Security Smart contracts |
Title | A Novel Homomorphic Encryption and Consortium Blockchain-based Hybrid Deep Learning Model for Industrial Internet of Medical Things |
URI | https://ieeexplore.ieee.org/document/10152463 https://www.proquest.com/docview/2866490760 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAEz3wKoilgObAqVLSJHayyZHHohUSewEkblEyGcOKJUGQrUSv_eOMHS9sqUAolxzsyMqMPd94Hp8QB8goOmEo78VlSh4jcOVlutJeEKGifqCkti2FzkfJ8EqdXcfXrljd1sIQkU0-I9-82lh-1eDUXJXxDmdroxK5KBbZc-uKteYuVNJESukil2GQ_bocXQx8Qw_uyyhl3BP8Y3ssmcp_J7A1K6erYjRbUJdNcudP29LHP-96NX55xWtixQFMOOw0Yl0sUL0hvs21Hfwu_h7CqPlNExg29_zwnx4jDGp8fLbnBxR1BYbIk5H5eHoPR2zv7vC2GNeesXkVDJ9NmRecED2A6896A4ZUbQIMgeGNDQS6-0ZqodHgQkLQMYVuiqvTweXx0HNkDB5GmWq9okzTql-wx4Mhi1EWOtAYpiRjzWdtjBmicedUXyOizojdqiKswlKXivE7RXJLLNVNTdsCKsmwrlBKSxkriUHap4r91CKOMranlPZEMBNTjq5TuSHMmOTWYwmy3Eg2N5LNnWR74ufrlIeuTcdngzeNpOYGdkLqid2ZMuRuJz_lrFWJykz8cueDaT_Esvl6l3i2K5baxyntMVJpy32roS9EGOYi |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKewAOtECrLi1lDpyQEpLYySbHtmyVQpsLW6m3KJmMYdVtUpUsUrnyxxk7XlhARSiXHGzFyow9bzwfT4jXyCg6YSjvxXVKHiNw5WW60V4QoaJxoKS2LYXOiyS_UO8v40tXrG5rYYjIJp-Rb15tLL_pcGGuyniHs7VRiXwgNtjwx-FQrrVypZImUkoXuwyD7O20-DjxDUG4L6OUkU_wm_WxdCp_ncHWsJxsimK5pCGf5Mpf9LWP3_7o1vjfa94STxzEhMNBJ56KNWqficcrjQefi--HUHRfaQ55d80P_-sZwqTF2zt7gkDVNmCoPBmbzxbXcMQW7wo_V7PWM1avgfzOFHrBO6IbcB1aP4GhVZsDg2D4xQcCw40j9dBpcEEhGLhCt8XFyWR6nHuOjsHDKFO9V9Vp2owr9nkwZEHKSgcaw5RkrPm0jTFDNA6dGmtE1BmxY1WFTVjrWjGCp0juiPW2a2lXQCMZ2FVKaSljJTFIx9Swp1rFUcYWldKRCJZiKtH1KjeUGfPS-ixBVhrJlkaypZPsSLz5OeVmaNTxr8HbRlIrAwchjcT-UhlKt5e_lKxVicpMBPPFPdNeiYf59PysPDstPuyJR-ZLQxravljvbxf0knFLXx9Ybf0BaSTpaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Homomorphic+Encryption+and+Consortium+Blockchain-Based+Hybrid+Deep+Learning+Model+for+Industrial+Internet+of+Medical+Things&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Aitizaz+Ali&rft.au=Muhammad+Fermi+Pasha&rft.au=Guerrieri%2C+Antonio&rft.au=Guzzo%2C+Antonella&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=10&rft.issue=5&rft.spage=2402&rft_id=info:doi/10.1109%2FTNSE.2023.3285070&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |